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Abstract

Some applications and generalizations of the problem of coding with side infor-
mation are developed. In the context of Gaussian broadcast channels, we show how
embedding codes, based on information embedding techniques, can have significant
advantages over superposition codes in several scenarios of interest, particularly
when upgrading legacy digital systems.

Performance limits of noisy generalizations of the coding with side information
problem are also developed for finite-alphabet and Gaussian-quadratic cases. The
information embedding version—writing on dirty paper wearing bad glasses—may
have applications to the multiple-access channel. The source coding version, which
generalizes the Wyner-Ziv problem, has applications ranging from constrained relay
channels to forms of sequential estimation that arise in distributed sensor networks.
For the latter, distortion-rate behavior is characterized in the Gaussian-quadratic
case for a sensor pipeline.

1 Introduction

While some of the earliest applications of information embedding techniques have been
in watermarking and data hiding areas, the array of applications, richness of the theory,
and interconnections to other problems continue to grow. This paper establishes some
new results in this realm.

We first explore aspects of the role information embedding techniques have to play
in communication over the classical broadcast channel. In particular, after summarizing
how codes based on information embedding can be used as scalable alternatives to su-
perposition codes for the broadcast channel, we develop the somewhat special role it has
to play in some backward-compatible upgrading of digital communication infrastructure
in the broadcast context.

Information embedding also has potential applications to multiple-access channel
problems. As a foundation for investigations in this area, we analyze the problem of
writing on dirty paper while wearing bad glasses, i.e., information embedding where the
encoder’s knowledge of the host signal is imperfect.

As has been explored recently by several groups, there is an important information
theoretic duality between information embedding and the problem of source coding with
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side information, whereby good information embedding encoders make good Wyner-Ziv
decoders [13], and vice-versa. Motivated by this relationship, we investigate the the
impact of imperfect encoder knowledge on the Wyner-Ziv problem. We term this “noisy
source coding with side information.”

Single-letter characterizations of the performance limits for the noisy variants of both
source and channel coding problems are developed in the general finite-alphabet context,
as well as in the Gaussian-quadratic case.

Finally, an application of these results to a sequential estimation problem that arises
in distributed sensor networks is developed. The results leads to some efficient structures
for “sensor pipelines.”

2 Embedding Codes for Broadcast Channels

In this section we develop aspects of the role information embedding techniques have to
play in broadcast channel applications. We first review the Gaussian broadcast chan-
nel and describe how information embedding techniques can be used to achieve channel
capacity. We then consider a broadcast scenario with two classes of receivers: legacy
receivers and new receivers. We discuss scenarios where information embedding tech-
niques allow us to upgrade this digital communications architecture in a more efficient
backwards-compatible manner than can be accomplished with previous techniques.
First, consider the two-receiver broadcast channel. Recall that when the transmitter
is constrained to use power P and the two receivers experience noises with variances Ny
and Ny, respectively, with N; > Ny, then the achievable rate region for this channel is [8]
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where o may be arbitrarily chosen (0 < o < 1) to trade off rate between the receivers.
The classical and familiar method for achieving these rates is superposition coding com-
bined with successive cancellation decoding [8]. In particular, the encoder maps the
messages for each receiver, m; and my respectively, into the corresponding channel code-
words, ¢; and ¢y, and transmits the superposition ¢;+c¢,. The weak receiver (experiencing
noise Vp) effectively treats cy as extra channel noise in its decoding of my. The strong re-
ceiver (experiencing noise Ny) also decode my, subtracts off the corresponding codeword
c; from its received signal, then decodes m, from the residual.

In the general M-receiver broadcast channel, each stronger receivers must cancel all
the messages intended for the weaker ones, so that ultimately the Mth receiver must
know all M codebooks and decode all M messages. From this perspective, superposition
codes, which are based on an “interference cancellation” principle, generally do not lead
to scalable broadcast protocols.

However, as described in [4] in the symmetric case, the broadcast channel frontier (1)
can also be achieved in a fundamentally different way via information embedding, and we
term the result an “embedding code.” In the two-receiver case, as before, the encoder uses
codeword c; to transmit information to the weak receiver at average power aP. However,
with embedding coding the encoding of the message for the strong receiver is chosen as
a function of that for the weak receiver. In particular, the strong receiver’s message is
embedded into the weak receiver’s message using information embedding, corresponding
to an embedding distortion (1 — «)P. With capacity-achieving information embedding
techniques, the host and embedding signals are independent and the composite signal



has power P. The weak receiver decodes m; just as in the superposition coding case,
ignoring the distortion caused by the embedding, achieving rate R; in (1). However, the
strong receiver extracts my using an information embedding decoder, which requires no
knowledge of the (Gaussian) host signal ¢;. Since, the strong receiver’s distortion-to-
noise ratio is (1 — a)P/Ns, rate Ry in (1) achievable, consistent with the Costa’s result
6].

In the general M-receiver broadcast channel, the receivers are ordered by strength,
and successively embedded into the weakest to achieve capacity.! Thus, in contrast to
superposition coding, there is an ordering of receivers that is important at the encoder.
However, the benefit of such embedding codes is a decoupling at the receivers: each
receiver need only know its own codebook to extract its message. In particular, it treats
the messages for all weaker receivers as its “host” and messages for all stronger receivers as
“noise” in its decoding. In this way embedding codes, which are based on an “interference
avoidance” principle, lead to an inherently more scalable broadcast protocol.

One other property of embedding codes is that the messages can be embedded in
an arbitrary order at the encoder, with the decoders adjusted accordingly, although
capacity region frontier is only achievable by the weak-to-strong ordering. However,
with superposition codes, the decoders cannot be arbitrarily ordered: only the stronger
receivers can strip messages of weaker ones.

However, even beyond scalability issues, there are other reasons why embedding codes
can be preferable to superposition codes. Indeed, as we develop next, they yield strictly
better performance in some broadcasting contexts with legacy infrastructure.

2.1 Upgrading Legacy Digital Broadcast Infrastructure

Consider a deployed broadcast system whose legacy receivers can reliably decode code-
books of rate

1
Ricgacy = 3 log[1 + SNRiegacy]  if SNR > SNRjegacy (2)

where SNR is the (common) realized channel SNR. Some time after deployment of large
numbers of legacy receivers, the system is upgraded. The upgrade results in improved
communications channel quality (due to, e.g., higher power transmitters or lower noise
amplifiers) so that the channel SNR is now SNRypgrade > SNRijegacy. With this upgrade,
a new class of receivers is also introduced that can reliably decode codebooks of better
rate

1
Rupgrade = 3 log[1 + SNRupgrade]  if SNR > SNR.perade- (3)

As we now develop, if the legacy receivers must be kept in-service, we must constrain
the design of the new receivers with this in mind. To simplify the exposition, we restrict
our attention to a two-receiver (legacy and new) scenario, to which independent messages
are to be sent. The M-receiver case follows analogously.

Referring to Fig. 1, the lower dotted and upper dashed lines delineate the capac-
ity region for the original and upgraded channels, respectively. The legacy receiver is
constrained to operate along the solid line connecting (a) to (b).

We consider solutions based on resource (e.g., time) sharing, embedding codes, and
superposition codes. With resource sharing some fraction of, e.g., time slots in a TDMA
system (or frequency bins in an OFDM or FDMA system) are allocated for transmission

Mmportant generalizations are developed in [3].
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Figure 1: Achievable region for Gaussian broadcast channels illustrating the advantages
of an information embedding approach over resource sharing.

at rate Riegacy to the legacy receiver and the remaining fraction are allocated for trans-
mission at rate Rypgrade t0 the new receiver. The overall transmission rate therefore lies
on the line connecting points (a) and (c) in Fig. 1. By contrast, using either superposition
codes or embedding codes we can achieve any rate on the solid line connecting (a) and
(b), and in turn by subsequent time-sharing, any rate on the line between (b) and (c).

For the embedding code solution, the legacy codeword serves as the host signal and
has average power P. A distortion signal, which is the host-dependent encoding of
the embedded information, of power D is added to it giving a composite signal power
P+ D. To keep the transmitted power constant, a gain of \/P/(P + D) is applied before
transmission; we assume that legacy receivers have automatic gain control mechanisms
that will apply an inverse gain of /(P + D)/P. If the noise at the receivers has variance
N, we can consider an equivalent model without the gains, but with a noise variance of
N(1+D/P). Define the signal-to-noise and distortion-to-noise ratios to be SNRypgrade =
P/N and DNR = D/N, respectively. Then, taking into account the automatic gain
control, we define the effective DNR and SNR as follows:

P SNR.upgrad
SNRe _ _ upgrade
i N(1+D/P)  1+D/P’
D DN
DNR.s = R
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The legacy receiver sees an SNR of

SNR, 4= P _ Sl\u%upgraude/(1 + D/P) _ SNReﬂ‘ (4)
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while the new receiver sees a distortion-noise-ratio of DNR.g. The achievable rates are
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} and Rpew < 5 log[1 + DNRg].



Rold

Rold

@ )
Rlegacy 7( Rlegacy

= = R new . R new

R R upgrade R upgrade

Figure 2: Achievable region for Gaussian broadcast channels with different receiver
SNR’s. Left (MNegacy > Nupgrade): point (b) can be achieved with either embedding or su-
perposition codes. Right (Negacy < Nupgrade): Point (e) can be achieved with embedding
but not superposition codes, and point (f) cannot be reached by either code.

The sum rate

Rsum = Rold + Rnew

1 SNR.g 1 1

< -1 1+ — —log|1 + DNRg| = = log |1 + DNR, SNR,.

= zog{ +1+DNRGH]+20g[ + DNRe] = 5 log[1 + DNRer + SNRe]
1 DNR + SNRperade 1

= 5 log ll g D/Ppg :| = 5 log[l + SNRupgrade] = Rupgrade' (5)

If SNRoia = SNRiegacy then Rog = Riegacy, the legacy rate we are committed to
supporting. Since Ry = Rupgrade, the maximum possible sum rate, it follows that
fulfilling the design requirement of a system upgrade that continues to support the legacy
receiver does not result in a sum-rate inefficiency. Furthermore, as Fig. 1 reflects, this
solution leads to greater sum rate than does the resource-sharing solution. That is
embedding codes enable legacy receivers to operate always at rate Rjegacy and to push
the rate pair out to (b), which can be then used to time-share with (c¢). Consistent with
the discussion in Sec. 2, superposition codes can also be used to achieve point (b), so that
both embedding and superposition codes are equally good in this setting, and preferable
to resource-sharing.

Interestingly, however, a somewhat different conclusion can emerge when the two
receivers experience different noise levels Niggacy and Nypgrade- In general, their relative
strengths can be arbitrary in practice. For example, the case Negacy > Nupgrade models a
situation in which the new receivers also have quieter electronics or better equalization,
while the case Niegacy < Nupgrade models a scenario in which the new receivers are further
away from the transmitter. The left-hand and right-hand plots in Fig. 2 model these two
scenarios, respectively. In this figure, Rjegacy is the legacy rate that we must continue to
support, and the dashed curve in both plots is the frontier of achievable rates at the new
channel SNRs.



First consider the left-hand plot of Fig. 2, for which Negacy > Nupgrade- As before,
time-sharing between Rjegacy and Rypgrade achieves rates along the solid line connecting
points (a) and (c). Embedding and superposition codes get us to point (b), and we can
time-share between this point and (c). At (b) the achievable rate pair is (Riegacy, 7).
However, now Riegacy + R < Rupgrade- That is, the sum rate is strictly less than if we
stopped transmitting to legacy receivers and transmitted exclusively to new receivers.
This is because the now-concave frontier of the achievable region lies below the (dotted)
constant sum-rate line emanating from (Rypgrade, 0). Thus, in this case although we attain
the frontier of the capacity region, we pay a price in overall throughput (sum rate) by
having to accommodate legacy receivers.

This behavior contrasts with that exhibited in the the right-hand plot of Fig. 2, for
which Niegacy < Nupgrade- Because the new receiver has the lower SNR, it cannot decode
the legacy receiver’s message m; and strip its codeword. However, the legacy receiver
does not have successive cancellation decoding as part of its functionality, so it cannot
decode the new receiver’s message my and strip its codeword. Therefore, both receivers
suffer interference when superposition coding is used. With embedding codes, however,
we can partially circumvent the interference. As discussed in section 2, either codeword
can serve as the host signal, and rates (1) remain achievable. But unless the embedding
is done in the codeword destined for the lower-SNR receiver, these rates no longer lie on
the achievable rate frontier. The rates pairs achievable using superposition coding (sc)
and embedding coding (ec) are, respectively,

1 aP 1 (1-—a)P
Ro sc:_1 1 ) Rnewsc:_l 1 ) 6
. 2 o [ " (1 - O‘)P+ Nlegacy} 7 2 o { i P+ Nupgradj ( )
1 aP 1 (1-a)P
Ro ec:_lo 1+ ) Rnewec:_lo 1+ ) 7
d, 2 & l (1 — a)P + Nlegacy:| ’ 2 & |: Nupgrade :| ( )

where o may be arbitrarily chosen (0 < o < 1). The rate pair of (6) gives us the
dotted curve in the right-hand plot. Time-sharing between (d) and (g) gives us the set of
achievable rates. The rate pair of (7) gives us the dash-dot curve in the right-hand plot.
Time-sharing between (e) and (g) yields the set of achievable rates. Hence, in this case
embedding coding is not able to avoid all interference (which would get us to (f)), but
does strictly better than superposition coding, which cannot suppress any interference.

3 Noisy Coding with Side Information

Generalizations of the basic information embedding problem also have a potentially in-
teresting role to play in, e.g., complementary applications to the multiple-access channel.
Likewise, the corresponding generalizations of its dual, Wyner-Ziv coding, also have in-
teresting applications to sequential estimation.

In this section we begin by characterizing the performance limits of the noisy informa-
tion embedding and noisy source coding with side information problems. In particular,
we develop single-letter capacity expressions for both scenarios in the finite-alphabet case,
and develop the associated capacities for the Gaussian-quadratic case [9].

3.1 Writing on Dirty Paper Wearing Bad Glasses

Fig. 3 depicts the generalized information embedding scenario of interest. The n-dimensional
signal x is the host signal, and is assumed to be a vector of independent identically-
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Figure 3: Information embedding with noisy host information. The signals x, y, m, e, w
and z are, respectively, the host, host observation, message, embedding signal, composite
signal, and channel output.

distributed (i.i.d.) random variables, x; ~ p(x). The encoder observes y, which is related
to the host via the memoryless transition density p(y|z). The message to be embedded is
m, and the output of the encoder is the embedding signal e. The embedding signal e is
added to the host x, producing the composite signal w. A distortion constraint is placed
between the composite signal w and the host signal x. Finally, the decoder measures z,
which is an observation of w via the memoryless channel with transition density p(z|w).

The information embedding capacity with “imperfect” host information is denoted
CIE(d).. The derivation [9] can be viewed as generalizing results in [5] to accommo-
date a distortion constraint, just as [1] generalizes [10] to accommodate such distortion
constraints.

Given noisy host observations, C{¥(d) is the maximum achievable rate for communi-
cating a message m such that Pr(m # m) is arbitrarily small and F [% > iy D(x, Wk):|
is arbitrarily close to d for sufficiently large n.

Theorem 1 For general distortion measures D(-,+), the capacity CI(d) can be expressed
in the form CI¥(d) = max[I(z; u)—1(u;y)], where the mazimum is taken over all distribu-
tions pujy(uly) and functions f: U xY — & satisfying £ [D(x;w)] < d where e = f(u,y)
and u s an auxiliary random variable.

3.1.1 Gaussian-Quadratic Case

In this case, x is an n-length sequence of i.i.d. zero-mean, variance o2 Gaussian random
variables, i.e., x; ~ N(0,02). The encoder observes y, a noise-corrupted version of x
according to y; = x; + vi; where v;; ~ N(0, V7). As a function of y and m, the encoder
produces the embedding signal e, and the channel input is w = x+e where F [(x — w)?] <
d. The communication channel is an additive white Gaussian noise channel, z; = w; + v ;
where vo; ~ N(0, Ny). For this channel, the capacity is

1
Ci(d) = B) log

d
1+ ——— +N2]. (8)

o
x|y

The two terms in the denominator of (8) correspond to the two sources of uncertainty.
The first term is the minimum mean-squared error (MMSE) estimation error in the host
estimate x = E [x|y]. The second term is the uncertainty caused by the channel noise.
In the limit of small estimation error (N; — 0), we get Costa’s familiar capacity [6].
Eq. (8) also tells us that, in the case of Gaussian measurements, a separation theorem
applies to noisy information embedding: without loss in performance the encoder can
be realized as the cascade of MMSE estimation (of x from y) followed by information

7
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Figure 4: Noisy source coding with side information. The signals x, y;, y» and m are,
respectively, the source, remote source observation, side information, and message

embedding (as if the estimate were the true state). Since the MMSE estimation error acts
as extra channel noise, this must be taken into account by the distortion compensation
in the (QIM) information embedder [4]. A geometric view is developed in [9)].

The test channel used to determine capacity is similar to the channel used in [6].
The auxiliary random variable u = ay + e, where and e is the encoder output, a zero-
mean Gaussian random variable of variance d that is independent of y. The input to the
channel is w = x + e. Optimization over « yields the capacity given in (8).2

3.2 Noisy Source Coding with Side Information

Fig. 4 depicts the source coding with side information scenario of interest. The n-
dimensional i.i.d. source vector x is observed via two memoryless transition probabilities
p(y1]x) and p(y2|x) at the encoder and decoder, respectively. The encoder converts its
observation of y; into a message m that is communicated over a rate-constrained channel
to the decoder. The decoder produces x, an estimate of the source x, as a function of
yo and m. This scenario differs from Wyner-Ziv source coding because x is not uniquely
determinable from y;. This is a useful model for a variety of practical scenarios, such
as multiple-microphone problems in acoustic applications and other constrained relaying
problems.?

The rate-distortion function for source-coding with side-information and ‘imperfect’
encoder observations is denoted R}V%(d). This is the minimum achievable rate so that
E[D(x"™,x™)] is arbitrarily close to d for sufficiently large n. In [9] we show the following
theorem:

Theorem 2 Let (x,y1,y2) be drawn i.i.d. ~ p(y1|z)p(yz|x)p(z) and let D(z", ") =
%Z?:l D(x;, ;) be given. The rate distortion function for noisy source coding with side
information is RYV%(d) = min[I (u; y1) — I (u; y2)], where the minimization is over all func-
tions f 1Yy x U — X and conditional distributions p(uly,), such that

2When the encoder observes a noisy version of the host, but must also embed in some function of
that noisy observation, the capacity changes to C(d) = log[l + (d — Ui‘y)/NQ], where d — Ufly > 0.
Capacity is achieved by embedding in the MMSE estimate.

3For the general Gaussian relay channel [7], our results suggest that the relay sends the message that
would be most useful for the decoder to estimate the codeword. A combination of stripping and noisy

source coding with side information allows the following rate to be achieved,

) PN,
relay = = log [ (P1 + P>+ Na)/ | No [ 1 '
Rrelay = 5 log | (P1 + P2 + 2)/[ 2( +P1(N1+N2)+N1N2>”

As the relay power grows (P> — 00) this strategy achieves capacity. But as the channel to the relay
becomes perfect (N7 — 0) this approach suffers because cooperation is not exploited [9)].



D e 2oy Dy 2 P Y1, y2)p(ulyn) D(x, f(y2, u)) < d.

3.2.1 Gaussian-Quadratic Case

In this case, y; and y, are observations of x through Gaussian channels: y;; = x; + vy,
Yoi = X; + va,;, where v;; ~ N(0, N;) and the two noise sources are independent of each
other and of the source.

1 o2 —o2
R (d) =  log | A2 | (9)
2 d_UX|Y1,YQ

where o2 L, < d < Uz\ﬂ Note that as N; — 0, the encoder measures the source
perfectly, and (9) is the Wyner-Ziv rate developed in [12]. Likewise, as Ny — oo there is
no side information at the decoder. This is the situation of noisy quantization, and the
rate converges to that developed in [11].

Note again that (9) implies that a separation theorem applies in the Gaussian case:
without loss of performance the optimal encoder can be factored into the cascade of
MMSE estimation followed by Wyner-Ziv coding, with the decoder modified accordingly.

The test channel used to determine capacity is developed in[9]. In brief, the auxiliary
random variable u = ay; + e where e ~ N(0, ad*) is independent of y; and y,. Optimal
choices of o and d* are o = 0>2<\y2 — d/(az‘y2 + Np) and d* = d — o2 In addition, the

X|yt,y2*
decoder (reconstruction) function f is

. d N
f(yQ,U)ZX:EyQ‘i‘ 1+ 21 u. (10)
x|y2

3.3 Sequential Estimation and Sensor Pipelines

In this section we apply noisy source coding with side information to a problem of se-
quential estimation that arises in, e.g., distributed sensor networks. Consider the sce-
nario depicted in Fig. 5. A number of sensors nodes are linked together serially via
rate-constrained channels of rates Rs, R3,.... Node n observes y, = x + v,, where
x ~ N(0,021), v,, ~ N(0, NI), and receives a data stream from node (n — 1) at rate
R,. Each node acts in sequence, sending on the information that will most help the
next node in its estimation of x. For example, node n fuses together its observation with
whatever data it received from the nodes earlier in the chain (nodes 1, 2, ..., n— 1) to
produce its estimate Xx,,, with a mean-squared distortion error d,,. Knowing that node n
makes an observation of the source, node (n—1) sends on the most useful bits to assist in
making that estimate. The rate-distortion region for this problem can be derived using
the results on noisy source coding with side information from Section 3.

In order to illustrate the results we restrict Ry = R3 = ... = R, and v ~ vy ~ v3 ~

.~ N(0, NI). Under these conditions, the distortion at the nth sensor is

d dpn—1 N 2 <1 B %) 2R ( )
S T N S —. ) 11
" d, + N dy_ ’
1+ <1 + N1>
where az‘ , is the MMSE in the estimate of x given any single observation y; = x + v;.
The first term in (11) dictates how the MMSE Uz\yl,...,yn decreases as a function of n. As

R — oo the method presented achieves this lower bound.
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Figure 5: Sequential estimation in a serial sensor network with rate-constrained con-
nections. Noisy source coding with side information results give the solution to this
problem.
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Figure 6: Successive estimation performance declines with node number, but is lower-
bounded for finite rate (R < oc). Here 62 =4, N = 1, and R = 1,2,3,00. Solid lines
plot the evolution of the estimation error d,, for the different rates. Dashed lines plot the
lower-bound on performance for each finite rate.

The distortion in (11) decreases monotonically with n. In the limit as n — oo d,, — d
which can be derived by setting d,, = d,,_; = d in (11), yielding d ~ ©(27%); specifically,

2

g
d= 32 [ VN2 PR+ 40307 + N) - N2 F| 2R (12)
JX

In Fig. (6) we plot the decrease in mean-squared estimation error versus node number
for 02 = 4, N = 1. Node 1 has only its own observation, so its error is o2 . Node 2
has its own observation plus whatever information it gets at rate R from node 1, etc.
We plot the results for R = 1,2, 3,00. The data points that correspond to each node’s
estimation error are connected by solid lines for convenience. The limit given by (12) is
plotted as a dashed line for each case.

Eq. (12) provides a means for determining the bit pipe size required to achieve a
target steady state distortion. However, using this bit pipe size between all pairs of
nodes is inefficient: since earlier nodes do not have reliable estimates to convey, their bit
pipes can be smaller. We complete our analysis of the sequential analysis problem by

10



examining the asymptotically optimal rate of growth of bit pipes that should be used.
In particular, we find that if we allow the the transmission rate to increase at each

stage (i.e. Ry < R3 < ---), the distortion can be made to stay within a finite multiple

of o2 ie. d, < /mz‘yl k > 1. As n gets large, to meet the constraint this

X‘Yl ----- Yn’
constraint R,, must grow logarithmically as

R, >lo SNiR +lo _n
n= %% T SNR & k(k —1)

where SNR = ¢2/N is an individual sensor’s SNR.
These sequential estimation results can be compared with the corresponding results
for the closely related non-sequential CEO problem [2].
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