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ABSTRACT

In many multimedia applications, there is a need to authenticate a source that has been subjected to benign degrada-
tions in addition to potential tampering attacks. We develop one information-theoretic formulation of this problem,
and identify and interpret the associated fundamental performance limits. A consequence of our results is that there
is a tradeo� between embedding distortion and robustness to channel noise, but no such tradeo� between these
parameters and security to forgery. To develop some intuition, we outline a sphere packing analogy and show that
the results from sphere packing and information theory have the same form.

One important bene�t of our framework is a coherent way to analyze and design authentication schemes for
general source models, distortion metrics, and noisy channel models. We illustrate this by an example construction
of a realizable authentication scheme. An important ingredient of our construction is the use of forward error
correcting codes. We show that the application of fairly simple codes decreases the embedding distortion required
by more than 5 dB without decreasing security or robustness. Our approach is general enough to be used in a wide
variety of applications.
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1. INTRODUCTION

In traditional authentication problems, one is interested in determining whether a received message is an exact
replica of what was sent. Digital signature techniques have emerged as a natural tool for addressing such problems.
However, in many emerging multimedia applications, the message may be an audio or video waveform, and even in
the absence of a tampering attack, the waveform may experience routine degradation due to noise, compression, etc,
before being received. Methods for reliably authenticating the received data in such cases are important as well.

As a motivating example, consider the authentication of drivers' licenses. Many jurisdictions print a hologram
on the photograph portion of the license. The presence of the hologram indicates that the license is legitimate but
does not add excessive distortion. Imprinting a hologram on a license is a particular implementation of a larger class
of authentication schemes. More generally, special markings are embedded into the photograph. A decoder uses
these markings to extract an authentic representation of the original. The special markings should be embedded so
that the distortion between the original and embedded photographs is small; thus, someone without the appropriate
decoder can still use the license to check the identity of the bearer. In addition, the special markings need to be
robust to perturbations in the form of smudges or other degradation due to routine handling: the decoder should
still declare the photo authentic if only these are present. Finally the special markings should be inserted so that no
other agent can create a successful forgery.

Researchers have proposed approaches to this class of problems based on digital watermarking, cryptography,
and content classi�cation [1]{[8]. Ultimately, the methods developed to date attempt to balance the competing goals
of robustness to benign degradation, security against tampering attacks, and embedding distortion. For example,
previous work suggests that reducing the embedding distortion or increasing the security to forgery reduces the
robustness to noise.

For a simple but reasonable model, we examine these tradeo�s from an information-theoretic perspective. We
begin by proposing a simple, well-de�ned formulation of the authentication problem which illustrates the fundamental
tradeo�s between robustness, security, and embedding distortion. This allows us to characterize asymptotically



achievable embedding distortions which serve as performance bounds and provide insights into the design of practical
schemes. We demonstrate the application of this framework via an example construction speci�cally optimized for a
uniform source over an additive white Gaussian noise channel using quadratic distortion. To illustrate the bene�ts
of coding, we show that relatively simple error correction codes can decrease the embedding distortion required by
more than 5 dB without decreasing security or robustness to channel noise.

The rest of this paper is organized as follows. We brie
y outline the problem and present the main result in
Section 2. Then we precisely de�ne the problem and conditions when this result applies in Section 3. In Section 4
we discuss the main result and provide a geometric interpretation in terms of sphere packing. We use these ideas
in Section 5 to construct an example authentication scheme and evaluate its performance. We close with some
conclusions.

2. PREVIEW OF THE PROBLEM AND MAIN RESULTS

While a variety of models will apply in practice, for the purpose of illustration we consider a particularly simple and
tractable one in this section. Speci�cally, we model the original source as a stochastic process, fXigni=1, where the
Xi's are independent and identically distributed (i.i.d.) according to some known distribution p(x). The encoder
modi�es the original source, producing Y n

1 , which then passes through a noisy channel with a known, memoryless
probability distribution p(zjy). The output of the noisy channel then passes through an insecure channel. The
insecure channel does not have a probability model. Instead a malicious attacker may modify the input to the
insecure channel to produce a potential forgery, Wn

1 . It is important to emphasize that our results do not depend
critically on the i.i.d. property. In fact, the i.i.d. model is pessimistic; better performance can usually be obtained
when correlation is present. Our analysis can be extended to cover such cases using standard techniques such as
water-pouring, transform coding, whitening, equalization, etc.

The decoder takes the potential forgery as input and attempts to extract an authentic representation of the
original source. The diagram in Figure 1 illustrates this scenario. Performance is measured according to three
criteria: security, robustness, and distortion. For a scheme to be secure, it should be impossible or infeasible for an
attacker to fool the decoder. For a scheme to be robust, the decoder should almost never declare a signal to be a
forgery unless the attacker has tampered with the signal. Finally, a good scheme should keep the distortion between
the original source and the received signal as small as possible.
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p(ZjY )

ChannelEncoder
X Y Z

Channel

Insecure
Decoder

W
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Figure 1. A diagram of the authentication problem.

We label the two relevant distortions D1 and D2. The distortion between the original source and the output of the
noisy channel is D1. This is the distortion a receiver sees when no decoder is available and no forgery is attempted.
Hence, D1 should be small so that a receiver without a decoder receives a good representation of the source. By
contrast, D2 is the distortion between the source and the representation extracted by the decoder. Distortion D2

should be small so that a receiver with a decoder can extract a high quality, authenticated representation of the
source.

In the license example, a small D1 corresponds to an encoding procedure that does not distort the original image
much. This allows an individual without a decoder to use the license to check the bearer's identity. A small D2

allows an oÆcial with a decoder to extract a high quality authentic representation of the image from the license.
Ideally, the pair (D1;D2) should be as small as possible.

Our analysis shows that reducing the embedding distortion for a scheme also reduces the robustness to noise, but
increasing the security to forgery does not e�ect robustness or embedding distortion. Thus our work con�rms that



a tradeo� exists between distortion and robustness, but shows that no such tradeo� exists between these goals and
the goal of security.

In [9], we prove that authentication schemes that are secure, robust and satisfy a distortion constraint pair
(D1;D2) are asymptotically achievable if and only if there exists a conditional distribution p(yjx) and a scalar
function f (�) such that

I(X;Y ) � I(Y ;Z); E[d1(X;Z)] � D1; E[d2(X; f (Y ))] � D2 (1)

where I( � ; � ) denotes mutual information between a pair of random variables, and d1(�; �) and d2(�; �) are the
distortion measures of interest. After precisely de�ning the problem for which these results apply, we provide a
geometric interpretation in Section 4.

3. PRECISE PROBLEM STATEMENT

Next we precisely de�ne an idealized version of the problem for which asymptotic results can be obtained. An
instance of the general authentication problem consists of the 5-tuple (Xn; p(x); p(zjy); d1(�; �); d2(�; �)). The source
is a sequence of n values drawn from a �nite set Xn according to the known i.i.d. distribution p(x). Without loss of
generality all random variables are assumed to take values in this set. The noisy channel follows a known probability
law p(zjy). When the channel is used repeatedly it is memoryless: p(znjyn) =Q p(zijyi). The attacker can look at the
input and output of the noisy channel, Y n

1 , Z
n

1 , and arbitrarily choose the �nal output Wn

1 . Speci�cally, the attacker
is not bound by any distortion constraint. Distortion for a received sequence is measured by summing the bounded
single letter distortion functions. ThereforeD1 = (1=n)

P
n

i=1 d1(Xi; Zi) � dmax;1, andD2 = (1=n)
P

n

i=1 d2(Xi; X̂i) �
dmax;2, where X̂

n

1 is the estimate of the source produced by the decoder.

An encoding scheme, Gn, consists of an algorithm which returns a triple (Qn(�);�n (�) ; ps) consisting of an
encoding function, decoding function, and secret key. The secret key consists of k bits known only to the encoder
and decoder. All other information is known to all parties including the attacker.

The encoder is a mapping from source sequences and secret key to codewords: Qn(Xn

1 ; ps) : Xn � f0; 1gk ! Xn.
The decoder is a mapping from channel outputs and the secret key to estimated source sequences or a special
symbol, ?, which indicates decoding failure: �n (Wn

1 ; ps) : Xn � f0; 1gk ! Xn [?. Although we consider sequences
of encoding schemes, encoder, decoders, etc., we omit the subscript n for clarity when it will not cause confusion.
Also, we assume the secret key is provided where necessary and omit the term ps to simplify the notation.

If G makes random choices, then all probabilities are taken over these random choices as well as other stochastic
processes such as the random source, channel law, etc. Note that we do not assume any probability model for the
behavior of the attacker.

3.1. Error Events And Achievable Distortions

In order to de�ne a notion of achievable distortions, we de�ne three error events. The �rst type of event, which we
call an undetected error, corresponds to the attacker tricking the decoder into accepting a forgery. A secure encoding
scheme should make it extremely unlikely that the attacker can create a successful forgery. The last two error events
correspond to the encoding scheme introducing too much embedding distortion. Good encoding schemes should keep
the distortion to within the speci�ed tolerances. We require that achievable schemes have the overall probability of
error decay to 0 as n!1.

3.1.1. De�nition Of Security And Undetected Error

In order to de�ne an undetected error event we need to de�ne what constitutes a forgery and what constitutes secure
operation. Multiple notions of security are possible. In [9] we discuss several de�nitions of security and examine
their implications. For convenience of analysis, in this paper we consider a simple, strong notion of security by
restricting our attention to a 2-stage decoder: � (�) = �B(�A (�)). The �rst stage, �A (�) produces an estimate of Y n

1

and the second stage, �B(�) converts the estimate of Y n

1 into a reconstruction of Xn

1 . Secure operation corresponds
to the event S = f�A (Wn

1 ) = Y n

1 g [ f�A (Wn

1 ) = ?g. When the event S occurs, either the decoder bases its
reconstruction solely on the encoder output or declares an encoding failure. Thus the attacker can only cause a
decoding failure, but if no decoding failure occurs the output of the decoder is independent of the attacker's actions.
Consequently, we de�ne an undetected error as the event that the attacker tricks the decoder into accepting a forgery
EU = Sc = f�A (Wn

1 ) 6= Y n

1 g \ f�A (Wn

1 ) 6= ?g.



3.1.2. Excess Distortion Error:

In order to insure that the encoding satis�es the distortion constraint we de�ne the excess distortion error events
as ED1

= f(1=n)Pn

i=1 d1(Xi; Zi) > D1g and ED2
= f(1=n)Pn

i=1 d2(Xi;�i (Z
n

1 )) > D2g. An excess distortion error
corresponds to either the encoding process introducing too much distortion or the combined encoding and decoding
process not producing an accurate reconstruction. Note that if the decoder erroneously declares a decoding failure
on input Zn

1 , this will cause the event ED2
to occur. This follows since no matter what �xed value is chosen for

�B(?), the distortion between X and �B(?) will be large with high probability. Consequently, requiring Pr[ED2
] to

be small implies that the probability of a decoding failure is also small.

3.1.3. Achievable Distortions

De�ne an overall error as any of the previous events E = ED1
[ ED2

[ EU . We de�ne a distortion pair, (D1;D2), for
the noisy authentication problem (Xn; p(x); p(zjy); d1(�; �); d2(�; �)) as achievable if there exists a sequence of encoding
schemes, Gn, such that limn!1 Pr[En] = 0.

Our main result is summarized below in Theorem 3.1 and proved in [9].

Theorem 3.1. A distortion pair, (D1;D2), is achievable if and only if there exists a probability distribution p(yjx)
and a scalar function f (�) such that the conditions in Equation (1) are satis�ed.

The scalar function, f (�), corresponds to the second stage of the decoder, �B(�), mentioned in Section 3.1.1.
Generally, once the decoder has determined Y n

1 , instead of producing the estimate X̂n

1 = Ŷ n

1 , the decoder can create
a better reconstruction by estimating Xn

1 given Y n

1 . For example, if the distortion metric was mean square error,
then f(�) would correspond to the minimum mean square estimator of each component of Xn

1 given each component
of Y n

1 . Generally, f (�) will correspond to the scalar minimum distortion estimator of Xi given Yi. Clearly D1 � D2.
Additional structure between the distortions can be derived as shown in Section 4.1.

4. GEOMETRIC INTERPRETATION

In this section we develop a sphere packing view to provide an intuitive understanding of Theorem 3.1 and to present
a general method of constructing authentication schemes. We consider a source, Xn

1 , with mean 0 and variance �2
X

elements with distortion measured according to mean square error. We model the noisy channel as additive noise
with mean 0 and variance �2

N
elements.

The law of large numbers implies that with high probability an outcome of the source, Xn

1 , will approximately
lie in an n-dimensional sphere of radius

p
n�2

X
centered on the origin. The codewords are points in this sphere�.

Again, by the law of large numbers, the noise vector will lie near the shell of an n-sphere of radius
p
n�2

N
. We will

show that designing a good authentication scheme corresponds to packing spheres of radius
p
n�2

N
(i.e. codewords)

into a sphere of radius
p
n�2

X
(i.e. the space of source outcomes).

To meet the goal of �delity, there should be enough codewords so that most source outcomes are close to a
codeword. To achieve the goal of security we partition the codewords into two types: the admissible codewords and
the non-admissible codewords. The encoder and decoder know which codewords are admissible and the attacker
does not. The encoder only transmits admissible codewords, so if the received signal is closer to a non-admissible
codeword than to an admissible codeword, the decoder can deduce that the signal is a forgery. To achieve robustness
to channel noise, the codewords must be far enough apart that they can be distinguished at the output of the noisy
channel. Figure 2 illustrates this idea. We develop this analogy further in the remainder of this section.

4.1. Detailed Analysis Of Sphere Packing Analogy

In Section 3.1.1 we restricted the decoder structure to the form �(�) = �B(�A (�)), where the �rst stage produces
an estimate Ŷ n

1 = �A (Wn

1 ) and the second stage converts this into an estimate of the source X̂n

1 = �B(Ŷ
n

1 ).
To develop the analogy, we further restrict the decoder by choosing the second stage to be the identity function
so X̂n

1 = Ŷ n

1 = �A (Wn

1 ). Furthermore we �rst consider a decoder that maps the received signal to the nearest
codeword. This allows us to focus our attention on the embedding distortion. With this structure, the distortion at
the output of the decoder will be d2(Xn

1 ; Y
n

1 ) provided successful decoding occurs. By expanding D1 = E[(X �Z)2]

�Since the source lies inside the n-sphere of radius
p
n�

2

X
with high probability, codewords outside the sphere would never

be used. Consequently to simplify the analysis we assume that all the codewords are inside the sphere.



using Z = Y + N we obtain D1 = D2 + �2
N
. Therefore, in the additive noise model where �B(�) is the identity

function, �nding the smallest pair of achievable distortions is equivalent to �nding the smallest achievable distortion
for D2 = d2(Xn

1 ; Y
n

1 ).

4.1.1. Fidelity

The encoder, Q(�), maps a source outcome, Xn

1 , to a codeword Y n

1 = Q(Xn

1 ). To keep the total squared distortion
between Xn

1 and Y n

1 smaller than nD2 requires that for each value of Xn

1 , there exists a codeword within Euclidean
distance

p
nD2. We call the set of all codewords the codebook C and denote the number of codewords as K = jCj.

Since we are interested in the �delity, security and robustness of the encoding, the size of the codebook is not of
direct importance. However, because our authentication is implemented in terms of quantizers, the codebook size
and the associated codebook rate, R = (1=n) logK, turn out to be useful intermediate parameters in the analysis.

If we denote the volume of an n-sphere of radius r as Vn(r), then the number of codewords per unit volume is
� = K=Vn(

p
n�2

X
). Consider a sphere of volume Vn(1=�) centered on a source outcome, Xn

1 . If the codewords are
evenly distributed, the sphere will contain one codeword on average (if the codewords are not evenly distributed
the sphere will contain less codewords on average). The Euclidean distance between Xn

1 and the codeword must be
less than the radius of the sphere. Consequently, keeping the distortion smaller than nD2 requires packing enough
codewords into the space of possible source outcomes so that V �1

n
(1=�) < nD2. Using the simple manipulations

below we can transform this into a constraint on the codebook rate:

1

�
< Vn (nD2) )

Vn

�p
n�2

X

�
K

< Vn (nD2) ) K >
Vn

�p
n�2

X

�
Vn (nD2)

) K >

�
�2
X

D2

�n=2
) R >

1

2
log

�2
X

D2

(2)

4.1.2. Security

To achieve security it should be infeasible for the attacker to �nd a signal which is accepted by the decoder. For
example, if the attacker chooses a random signal, the decoder should reject it with high probability. This implies
that the volume of the space accepted by the decoder should be small compared to the volume of the space of source
outcomes. To achieve this, we modify the original codebook C, encoder, Q(�), and decoder, � (�) as follows. Choose
a 
 > 0 such that 
 � R and generate the modi�ed codebook, C0 � C, by randomly choosing 2n(R�
) of the 2nR
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Figure 2. The large n-sphere of radius
p
n�2

X
represents the space of possible source outcomes. The small spheres

of radius
p
n�2

N
are centered on codewords. Since the noise vector, Nn

1 , will be smaller than
p
n�2

N
and the small

spheres do not overlap, the codewords can be determined from the output of the noisy channel Zn

1 = Y n

1 +Nn

1 . The
shaded spheres represent the admissible codewords known only to the encoder and decoder. Since the attacker does
not know which codewords are admissible, when he creates a forgery the decoder will check that the closest codeword
is not admissible and detect the forgery.



codewords in C. We call C0 the admissible codebook. The knowledge of C0 is the secret key which is known only to
the encoder and decoder and concealed from the attacker. The modi�ed encoder encodes Xn

1 by mapping it to the
nearest codeword in C0. The modi�ed decoder �rst maps a signal to the nearest codeword, c 2 C. Since the decoder
knows that the encoder only produces codewords in C0, if c 62 C0, the decoder declares the signal to be a forgery.
Otherwise if c 2 C0, the decoder produces c as the estimate of Xn

1 .

If the attacker sees a valid codeword, c, and tries to create a forgery, Wn

1 , there are three possibilities for the
behavior of the decoder. In the �rst case, � (Wn

1 ) = c: the attacker does not modify the forgery much so the decoder
obtains the same result as if no tampering had occurred. The decoder is not fooled in this case. In the second case,
� (Wn

1 ) = cf 62 C0: the decoder declares the signal a forgery which is correct. In the third case, � (Wn

1 ) = cf 6= c and
cf 2 C0: the decoder does not realize the signal is a forgery and produces cf as an allegedly authentic reconstruction.
A good scheme should make the third case unlikely. Recall that the attacker has no knowledge of C0 and the set of
codewords in C0 were chosen randomly and independently of the attacker. So if cf 6= c, then the probability that
cf 2 C0 is

Pr[fcf 6= cg \ fcf 2 C0g] =
jC0j
jCj =

2n(R�
)

2nR
= 2�n
 :

Consequently the forgery will fail with high probability so the scheme is secure.

The distortion for the modi�ed codebook, C0, can be computed by evaluating the average number of codewords
per unit volume as before. Since jC0j = jCj2�n
, this calculation shows that the distortion of the modi�ed codebook
is D22
 . Thus making the scheme secure increases the distortion slightly. The increase in distortion can be made
negligible by choosing 
 > 0 small enough. Alternatively we can start with 2n(R+
) codewords in C and create C0 by
choosing 2nR codewords from C. The result is that both security and �delity can be achieved simultaneously.

4.1.3. Robustness

Next we address the goal of robustness to noise. According to the law of large numbers, the noise vector Nn

1 will
have length close to

p
n�2

N
. Therefore if codeword Y n

1 is transmitted, the output of the noisy channel will lie on

the surface of an n-sphere of radius
p
n�2

N
centered on the transmitted codeword Y n

1 . If the noise spheres centered
on the codewords in C overlap, then decoding errors can occur if the noise perturbs c = Y n

1 such that the received
signal Zn

1 is closer to another codeword cn. If cn 6= c, then with high probability cn 62 C0. Consequently the decoder
will declare the received signal to be a forgery, when in fact it is a valid signal perturbed by noise. To prevent
this type of false alarm error, the codewords must be far enough apart that the noise spheres do not overlap. The
maximum number of noise spheres of radius

p
n�2

N
which can be packed into the sphere of possible source outcomes

without overlap is proportional to the ratio of their volumes. Therefore to insure correct decoding, the total number
of codewords must satisfy

K < Vn

�q
n�2

X

�
=Vn

�q
n�2

N

�
) R <

1

2
log

�2
X

�2
N

: (3)

Combining this with Equation (2) implies (1=2) log(�2
X
=D2) + 
 < R < (1=2) log(�2

X
=�2

N
) must hold to achieve

�delity, security, and robustness. Since 
 can be made negligible, we obtain the requirement D2 > �2
N
.

4.2. Uniform Source, AWGN Channel Model, Quadratic Distortion

For a more speci�c example, consider authenticating a uniform source over an additive white Gaussian noise channel
with quadratic distortion. The sphere packing argument shows that an authentication scheme for this scenario is
possible when D2 > �2

N
. Similar results can be obtained by applying Theorem 3.1. In addition, Theorem 3.1 can

provide a lower bound for D2. Speci�cally, in [10] we show that

1

2
log

6�2
X

�eD2

� I(X;Y ); I(Y ;Z) � 1

2
log

�2
X
+D2 + �2

N

�2
N

(4)

Combining these with the requirement I(X;Y ) � I(Y ;Z) from Theorem 3.1 yields

1

2
log

6�2
X

�eD2

� 1

2
log

�2
X
+D2 + �2

N

�2
N

) D2 �
�(�2

X
+ �2

N
) +

q
(�2

X
+ �2

N
)2 + 24

�
2

X
�
2

N

�e

2



Rewriting this in terms of the distortion-to-noise ratio DNR = D2=�
2
N
and the signal-to-noise ratio SNR = �2

X
=�2

N

we obtain

DNR �
�
1 + SNR

2

� 
�1 +

s
6

�e

4SNR

(1 + SNR)2

!
= DNRmin (5)

Note that the left inequality in Equation (4) has the same form as the R > (1=2) log(�2
X
=D2) result in Equation (2)

obtained from the sphere packing argument. The right inequality in Equation (4) has the same form as the R <

(1=2) log(�2
X
=�2

N
) term in Equation (3). In general Theorem 3.1 can be viewed as a more precise version of the

sphere packing argument which applies for arbitrary distortion measures, source distributions, and channels.

5. CONSTRUCTIONS

In this section we describe constructions of authentication schemes incorporating the ideas from Section 4. One of
our goals is to illustrate how error correcting codes can decrease the embedding distortion and increase the reliability
of authentication schemes. Consequently, we focus upon the simple model of an i.i.d. source fXigni=1 uniformly
distributed over [�L;L] and an additive white Gaussian noise channel. Distortion is measured using mean square
error. The components of the source could be pixel values, DCT coeÆcients, wavelet coeÆcients, etc. The noise could
correspond to JPEG compression, smudges, half-toning, format changes, or other benign perturbations. To simplify
the exposition and provide a point of comparison we �rst develop an uncoded scheme and evaluate its performance.
Then we show how relatively simple error correcting codes can be incorporated to provide signi�cant performance
gains.

5.1. Designing An Authentication Scheme Without Error Correcting Codes

5.1.1. Fidelity

As discussed in Section 4.1.1, the encoder should be able to choose from a large number of possible codewords to
keep the distortion small. To design the encoder, we choose a rate R uniform scalar quantizer to use in quantizing
each sample of the source. The 2R reconstruction points are at

ci =

�
i� 2R � 1

2

�
L

2R�1
8i 2 f0; 1; 2; :::; 2R � 1g:

Note that the reconstruction points are a subset of a shifted and scaled version of the integer lattice. A simple
calculation shows that the expected quantization distortion is

D2 =
4L2

12
2�2R = �2

X
2�2R (6)

Therefore to obtain a target distortion, D2, R should be chosen such that R > (1=2) log(�2
X
=D2). This achieves the

goal of �delity.

To encode a source, Xn

1 , the encoder �rst quantizes Xn

1 . This maps the sequence of n source symbols to a
sequence of n blocks of 2R bits each. We call the resulting bit sequence F (Xn

1 ). The codebook, C corresponds to the
set of reconstruction points of the quantizer.

5.1.2. Security

To achieve security, we need to create a modi�ed codebook C0 � C. Randomly choosing 2n(R�
) codewords from C as in
Section 4.1.2 is generally impractical. If C0 was chosen in this manner, then encoding would require searching through
all 2n(R�
) codewords which is prohibitively complex. Furthermore, this would require a method for exchanging secret
keys between the encoder and decoder. Consequently we describe a method based on the well-known tools of public-
key digital signatures. The digital signature based method has the advantages of low complexity and a public key;
however, other techniques to achieve security are also possible.

A digital signature algorithm consists of a key generation algorithm (pk; sk) = Kn, a signing algorithm, � =
S(m; sk), and a signature verifying algorithm V(m; �; pk). The signing algorithm is used to generate a tag, � , by
signing the message m with the secret key sk. We denote the length of the tags produced as 
 since the tag length



plays a role analogous to the parameter 
 used in Section 4.1.2. The verifying algorithm returns true only when
called on a valid message{tag pair generated with the secret key matching the public key pk. Furthermore, it is
computationally infeasible for an attacker to generate a valid message{tag pair without knowing the secret key.

We de�ne C0 to be all the codewords c 2 C such that two pieces of the codeword form a valid message{tag pair
for a digital signature scheme. The details for this procedure are as follows. The encoder chooses 
 distinct indices
from 1 to n: fI1; I2; :::; I
g to store digital signature information. One good method is to choose these randomly
and uniformly over all the samples. Then the encoder chooses his public and private key pair, (pk; sk), for the
digital signature algorithm. The type of digital signature chosen, the public key, the reconstruction points, rate of
the quantizer, and the indices where the digital signature tag will be embedded are made publicly available. For a
quantized block, F (Xn

1 ), let �(F (X
n

1 )) correspond to the least signi�cant bits of sample I1 through I
. Let G(F (Xn

1 ))
correspond to setting the least signi�cant bit of sample I1 of F (X

n

1 ) to 0 and repeating for samples I2 through I
 .
C0 consists of all the codewords in C such that V(G(Fn

1 ); �(F
n

1 ); pk) returns true.

The encoder can encode Xn

1 to a valid codeword by �rst computing F (Xn

1 ). This corresponds to scalar quanti-
zation and is therefore a simple operation. Next, the encoder computes the 
-bit tag as � = S(G(F (Xn

1 )); sk). The
encoder sets the least signi�cant bit in sample Ij to be the jth bit of the tag, � . We call the resulting sequence
of bits Q(G(F (Xn

1 ))). The encoder then constructs Y n

1 = P (Q(G(F (Xn

1 )))) by reconstructing the sequence of bits
using the reconstruction points for the quantizer speci�ed earlier. Figure 3 shows a diagram of the encoding process.

The process of embedding the digital signature tag in the least signi�cant bits is based on a digital watermarking
method called Low Bit Modulation (LBM) [11]. More eÆcient watermarking schemes such as Quantization Index
Modulation (QIM) [12] could also be used. For most digital signature schemes, the tag length is small enough that
the distortion di�erence between LBM and QIM is negligible compared to the overall processing distortion.

The decoder receives Wn

1 and performs maximum likelihood decoding. The decoder �rst quantizes Wn

1 with the
same quantizer used by the encoder to get F (Wn

1 ). Next the decoder chooses the �rst bit of the tag, � , to be the
least signi�cant bit of block I1 and repeats this process for fI2; I3; :::; Itg. Then the decoder sets the least signi�cant
bit in block I1 to 0 and repeats this process for fI2; I3; :::; Itg to get G(F (Wn

1 )). Finally the decoder veri�es the
digital signature by checking if V(�;G(F (Wn

1 )); pk) = 1. If this is the case, then the decoder accepts the decoded
result as Ŷ n

1 = P (Q(G(F (Wn

1 )))). Otherwise the receiver declares a decoding failure. Figure 4 shows a diagram of
the decoding process.

To create a forgery, the attacker must �nd a new codeword which is a valid message{tag pair. This requires
cracking the digital signature scheme. A discussion of the security of digital signature schemes is beyond the scope
of this paper. Various signature schemes exist which provide strong levels of security such that the probability of the
attacker cracking the scheme is O(2�
). Consequently, by making 
 large enough, security can be achieved.

The distortion for the unmodulated samples was computed in Equation (6). The distortion for the low bit
modulated samples, fI1; I2; :::; Itg, will be greater. If we model the tag bits as equally likely to be 0 or 1, the
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expected distortion for the modulated samples is

E[(XIj
� YIj)

2] = �2
X
2�2R + �2

X

15


16n
2�2R (7)

Thus the total encoding distortion is computed by averaging the distortion in equations (6) and (7) to get

D2 =
1

n

nX
i=1

E[(Xi �Q(Xi))
2] = �2

X
2�2R(1 +

15


16n
): (8)

For n large enough to make 
=n small, the additional distortion due to the tag is negligible. Consequently both
security and �delity can be achieved simultaneously.

5.1.3. Robustness

Next we calculate the probability of decoding error, pe. If each symbol of Y
n

1 is perturbed by less than half the distance
between quantization points, then no errors occur. This condition is equivalent to the event \n

i=1fjNij < L2�Rg.
Thus the probability that symbol i is in error will be ps = Pr[jNij > L2�R]. For 
 � n we can write ps in terms
of D2 as ps = Pr[jNij >

p
3D2]. Since Ni is Gaussian with mean 0 and variance �2

N
we get ps = 2Q(

p
3D2=�

2
N
).

If any symbol is in error then the whole sequence will be in error. Since symbol errors are independent, the total
probability of error is pe = 1 � (1 � ps)

n. For ps � 1, the total probability of error is roughly pe � nps. We can
relate the embedding distortion, probability of decoding error and probability of forgery with

pe � 2nQ

 s
3D2

�2
N

1

1 + 15

16n

!
= 2nQ

 s
3DNR

1 + 15

16n

!
� 2nQ(

p
3DNR) (9)

This equation shows a tradeo� between robustness to noise and �delity. Speci�cally for large n the factor 
=n will
be small so security can be achieved without a�ecting distortion or robustness. Conversely, to make the probability
of decoding error negligible we must increase the embedding distortion. In the next section, we show how to decrease
the probability of decoding error and at the same time decrease the embedding distortion.

5.2. Designing An Authentication Scheme Using Error Correcting Codes

The distortion to noise ratio required by an uncoded scheme is roughly 10 dB from the lower bound we derived at
ps = 10�6. This distortion gap is present because the uncoded scheme does not pack the codewords as densely as
suggested by the sphere packing analogy. Speci�cally, the codewords in the scheme described previously are elements
of a shifted and scaled integer lattice. Since integer lattices do not have good packing properties, the uncoded scheme
is suboptimal. By using better codewords, we can obtain a superior authentication scheme.



In general, the uncoded scheme can be modi�ed to use a code, C, by changing the uniform scalar quantizer,
F (Xn

1 ), into a quantizer which quantizes Xn

1 to the nearest codeword in C. To illustrate this procedure we describe
a construction using lattices based on trellis codes. As shown in [13], [14], [15], these lattices are superior to the
integer lattice both in terms of reducing the quantization distortion and increasing the distance between codewords.

We use the same encoding scheme as shown in Figure 3 except that the uniform scalar quantizer is replaced with
a trellis quantizer designed for a uniform source as in [14]. The tag bits are then computed and embedded into the
least signi�cant bits of the codeword as beforey and the resulting codeword is reconstructed to obtain the encoded
signal Y n

1 . The decoding operation is the same as in the uncoded case except the scalar quantizer is replaced with
the trellis quantizer.

By using trellis codes, we reduce both the quantization distortion and the probability of decoding error. We
derived a lower bound on the minimum possible embedding distortion in Equation (5). To obtain a fair performance
metric, we de�ne LDNRnorm as how much more DNR a scheme requires than the lower bound at a given probability
of symbol error: LDNRnorm = DNR=DNRmin. Every achievable scheme must have LDNRnorm � 1. Schemes with
lower LDNRnorm are better in the sense that they come closer to achieving the lower bound on distortion.

Rather than develop a closed form expression, we evaluate ps numerically. The results of simulations for some
reasonable design parameters are plotted in Figure 5. This plot shows the probability of decoding error per symbol,
ps, as a function of the normalized distortion to noise ratio, LDNRnorm

z. We plot the probability of symbol error,
ps, instead of the total probability of decoding error, pe, to separate the issue of sequence length from probability of
symbol error.

2 3 4 5 6 7 8 9 10 11
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Normalized Distortion Noise Ratio, LDNR
norm

 (dB)

P
ro

ba
bi

lit
y 

of
 D

ec
od

in
g 

E
rr

or
 P

er
 S

ym
bo

l, 
p s

Uncoded       
4 State Code  
32 State Code 
128 State Code

Figure 5. The vertical axis is proportional to the probability that a valid, authentic signal is erroneously declared a
forgery by the decoder due to channel noise. By using coding, the distortion required to each a given error probability
can be signi�cantly decreased.

For these experiments, the speci�c design parameters were based on an i.i.d source uniform over the range [�4; 4],
quantized using rate 4 trellis coded quantization. The rate 1/2 convolutional codes used for the coset selector are the
1-D codes in Table I of [16]. The results for the uncoded case were computed analytically while the results for the

yDue to the structure of the quantizer, determining which bits are the least signi�cant bits requires more care than with

the uniform scalar quantizer. See [10] for details.
zOur plot ignores the extra distortion due to embedding the tag bits since we have shown that this extra distortion is

negligible for large n.



coded case were collected using 104 � 106 sequences of length 1000 (more sequences were used to collect the points
with low ps). The number of trials were chosen so that all results are with �10% with 95% con�dence. Since the
source size and the rate were �xed for all trials, the SNR and DNR were varied by changing the noise variance.

The plot shows that trellis coded schemes achieve the same level of robustness but require 3.5-5.3 dB less em-
bedding distortion at ps � 10�6. As the DNR increases the distortion reduction of the coded systems increase.
Consequently we can bound the probability of error of a coded system with the equation ps � Ke� �Q(

p
3DNR �Gc)

where Gc represents a factor between 3.5-5.3 dB due to the bene�t of coding and Ke� represents the e�ective number
of nearest neighbors. Following the communications literature we identify Gc as a coding gain since it ampli�es the
e�ect of the DNR in determining robustness.

Throughout this paper we have used quadratic distortion for analytical convenience. To show techniques such
as coding provide signi�cant gains for other measures such as human perceptual system and for broader classes of
sources, we provide encoded images. Figure 6 shows the result of using both schemes to encode the 256 by 256
gray scale Lena image. Since trellis coding e�ectively includes a type of dithering, the uncoded image is dithered to
provide a fair comparison. Without dithering the visual quality of the uncoded image is even worse. Dithering does
not signi�cantly help the coded image. The embedding distortions were chosen so that both images would have an
overall probability of authentication error of 10�3 (corresponding to ps � 10�9) when subjected to additive noise
with PSNR = 40 dB. Since the coding gain increases with increasing DNR, the coded image will have increasingly
better noise robustness than the uncoded image as the PSNR is increased.

Figure 6. The image on the left was created using the uncoded authentication scheme described in Section 5.1
while the image on the right was created using the coded system described in Section 5.2 with a 128 state trellis
code. The peak signal to embedding distortion ratio (PSDR) for the uncoded image is 30.040 dB and 36.190 dB for
the coded image. The coded image has superior probability of decoding error provided the PSNR is at least 40 dB.
Consequently coding provides a PSDR gain of 6.15 dB.

6. CONCLUSIONS

We presented one formulation of the multimedia authentication problem and provided a single letter expression for
the set of achievable distortions in Theorem 3.1. This result can be used to measure the performance of practical
schemes as well as to understand the fundamental limits of authentication. To develop intuition for this result, we
outlined a sphere packing analogy for authenticating an i.i.d. source in additive noise with quadratic distortion. The
results from the sphere packing argument have the same form as the information theoretic results.



We considered a relatively simple model for our constructions in Section 5.1 and Section 5.2 in order to illustrate
the applications of the information theoretic framework. Our goal is not to suggest that these simple models are
important in themselves, but to show that the tradeo� between �delity and robustness to noise is a signi�cant
issue in multimedia authentication. Designing an eÆcient authentication scheme requires choosing the codewords to
optimally balance these competing goals as suggested by the sphere packing analogy.

In Section 5.1, we explored an uncoded authentication scheme and analyzed its performance. We showed the
distortion for the uncoded scheme is about 10 dB above the bounds obtained from Theorem 3.1. Next in Section 5.2,
we showed how to modify the uncoded scheme using trellis codes. We presented simulation results which show that
simple coding reduces the distortion by roughly 3.5-5.3 dB at ps � 10�6. The substantial coding gain obtained by
using trellis codes suggests that coding can provide signi�cant advantages in authentication. Further coding gains
could be obtained using more powerful codes such as multistage trellis codes, turbo codes, or LDPC codes.

Our framework can be valuable in designing authentication schemes for more complicated models as well. In
many areas of signal processing, transform techniques followed by scalar processing have proven valuable. This idea
can be applied to authentication. For example, by using an appropriate transform, a correlated source model could
be converted to a basis where the source is uncorrelated. Quantization and coding can then be performed in the
transform domain. Similarly a correlated noise model could be addressed by using a whitening �lter at the decoder
to transform the noise vector into uncorrelated samples. Blockwise transforms could be used to address distortion
metrics which weight distortions as a function of frequency.

In conclusion the information-theoretic framework provides a link between multimedia authentication and a wide
array of powerful results from signal processing and information theory. One such link examined in this paper
is the use of error correcting codes in authentication. Some other ideas from these �elds which could be applied
to authentication include transform techniques, techniques for unknown source models such as universal coding,
techniques for unknown channel models such as blind or adaptive equalization, techniques applying channel side
information at the transmitter or receiver, and techniques for burst noise channels.
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