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Abstract. Copyright notification and enforcement, authentication, covert communication, and hybrid transmis-
sion applications such as digital audio broadcasting are examples of emerging multimedia applications for digital
watermarking and information embedding methods, methods for embedding one signal (e.g., the digital watermark)
within another “host” signal to form a third, “composite” signal. The embedding is designed to achieve efficient
trade-offs among the three conflicting goals of maximizing information-embedding rate, minimizing distortion
between the host signal and composite signal, and maximizing the robustness of the embedding.

We present a class of embedding methods called quantization index modulation (QIM) that achieve provably
good rate-distortion-robustness performance. These methods, and low-complexity realizations of them called dither
modulation, are provably better than both previously proposed linear methods of spread spectrum and nonlinear
methods of low-bit(s) modulation against square-error distortion-constrained intentional attacks. We also derive
information-embedding capacities for the case of a colored Gaussian host signal and additive colored Gaussian
noise attacks. These results imply an information embedding capacity of about 1/3 b/s of embedded digital rate for
every Hertz of host signal bandwidth and every dB drop in received host signal quality.

We show that QIM methods achieve performance within 1.6 dB of capacity, and we introduce a form of post-
processing we refer to as distortion compensation that, when combined with QIM, allows capacity to be achieved.
In addition, we show that distortion-compensated QIM is an optimal embedding strategy against some important
classes of intentional attacks as well. Finally, we report simulation results that demonstrate the performance of
dither modulation realizations that can be implemented with only a few adders and scalar quantizers.

Keywords: digital watermarking, information embedding, quantization index modulation, dither modulation,
distortion compensation

1. Introduction

Digital watermarking and information embedding sys-
tems have a number of important multimedia applica-
tions [1, 2]. These systems embed one signal, some-
times called an “embedded signal” or “watermark”,
within another signal, called a “host signal”. The em-
bedding must be done such that the embedded signal
causes no serious degradation to its host. At the same
time, the embedding must be robust to common degra-
dations to the composite host and watermark signal,

which in some applications result from deliberate at-
tacks. Ideally, whenever the host signal survives these
degradations, the watermark also survives.

One commonly cited application is copyright notifi-
cation and enforcement for multimedia content such
as audio, video, and images that are distributed in
digital formats. For example, watermarking techniques
have been proposed for enforcing copy-once features
in digital video disc recorders [3, 4]. Authentication of,
or detection of tampering with, multimedia signals is
another application of digital watermarking methods
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[5], as is covert communication, sometimes called
“steganography” [6] or low probability of detection
communication.

Although not yet widely recognized as such, hybrid
transmission is yet another group of information em-
bedding applications [7]. In these cases the host sig-
nal and embedded signal are two different signals that
are transmitted simultaneously over the same chan-
nel in the same bandwith. So-called hybrid in-band
on-channel digital audio broadcasting (DAB) [8, 9] is
an example of such a multimedia application where
one may employ information embedding methods to
backwards-compatibly upgrade the existing commer-
cial broadcast radio system. In this application one
would like to simultaneously transmit a digital sig-
nal with existing analog (AM and/or FM) commercial
broadcast radio without interfering with conventional
analog reception. Thus, the analog signal is the host
signal and the digital signal is the watermark. Since the
embedding does not degrade the host signal too much,
conventional analog receivers can demodulate the ana-
log host signal. In addition, next-generation digital re-
ceivers can decode the digital signal embedded within
the analog signal. This embedded digital signal may
be all or part of a digital audio signal, an enhancement
signal used to refine the analog signal, or supplemental
information such as station identification. More gener-
ally, the host signal in these hybrid transmission sys-
tems could be some other type of analog signal such as
video [10] or even a digital waveform. For example, a
digital pager signal could be embedded within a digital
cellular telephone signal.

Another application is automated monitoring of air-
play of advertisements. Advertisers can embed a digi-
tal watermark within their ads and count the number of
times the watermark occurs during a given broadcast
period, thus ensuring that their ads are played as often
as promised. In this case, however, the watermark is
embedded within the baseband source signal (the ad-
vertisement), whereas in other hybrid transmission ap-
plications the digital signal may be embedded in either
the baseband source signal or the passband modulated
signal (a passband FM signal, for example).

A number of information-embedding algorithms
have been proposed [1, 2] in this still emerging field.
One class of nonlinear methods involves a quantize-
and-replace strategy: after first quantizing the host sig-
nal, these systems change the quantization value to em-
bed information. A simple example of such a system
is so-called low-bit(s) modulation (LBM), where the

least significant bit(s) in the quantization of the host
signal are replaced by binary representation of the em-
bedded signal. These methods range from simple re-
placement of the least significant bit(s) of the pixels of
an image to more sophisticated methods that involve
transformation of the host signal before quantization
and adjustment of the quantization step sizes [10]. As
we will show later, such methods are inherently less ef-
ficient than the quantization index modulation methods
[7, 11] discussed in this paper in terms of the amount
of embedding-induced distortion for a given rate and
robustness. Linear classes of methods such as spread-
spectrum methods embed information by linearly com-
bining the host signal with a small pseudo-noise signal
that is modulated by the embedded signal. Although
these methods have received considerable attention in
the literature [12–15], linear methods in general and
spread-spectrum methods in particular are limited by
host-signal interference when the host signal is not
known at the decoder, as is typical in many of the ap-
plications mentioned above. Intuitively, the host signal
in a spread spectrum system is an additive interference
that is often much larger, due to distortion constraints,
than the pseudo-noise signal carrying the embedded
information.

Quantization index modulation (QIM) methods, a
class of nonlinear methods that we describe in this
paper, reject this host-signal interference. As a result,
these methods have very favorable performance char-
acteristics in terms of their achievable trade-offs among
the robustness of the embedding, the degradation to the
host signal caused by the embedding, and the amount
of data embedded.

In Section 2 we formulate a general model of
information-embedding problems and provide exam-
ples of how the model can be applied to many of the
applications discussed above. In Section 3 we show that
a very natural way of classifying digital watermarking
methods is by whether or not the host signal inter-
feres with watermark extracting. In particular, methods
that can reject host-interference are generally pre-
ferred, and we discuss one class of host-interference re-
jecting information-embedding methods in Section 4,
namely quantization index modulation. We also dis-
cuss distortion-compensated QIM (DC-QIM), a post-
processing enhancement of QIM, and dither modu-
lation, a convenient subclass of QIM with several
low-complexity realizations, in this section. As we dis-
cuss in Section 5, in a fairly general Gaussian case,
QIM methods exist that achieve performance within a



Quantization Index Modulation Methods 9

Figure 1. General information-embedding problem model. A mes-
sagem is embedded in the host signal vectorx using some embed-
ding functions(x, m). A perturbation vectorn corrupts the composite
signals. The decoder extracts an estimatem̂ of m from the noisy
channel outputy.

few dB of capacity, and DC-QIM methods exist that
achieve capacity. We also discuss the implications for
multimedia applications like hybrid transmission and
authentication, the main result being that a 3-dB drop
in received host signal quality is worth about 1 b/s/Hz
in embedded digital rate. Some simulation results are
presented in Section 6 and some concluding remarks
in Section 7.

2. Problem Models

Although the information-embedding applications de-
scribed in Section 1 are quite diverse, the simple prob-
lem model of Fig. 1 captures most of their fundamental
features. We wish to embed some digital information or
watermarkm in some host signal vectorx ∈ <N . This
host signal could be a vector of pixel values or Discrete
Cosine Transform (DCT) coefficients from an image,
for example. Alternatively, the host signal could be a
vector of samples or transform coefficients, such as
Discrete Fourier Transform (DFT) or linear prediction
coding coefficients, from an audio or speech signal. We
wish to embed at a rate ofRm bits per dimension (bits
per host signal sample) so we can think ofm as an
integer, where

m ∈ {1, 2, . . . ,2NRm}. (1)

An embedding function maps the host signalx and em-
bedded informationm to a composite signals∈<N .
The embedding should not unacceptably degrade the
host signal, so we have some distortion measure
D(s, x) between the composite and host signals. For
example, one might choose the square-error distortion
measure

D(s, x) = 1

N
‖s− x‖2. (2)

In some cases we may measure the expected distortion
Ds = E[D(s, x)]. The composite signals is subjected

to various common signal processing manipulations
such as lossy compression, addition of random noise,
and resampling, as well as deliberate attempts to re-
move the embedded information. These manipulations
occur in some channel, which produces an output signal
y ∈ <N . For convenience, we define a perturbation vec-
tor n ∈ <N to be the differencey – s. Thus, this model
is sufficiently general to include both random and de-
terministic, and both signal-independent and signal-
dependent, perturbation vectors. The decoder forms an
estimatem̂ of the embedded informationm based on
the channel outputy. The roubustness of the overall
embedding-decoding method is characterized by the
class of perturbation vectors over which the estimatem̂
is reliable, where reliable means either thatm̂ = m de-
terministically or that Pr[̂m 6= m] < ε. In some cases,
one can conveniently characterize the size of this toler-
able class of perturbations, and hence the robustness,
with a single parameter. Here are a few examples:

1. Bounded Perturbation Channels: In this case
we consider the largest perturbation energy per dim-
ensionσ 2

n such that we can guaranteem̂ = m for
every perturbation vector that satisfies

‖n‖2 ≤ Nσ 2
n . (3)

This channel model describes a maximum
distortion1 or minimum SNR constraint between the
channel input and output and, hence, may be an ap-
propriate model for either the effect of a lossy com-
pression algorithm or attempts by an active attacker
to remove the embedded signal, for example.

2. Bounded Host-Distortion Channels: Some at-
tackers may work with distortion constraint between
the host signal, rather than the channel input, and the
channel output since this distortion is the most di-
rect measure of degradation to the host signal. For
example, if an attacker has partial knowledge of the
host signal, which may be in the form of a probabil-
ity distribution so that he or she can calculate this
distortion then it may be appropriate to bound the
expected distortionDy = E[D(y, x)], where this
expectation is taken over the probability density of
x given the channel inputs.

3. Additive Noise Channels:In this case the perturba-
tion vectorn is modeled as random and statistically
independent ofs. An additive white Gaussian noise
(AWGN) channel is an example of such a channel,
and the natural robustness measure in this case is
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Figure 2. Equivalent super-channel model for information embed-
ding. The composite signal is the sum of the host signal, which is the
state of the super-channel, and a host-dependent distortion signal.

the maximum noise varianceσ 2
n such that the prob-

ability of error is sufficiently low. As we discuss
in Section 5, this additive Gaussian noise channel
model may be appropriate for a variety of applica-
tions, including hybrid transmission.

The first two channel models are appropriate models
for distortion-constrained, intentional attacks and are
discussed in detail in [11]. The third model may be ap-
propriate for a number of unintentional or incidental
attacks and is the topic of Section 5. In general, one
can specify the robustness and class of tolerable per-
turbation vectors in terms of a conditional probability
law py|s(y | s) in the probabilistic case or in terms of a
set of possible outputsP{y | s} for any given input in
the deterministic case.

An alternative representation of the model of Fig. 1
is shown in Fig. 2. The two models are equivalent since
any embedding functions(x, m) can be written as the
sum of the host signalx and a host-dependent distortion
signale(x, m),

s(x, m) = x+ e(x, m),

simply by defining the distortion signal to be
e(x, m)

1= s(x, m )− x. Thus, one can viewe as the in-
put to a super-channel that consists of the cascade of
an adder and the true channel. The host signalx is a
state of this super-channel that is known at the encoder.
The measure of distortionD(s, x) between the com-
posite and host signals maps onto a host-dependent
measure of the sizeP(e, x) = D(x + e, x) of the dis-
tortion signale. For example, square-error distortion
(2) equals the power ofe,

1

N
‖s− x‖2 = 1

N
‖e‖2.

Therefore, one can view information embedding prob-
lems as power-limited communication over a super-
channel with a state that is known at the encoder.2

This view can be convenient for determining achiev-
able rate-distortion-robustness trade-offs of various in-
formation embedding and decoding methods, as will
become apparent in Section 5.

One desires the embedding system to have high rate,
low distortion, and high robustness, but in general these
three goals conflict. Thus, the performance of an infor-
mation embedding system is characterized in terms of
its achievable rate-distortion-robustness trade-offs.

3. Classes of Embedding Methods

An extremely large number of embedding methods
have been proposed in the literature [1, 2, 6]. Rather
than discussing the implementational details of this
myriad of specific algorithms, in this section we fo-
cus our discussion on the common performance char-
acteristics of broad classes of methods. Because in
this paper we often examine watermarking at the high-
est, most fundamental level, our classification system
is based on the types of behaviors that different wa-
termarking systems exhibit as a result of the proper-
ties of their respective embedding functions. In par-
ticular, our taxonomy of embedding methods includes
two classes: (1) host-interference non-rejecting meth-
ods and (2) host-interference rejecting methods.

3.1. Host-Interference Non-Rejecting Methods

A large number of embedding algorithms are designed
based on the premise that the host signal is like a source
of noise or interference. This view arises when one
neglects the fact that the encoder in Fig. 2 has access to,
and hence can exploit knowledge of, the host signalx.

The simplest of this class have purely additive em-
bedding functions of the form

s(x, m ) = x+ w(m), (4)

wherew(m) is typically a pseudo-noise sequence. Em-
bedding methods in this class are often referred to as
spread spectrum methods and some of the earliest ex-
amples are given by Tirkel et al. [16, 17], Bender et al.
[12], Cox et al. [13, 18], and Smith and Comiskey
[14]. (The “Patchwork” algorithm [12] of Bender et al.,
involves adding a small amountδ to some pseudo-
randomly chosen host signal samples and subtracting
a small amountδ from others. Thus, this method is
equivalent to adding a pseudorandom sequencew(m)
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Figure 3. Qualitative behavior of host-interference rejecting and
non-rejecting embedding methods. The dashed curve’s upper rate
threshold at low levels of robustness (low levels of channel interfer-
ence) indicates host-interference-limited performance.

of ±δ to the host signal, and hence, we consider the
Patchwork algorithm to be a spread spectrum method.)

From (4), we see that for this class of embedding
methods, the host signalx acts as additive interference
that inhibits the decoder’s ability to estimatem. Con-
sequently, even in the absence of any channel pertur-
bations(n = 0), one can usually embed only a small
amount of information. Thus, these methods are useful
primarily when either the host signal is available at the
decoder or when the host signal interference is much
smaller than the channel interference. Indeed, in [18]
Cox et al., assume thatx is available at the decoder.

The host-interference-limited performance of purely
additive (4) embedding methods is embodied in Fig. 3
as the upper limit on rate of the dashed curve, which
represents the achievable rate-robustness performance
of non-host-interference rejecting methods, at a fixed
level of embedding-induced distortion. Although the
numerical values on the axes of Fig. 3 correspond to the
case of Gaussian host signals and additive white Gaus-
sian noise channels, which are discussed in Section 5,3

the upper rate threshold of the dashed curve is actu-
ally representative of thequalitativebehavior of host-
interference non-rejecting methods in general. Indeed,
a similar upper rate threshold was derived by Su [19]
for the case of so-called power-spectrum condition-
compliant additive watermarks and Wiener attacks.

A common variation of purely additive spread spec-
trum methods have weighted-additive embedding func-
tions of the form

si (x,m) = xi + ai (x)wi (m), (5)

where the subscripti denotes thei -th element of the
corresponding vector, i.e., thei -th element ofw(m) is

weighted with an amplitude factorai (x). The ampli-
tude factorsai (x) account for human perceptual char-
acteristics, and an example of an embedding function
within this class is proposed by Podilchuk and Zeng
[20], where the amplitude factorsai (x) are set accord-
ing to just noticeable difference (JND) levels computed
from the host signal.

A special subclass of weighted-additive embedding
functions, given in [18], arise by letting the amplitude
factors be proportional tox so that

ai (x) = λxi ,

whereλ is a constant. Thus, these embedding functions
have the property that large host signal samples are al-
tered more than small host signal samples. This special
subclass of embedding functions are purely additive in
the log-domain since

si (x,m) = xi + λxiwi (m) = xi (1+ λwi (m))

implies that

logsi (x, m) = logxi + log(1+ λwi (m)).

Since the log function is invertible, if one has dif-
ficulty in recoveringm from the composite signal in
the log-domain due to host signal interference, then one
must also encounter difficulty in recoveringm from the
composite signal in the non-log-domain. Thus, host-
proportional amplitude weighting also results in host
signal interference, although the probability distribu-
tions of the interference logxi and of the watermark
pseudo-noise log(1+ λwi (m)) are, of course, in gen-
eral different than the probability distributions ofxi and
wi (m). Although in the more general weighted-additive
case (5), the encoder in Fig. 2 is not ignoringx since

ei (x,m) = ai (x)wi (m),

in general unless the weighting functionsai (x) are ex-
plicitly designed to reject host interference in addition
to exploiting perceptual models, host interference will
still limit performance and thus this class of systems
will still exhibit the qualitative behavior represented by
the dashed curve in Fig. 3. We remark that in propos-
ing the weighted-additive and log-additive embedding
functions, Podilchuk and Zeng [20] and Cox et al. [18],
respectively, were actually considering the case where
the host signal was available at the decoder, and hence,
host interference was not an issue.
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3.2. Host-Interference Rejecting Methods

Having seen the inherent limitations of embedding
methods that do not reject host interference by exploit-
ing knowledge of the host signal at the encoder, we now
discuss some examples of host-interference rejecting
methods. In Section 4 we present a novel subclass of
such host-interference rejecting methods called quan-
tization index modulation (QIM). This QIM class of
embedding methods exhibits the type of behavior il-
lustrated by the solid curve in Fig. 3, while providing
enough structure to allow the system designer to easily
trade off rate, distortion, and robustness, i.e., to move
from one point on the solid curve of Fig. 3 to another.

3.2.1. Generalized Low-Bit Modulation. Swanson,
Zhu, and Tewfik [10] have proposed an example of a
host-interference rejecting embedding method that one
might call “generalized low-bit modulation (LBM)”,
although Swanson et al., do not use this term explicitly.
The method consists of two steps: (1) linear projection
onto a pseudorandom direction and (2) quantization
and perturbation, as illustrated in Fig. 4. In the first
step the host signal vectorx is projected onto a pseudo-
random vectorv to obtain

x̃ = xTv.

Then, information is embedded iñx by quantizing it
with a uniform, scalar quantizer of step size1 and
perturbing the reconstruction point by an amount that
is determined bym. (No information is embedded in
components ofx that are orthogonal tov.) Thus, the
projections̃ of the composite signal ontov is

s̃ = q(x̃)+ d(m),

Figure 4. Equivalence of quantization and perturbation to low-bit
modulation. Quantizing with step size1 and perturbing the recon-
struction point is equivalent to quantizing with step size1/2 and
modulating the least significant bit. In general, the defining property
of low-bit modulation is that the quantization cells for× points and
◦ points are the same.

whereq(·) is a uniform, scalar quantization function of
step size1 andd(m) is a perturbation value, and the
composite signal vector is

s = x+ (s̃− x̃)v.

For example, supposẽx lies somewhere in the second
quantization cell from the left in Fig. 4 and we wish
to embed 1 bit. Then,q(x̃) is represented by the solid
dot (•) in that cell,d(m) = ±1/4, ands̃ will either
be the×-point (to embed a 0-bit) or the◦-point (to
embed a 1-bit) in the same cell. In [10] Swanson et
al., note that one can embed more than 1 bit in the
N-dimensional vector by choosing additional projec-
tion vectorsv. One could also, it seems, have only one
projection vectorv, but more than two possible pertur-
bation valuesd(1), d(2), . . . ,d(2NRm).

We notice that all host signal valuesx̃ that map onto
a given× point when a 0-bit is embedded will map
onto the same◦ point when a 1-bit is embedded. As
a result of this condition, one can label the× and◦
points with bit labels such that the embedding function
is equivalent to low-bit modulation. Specifically, this
quantization and perturbation process is equivalent to
the following:

1. Quantizẽx with a quantizer of step size1/2 whose
reconstruction points are the union of the set of
× points and set of◦ points. These reconstruction
points have bit labels as shown in Fig. 4.

2. Modulate (replace) the least significant bit in the bit
label with the watermark bit to arrive at a composite
signal bit label. Set the composite signal projection
value s̃ to the reconstruction point with this com-
posite signal bit label.

Thus, the quantization and perturbation embedding
method in [10] is low-bit modulation of the quanti-
zation ofx̃.

An earlier paper [21] by Swanson et al., gives another
example of generalized low-bit modulation, where a
data bit is repeatedly embedded in the DCT coefficients
of a block rather than in the projections onto pseudo-
random directions. One can view the DCT basis vec-
tors, then, as the projection vectorsv in the discussion
above. The actual embedding occurs through quanti-
zation and perturbation, which we now recognize as
low-bit modulation.

Some people may prefer to use the term “low-bit
modulation” only to refer to the modulation of the least
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significant bits of pixel values that are already quan-
tized, for example, when the host signal is an 8-bit
grayscale image. This corresponds to the special case
when the vectorsv are “standard basis” vectors, i.e.,
v is a column of the identity matrix, and1 = 2. To
emphasize that the quantization may occur in any do-
main, not just in the pixel domain, and that one may
adjust the step size1 to any desired value, we used the
term “generalized LBM” above when first introducing
the technique of Swanson et al. However, in this paper
the term LBM, even without the word “generalized”
in front of it, refers to low-bit modulation in its most
general sense.

In general, low-bit modulation methods have the
defining property that the embedding intervals, the set
of host signal values that map onto a composite signal
value, for the×points and◦points are the same. For ex-
ample, in Fig. 4everyhost signal value that maps onto
the× point labeled “010” when a 0-bit is embedded
maps onto the◦ point labeled “011” (as opposed to one
of the other◦ points) when a 1-bit is embedded. On the
other hand, suppose that the embedding interval of the
010-point intersected the embedding intervals of both
the 011-point and the 001-point. Then, no low-bit mod-
ulation method could have the equivalent embedding
function (equivalent embedding intervals and compos-
ite signal values) since the bit labels of the 001-point
and 011-point in Fig. 4 cannot both simultaneously dif-
fer from the bit label of the 010-point in only the least
significant bit.

Because the× and◦ points in Fig. 4 are separated by
some nonzero distance, we see that these LBM meth-
ods do, in fact, reject host-signal interference. The host
signalx̃ determines the particular× or ◦ point that is
chosen as the composite signal values̃, but does not
inhibit the decoder’s ability to determine whethers̃ is
a× point or a◦ point, and hence, determine whether
the embedded bit is a 0-bit or 1-bit.

However, the defining property of LBM methods that
the embedding intervals for the× points and◦ points
are the same is an unnecessary constraint on the em-
bedding functions(x, m). As discussed in Section 4.5,
and in [7, 11, 22], by removing this constraint, one
can find embedding functions that result in better rate-
distortion-robustness performance than that obtainable
by LBM.

3.2.2. Other Host-Interference Rejecting Methods.
Another host-interference rejecting method is dis-
closed in a recently issued patent [23]. Instead of

embedding information in the quantization levels, in-
formation is embedded in the number of host signal
“peaks” that lie within a given amplitude band. For ex-
ample, to embed a 1-bit one may force the composite
signal to have exactly two peaks within the amplitude
band. To embed a 0-bit, the number of peaks is set to
less than two. Clearly, the host signal does not inhibit
the decoder’s ability to determine how many compos-
ite signal peaks lie within the amplitude band. The host
signal does, however, affect the amount of embedding-
induced distortion that must be incurred to obtain a
composite signal with a given number of peaks in the
amplitude band. For example, suppose the host signal
has a large number of peaks in the amplitude band. If
one tries to force the number of peaks in the band to
be less than two in order to embed a 0-bit, then the
distortion between the resulting composite signal and
host signal may be quite significant. Thus, even though
this method rejects host-interference, it is not clear that
it exhibits the desired behavior illustrated by the solid
curve in Fig. 3. For example, to achieve a high rate
when the channel noise is low, one needs to assign at
least one number of signal peaks to representm = 1,
another number of signal peaks to representm = 2,
another number of signal peaks to representsm = 3,
etc. Thus, one could potentially be required to alter the
number of host signal peaks to be as low as 1 or as high
as 2NRm . It is unclear whether or not one can alter the
number of host signal peaks within the amplitude band
by such a large amount without incurring too much
distortion.

4. Quantization Index Modulation Methods

One class of embedding methods that achieves very
good, and in some cases optimal, rate-distortion-
robustness trade-offs are so-called quantization index
modulation (QIM) methods [11]. In this section, we
describe the basic principles behind this class of meth-
ods, present some low-complexity realizations, and
point out some known attractive performance features
of these methods. In later sections we develop ad-
ditional insights into the performance capabilities of
these methods.

4.1. Basic Principles

One can view the embedding functions(x, m) as an en-
semble of functions ofx, each function in the ensemble



14 Chen and Wornell

Figure 5. Quantization index modulation for information embed-
ding. The points marked with×’s and◦’s belong to two different
quantizers, each with its associated index. The minimum distance
dmin measures the robustness to perturbations, and the sizes of the
quantization cells, one of which is shown in the figure, determine the
distortion. Ifm = 1, the host signal is quantized to the nearest×. If
m = 2, the host signal is quantized to the nearest◦.

indexed bym . We denote the functions in this ensem-
ble ass(x; m) to emphasize this view. If the embedding-
induced distortion is to be small, then each function in
the ensemble must be close to an identity function in
some sense so that

s(x; m) ≈ x, ∀m.

If all of these approximate identity functions are quan-
tizers, then the embedding method is a QIM method.

Thus, quantization index modulation refers to em-
bedding information by first modulating an index or
sequence of indices with the embedded information
and then quantizing the host signal with the associated
quantizer or sequence of quantizers. Figure 5 illustrates
QIM in the case where one bit is to be embedded so
thatm ∈ {1, 2}. Thus, we require two quantizers, and
their corresponding sets of reconstruction points in<N

are represented in Fig. 5 with×’s and◦’s. If m = 1,
for example, the host signal is quantized with the×-
quantizer, i.e.,s is chosen to be the× closest tox. If
m = 2, x is quantized with the◦-quantizer. The sets
of reconstruction points are non-intersecting as no×
point is the same as any◦ point. This non-intersection
property leads to host-signal interference rejection. As
x varies, the composite signal values varies from one×
point (m = 1) to another or from one◦ point (m = 2)
to another, but it never varies between a× point and a
◦ point. Thus, even with an infinite energy host signal,
one can determinem if channel perturbations are not

too severe. The× points and◦ points are both quanti-
zer reconstruction points forx and signal constellation
points for communicatingm. (Onesetof points, rather
than one individual point, exists for each possible value
of m). Thus, we may view design of QIM systems as
the simultaneous design of an ensemble of quantizers
(or source codes) and signal constellations (or channel
codes).

The structure of QIM systems is convenient from an
engineering perspective since properties of the quan-
tizer ensemble can be connected to the performance
parameters of rate, distortion, and robustness. For ex-
ample, the number of quantizers in the ensemble deter-
mines the number of possible values ofm, or equiva-
lently, the rate. The sizes and shapes of the quantization
cells, one of which is represented by the dashed poly-
gon in Fig. 5, determines the amount of embedding-
induced distortion, all of which arises from quantiza-
tion error. Finally, for many classes of channels, the
minimum distancedmin between the sets of reconstruc-
tion points of different quantizers in the ensemble de-
termines the robustness of the embedding. We define
the minimum distance to be

dmin
1= min
(i, j ):i 6= j

min
(xi ,x j )

∥∥s(xi ; i )− s(x j ; j )
∥∥. (6)

Alternatively, if the host signal is known at the decoder,
as is the case in some applications of interest, then the
relevant minimum distance may be more appropriately
defined as either

dmin(x)
1= min
(i, j ):i 6= j

∥∥s(x; i )− s(x; j )
∥∥, (7)

or

dmin
1=min

x
min

(i ; j ):i 6= j

∥∥s(x; i )− s(x; j )
∥∥. (8)

The important distinction between the definition of (6)
and the definitions of (7) and (8) is that in the case
of (7) and (8) the decoder knowsx and, thus, needs
to decide only among the reconstruction points of the
various quantizers in the ensemble corresponding to
the particular value of x. In the case of (6), however,
the decoder needs to choose from all reconstruction
points of the quantizers.

Intuitively, the minimum distance measures the size
of perturbation vectors that can be tolerated by the sys-
tem. For example, in the case of the bounded pertur-
bation channel, the energy bound of (3) implies that a
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minimum distance decoder is guaranteed to not make
an error as long as

d2
min

4Nσ 2
n

> 1. (9)

In the case of an additive white Gaussian noise channel
with a noise variance ofσ 2

n , at high signal-to-noise
ratio the minimum distance also characterizes the error
probability of the minimum distance decoder [24],

Pr[m̂ 6= m] ∼ Q

(√
d2

min

4σ 2
n

)
.

The minimum distance decoder to which we refer sim-
ply chooses the reconstruction point closest to the re-
ceived vector, i.e.,

m̂(y) = arg min
m

min
x

∥∥y− s(x;m)∥∥. (10)

If, which is often the case, the quantizerss(x;m) map
x to the nearest reconstruction point, then (10) can be
rewritten as

m̂(y) = arg min
m

∥∥y− s(y;m)∥∥. (11)

Alternatively, if the host signalx is known at the
decoder,

m̂(y, x) = arg min
m

∥∥y− s(x;m)∥∥.
4.2. Distortion-Compensated QIM

Distortion compensation is a type of post-quantization
processing that can improve the achievable rate-
distortion-robustness trade-offs of QIM methods. We
explain the basic principles behind distortion compen-
sation in this section.

As explained above, increasing the minimum dis-
tance between quantizers leads to greater robustness
to channel perturbations. For a fixed rate and a given
quantizer ensemble, scaling all quantizers byα ≤ 1 (If
a reconstruction point is atq, it is scaled byα by moving
it to q/α.) increasesd2

min by a factor of 1/α2. However,
the embedding-induced distortion also increases by a
factor of 1/α2. Adding back a fraction 1− α of the
quantization error to the quantization value removes,

or compensates for, this additional distortion. The re-
sulting embedding function is

s(x, m)= q(x; m,1/α)+ (1−α)[x− q(x; m,1/α)],

(12)

whereq(x;m,1/α) is the m-th quantizer of an en-
semble whose reconstruction points have been scaled
by α so that two reconstruction points separated by a
distance1 before scaling are separated by a distance
1/α after scaling. The first term in (12) represents nor-
mal QIM embedding. We refer to the second term as
the distortion-compensation term.

Typically, the probability density functions of the
quantization error for all quantizers in the QIM en-
semble are similar. In these cases, the distortion com-
pensation term in (12) is statistically independent or
nearly statistically independent ofm and can be treated
as noise during decoding. Thus, decreasingα leads to
greater minimum distance, but for a fixed embedding-
induced distortion, the distortion-compensation inter-
ference at the decoder increases. One optimality crite-
rion for choosingα is to maximize a “signal-to-noise
ratio” at the decision device,

SNR(α) = d2
1/α

2

(1− α)2 Ds
α2 + σ 2

n

= d2
1

(1− α)2Ds+ α2σ 2
n

,

where this SNR is defined as the ratio between the
squared minimum distance between quantizers and
the total interference energy from both distortion-
compensation interference and channel interference.
Here,d1 is the minimum distance whenα = 1 and
is a characteristic of the particular quantizer ensemble.
The optimal scaling parameterα that maximizes this
SNR is

αopt = DNR

DNR+ 1
, (13)

where DNR is the (embedding-induced) distortion-to-
noise ratioDs/σ

2
n . Such a choice ofα also maximizes

the information-embedding capacity when the chan-
nel is an additive Gaussian noise channel and the host
signalx is Gaussian, as discussed in Section 5.3.

4.3. Low-Complexity Realizations

As mentioned in Section 4.1, design of QIM embedding
systems involves constructing quantizer ensembles
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whose reconstruction points also form a good signal
constellation. In this section, we discuss several real-
izations of such ensembles that involve low-complexity
embedding functions and decoders. Post-quantization
distortion compensation may be combined with each
of these realizations.

These realizations, which are called dither modula-
tion, revolve around so-called dithered quantizers [25,
26], which have the property that the quantization cells
and reconstruction points of any given quantizer in
the ensemble are shifted versions of the quantization
cells and reconstruction points of any other quantizer in
the ensemble. In non-watermarking contexts, the shifts
typically correspond to pseudorandom vectors called
dither vectors. In dither modulation, the dither vector
is instead modulated with the embedded signal, i.e.,
each possible embedded signal maps uniquely onto a
different dither vectord(m). The host signal is quan-
tized with the resulting dithered quantizer to form the
composite signal. Specifically, we start with some base
quantizerq(·), and the embedding function is

s(x; m) = q(x+ d(m))− d(m).

4.3.1. Basic Dither Modulation Realization. Coded
binary dither modulation with uniform, scalar quanti-
zation is a low-complexity realization of such a dither
modulation system. (By scalar quantization, we mean
that the high dimensional base quantizerq(·) is the
Cartesian product of scalar quantizers.) We assume that
1/N ≤ Rm ≤ 1. The dither vectors in a coded binary
dither modulation system are constructed in the follow-
ing way:

• TheNRm information bits{b1, b2, . . . , bNRm} repre-
senting the embedded messagem are error correc-
tion coded using a rate-ku/kc code to obtain a coded
bit sequence{z1, z2, . . . , zN/L}, where

L = 1

Rm

(ku/kc).

(In the uncoded case,zi = bi andku/kc = 1.) We
divide the host signalx into N/L nonoverlapping
blocks of lengthL and embed thei -th coded bitzi

in the i -th block, as described below.
• Two length-L dither sequencesd[k, 0] andd[k, 1]

and one length-L sequence of uniform, scalar

quantizers with step sizes11, . . . , 1L are con-
structed with the constraint

d[k, 1] =
{

d[k, 0]+1k/2, d[k, 0] < 0

d[k, 0]−1k/2, d[k, 0] ≥ 0
,

k = 1, . . . , L ,

This constraint ensures that the two corresponding
L-dimensional dithered quantizers are the maximum
possible distance from each other. For example, a
pseudorandom sequence of±1k/4 and its nega-
tive satisfy this constraint. One could alternatively
choosed[k, 0] pseudorandomly with a uniform dis-
tribution over [−1k/2,1k/2].4 Also, the two dither
sequences need not be the same for each length-L
block.
• The i -th block of x is quantized with the dithered

quantizer using the dither sequenced[k, zi ].

A block diagram of this embedding process is shown
in Fig. 6, where we use the sequence notationx[k] to
denote thek-th element of the host signal vectorx. The
actual embedding of the coded bitszi requires only two
adders and a uniform, scalar quantizer.

A block diagram of one implementation of the cor-
responding minimum distance decoder (11) is shown
in Fig. 7. One can easily find the nearest reconstruction
sequence of each quantizer (the 0-quantizer and the
1-quantizer) to the received sequencey [k] using a few
adders and scalar quantizers. For hard-decision for-
ward error correction (FEC) decoding, one can make

Figure 6. Embedder for coded binary dither modulation with uni-
form, scalar quantization. The only required computation beyond
that of the forward error correction (FEC) code is one addition, one
scalar quantization, and one subtraction per host signal sample.
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Figure 7. Decoder for coded binary dither modulation with uni-
form, scalar quantization. The distances between the received se-
quencey[k] and the nearest quantizer reconstruction sequences
sy[k; 0] and sy[k; 1] from each quantizer are used for either soft-
decision or hard-decision forward error correction (FEC) decoding.

decisions on each coded bitzi using the rule:

ẑi = arg min
l∈{0,1}

i L∑
k=(i−1)L+1

(y [k] − sy[k; l ])2,

i = 1, . . . , N/L .

Then, the FEC decoder can generate the decoded infor-
mation bit sequence{b̂1, . . . , b̂NRm} from the estimates
of the coded bits{ẑ1, . . . , ẑN/L}. Alternatively, one can
use the metrics

metric(i, l ) =
i L∑

k=(i−1)L+1

(y[k] − sy[k; l ])2,

i = 1, . . . , N/L .

for soft-decision decoding. For example, one can use
these metrics as branch metrics for a minimum squared
Euclidean distance Viterbi decoder [24], as is done for
the convolutional code simulations of Section 6.1.

4.3.2. Spread-Transform Dither Modulation.
Spread-transform dither modulation (STDM) is a spe-
cial case of coded binary dither modulation in which
only projections of the host signal along certain (usu-
ally pseudorandomly chosen) orthogonal vectorsvi are
quantized. In the case where each of theN/L coded
bits zi are embedded in a different projectionx̃i , one
can replace the original host signal samplesx[k] in
Fig. 6 with the projections{x̃1, . . . , x̃N/L} to gener-
ate the composite signal projections{s̃1, . . . , s̃N/L}.
These composite signal projections are combined with

the non-quantized components of the host signal (the
components of the host signal orthogonal to the space
spanned by{v1, . . . , vN/L}) to generate the overall
composite signal. Quantizing only a subset of host sig-
nal components instead of all host signal components
has some important performance advantages, as dis-
cussed in Section 6.2. (See also [7, 11] for additional
perspectives.)

4.3.3. Amplitude-Scaling Invariant Dither Modula-
tion. One can view the projection operations of
STDM as a type of preprocessing of the host signal,
or equivalently, as choosing an alternative represen-
tation of the host signal. (In the problem models of
Section 2, the host signal can be any collection of real
numbers, and need not be time, spatial, nor frequency
domain samples.) In some applications one may wish
to choose a host signal representation that is invariant
or insensitive to amplitude scalings introduced by the
channel. For example, in the FM digital audio broad-
casting application discussed in Section 1, one may
wish to embed information only in the phase of the host
analog FM signal so that the receiver will not need to
estimate changes in amplitude due to multipath fading.
In this case, one can replace the host signal samples
x[k] in Fig. 6 with phase samples (or differences in
phase from one sample to the next, if the receiver is not
capable of recovering absolute phase).

Analog FM signals have constant amplitude, and
thus, an example of a resulting signal constellation
and/or ensemble of quantizer reconstruction points is
shown in Fig. 8. The coded bitzi that is to be embedded
in x[k] determines which subset of constellation points,
the×-subset or the◦-subset, is used. The host signal
valuex[k] determines which point within the subset is
chosen as the composite signal values[k]. If the er-
ror correction code that produceszi is a convolutional
code, then this information-embedding strategy is very
similar to classical trellis coded modulation [27], treat-
ing the “uncoded bits”, the bits that determine which
point within the subset is chosen, as being determined
by the quantization of the host signalx[k]. One differ-
ence, however, is that these uncoded bits are a function
of bothx[k] and the coded bitzi since the quantization
intervals of the× and◦ quantizers are different, i.e.,
because the quantization intervals for the two quantiz-
ers are different, the method is not a LBM method. As
a result, the method is similar, but not equivalent, to
trellis coded modulation treatingzi as coded bits and
using (only)x[k] to determine the uncoded bits.
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Figure 8. Signal constellation and quantizer reconstruction points
for phase quantization and dither modulation of analog FM signals.
xI [k] andxQ[k] are the in-phase and quadrature signal components,
respectively. The quantizer step size1 is π/10. The×-quantizer
dither value is1/3. The◦-quantizer dither value is−1/6.

4.4. SNR Analysis

The host signal interference rejection properties of
QIM embedding methods, and by extension dither
modulation realizations, lead to a number of significant
performance advantages over host-interference non-
rejecting methods. One can illustrate many of these
perhaps most easily by exploiting the close coupling be-
tween STDM and a class of spread spectrum methods
that we term amplitude-modulation spread spectrum
(AM-SS). AM spread spectrum methods have embed-
ding functions of the form

sAM-SS(x, m) = x+ a(m)v,

and examples of methods within this class can be found
in [12, 15]. Here,v is a pseudo-random vector that
plays the same role as the STDM projection vectors in
Section 4.3.2.

We consider embedding one bit in a length-L block
x using STDM and AM-SS methods with the same
spreading vectorv, which is of unit length. Because
the embedding occurs entirely in the projections ofx
onto v, the problem is reduced to a one-dimensional
problem with the AM-SS embedding function being

s̃ = x̃+ a(m)

and the STDM embedding function being

s̃ = q(x̃+ d(m))− d(m).

For AM-SS,a(m) = ±√LDs so that

|a(1)− a(2)|2 = 4LDs, (14)

while for STDM

|d(1)− d(2)|2 = 12/4= 3LDs, (15)

where1=√12LDs so that the expected distortion
in both cases is the same. Also, because all of the
embedding-induced distortion occurs only in the direc-
tion of v, the distortion in both cases also has the same
time or spatial distribution and frequency distribution.
Thus, one would expect that any perceptual effects due
to time/space masking or frequency masking are the
same in both cases. Therefore, mean-square distortion
may be a more meaningful measure of distortion when
comparing STDM with AM-SS than one might expect
in other more general contexts where mean-square dis-
tortion may fail to capture certain perceptual effects.

The decoder in both cases makes a decision based
on ỹ, the projection of the channel outputy ontov. In
the case of AM-SS,

ỹ = a(m)+ x̃+ ñ,

while in the case of STDM,

ỹ = s̃(x̃, d(m))+ ñ,

whereñ is the projection of the perturbation vectorn
ontov. We letP(·) be some measure of energy. For ex-
ample,P(x)= x2 in the case of a deterministic variable
x, or P(x) equals the variance of the random variable
x. The energy of the interference or “noise” isP(x̃+ ñ)
for AM-SS, but only P(ñ) for STDM, i.e., the host
signal interference for STDM is zero. Thus, the signal-
to-noise ratio at the decision device is

SNRAM-SS= 4LDs

P(x̃+ ñ)

for AM-SS and

SNRSTDM = 3LDs

P(ñ)
,
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Figure 9. Decoder decision regions for amplitude-modulation spread spectrum. Both host (x̃) and channel perturbation (ñ) are interference
sources.

Figure 10. Decoder decision regions for spread-transform dither modulation. Only the channel perturbation (ñ), and not the host (x̃), is an
interference source.

where the “signal” energiesP(a(1) − a(2)) and
P(d(1) − d(2)) are given by (14) and (15). The deci-
sion regions of the decision devices are shown in Figs. 9
and 10 for AM-SS and STDM, respectively. Thus, the
advantage of STDM over AM-SS is

SNRSTDM

SNRAM-SS
= 3

4

P(x̃+ ñ)

P(x̃)
, (16)

which is typically very large since the channel pertur-
bationsñ are usually much smaller than the host signal
x̃ if the channel output̃y is to be of reasonable quality.
For example, if the host signal-to-channel noise ratio
is 30 dB andx̃ and ñ are uncorrelated, then the SNR
advantage (16) of STDM over AM spread spectrum is
28.8 dB.

Furthermore, although the SNR gain in (16) is less
than 0 dB (3/4 = −1.25 dB) when the host signal
interference is zero(x̃ = 0), for example, such as
would be the case if the host signalx had very little
energy in the direction ofv, STDM may not be worse
than AM-SS even in this case since (16) applies only
whenx̃ is approximately uniformly distributed across
the STDM quantization cell so thatDs = 12/(12L).
If x̃ = 0, however, and one chooses the dither sig-
nals to bed(m) = ±1/4, then the distortion is only
Ds = 12/(16L) so that STDM is just as good as AM-
SS in this case.

We now comment on some additional insights that
one can obtain from the SNR analysis in this section,
particularly Figs. 9 and 10. First, we consider “requan-
tization” attacks on STDM, where if̃s is a× point in
Fig. 10, then the attacker quantizes the signal to a◦
point, for example. From Fig. 10, we see that this at-
tack is an additive noise attack whereP(ñ) = 3LDs.
(The noise value is±√3LDs.) The attack is subopti-
mal since the resulting perturbation is actually twice
as long as it needs to be to cause an error. Also, the
attacker requires knowledge of the projection vectorv.
If the attacker knows this projection vector, he or she
can equivalently attack the AM-SS system illustrated
in Fig. 9 by adding a perturbation with the same energy.
Again, in addition to this perturbation, the host signal
will add to the total interference at the AM-SS decision
device and the resulting SNR advantage of STDM over
AM-SS is given by (16).

As a final example of an insight that one can gleam
from Figs. 9 and 10, we observe a threshold effect in
both cases. If the interference at the decoder is smaller
than some threshold, then the systems successfully de-
code the message. However, if the interference is larger
than the threshold, then the systems fail. This property
is inherent to digital communication systems, in gen-
eral. One solution, of course, is to choose the rate low
enough (chooseL high enough) so that the worst case
interference, either̃x+ ñ or ñ for AM-SS and STDM,
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Figure 11. Broadcast or multirate digital watermarking with spread-transform dither modulation. In high-noise scenarios the decoder determines
if m is even or odd to extract one bit. In low-noise scenarios the decoder determines the precise value ofm to extract two bits and, hence, double
the rate.

respectively, is below the failure threshold. However, if
the interference turns out to be smaller than the worst
case amount, then one might desire that the decoder
have the capability to extract more than this minimum
rate of embedded information. To accommodate such
“graceful degradation” (or “graceful improvement”,
depending on one’s perspective) in rate, one can replace
the× and◦ points in Figs. 9 and 10 with “clouds” of
points, as described in [28, 29] for broadcast commu-
nication in non-watermarking contexts.

An example of such a “broadcast” or multirate
STDM quantizer ensemble for digital watermarking
is shown in Fig. 11. The reconstruction points of four
quantizers are labeled 1, 2, 3, and 4, respectively. The
minimum distance between an even and an odd point
is larger than the minimum distance between any two
points and is set large enough such that the decoder
can determine if an even or an odd quantizer was used,
and hence extract one bit, even under worst-case chan-
nel noise conditions. However, if the channel noise is
smaller, then the decoder can determine the precise
quantizer used, and hence, extract two bits. Of course,
one could use a similar broadcast method for AM-
SS, but in the AM-SS case one would encounter host-
interference as well as channel noise. Thus, STDM has
an SNR advantage over AM-SS in the case of uncertain
channel noise levels as well as in the case of a known,
single channel noise level.

4.5. Other Performance Properties

As discussed in Section 2, the bounded perturbation
channel and bounded host-distortion channel are two
models that may be appropriate when facing the worst-
case active distortion-constrained attacks.5 In the case
of the bounded perturbation channel, it can be shown
[7, 11] that the error-free decoding condition (9) im-
plies that coded binary dither modulation with uni-
form scalar quantization can achieve the following rate-

distortion-robustness trade-offs:

Rm < γc
3

4

Ds

Nσ 2
n

, (17)

whereγc is the error correction coding gain (the prod-
uct of the Hamming distance and rate of the error
correction code). This expression gives an achievable
set of embedding rates for a given expected distortion
Ds and channel perturbation energy per dimensionσ 2

n
when one wishes to deterministically guarantee error-
free decoding with finite length signals. Thus, one can
view (17) as a deterministic counterpart to the con-
ventional, information-theoretic notion of the capac-
ity [30] of a random channel. Spread spectrum meth-
ods in contrast offer no such guaranteed robustness to
bounded perturbation attacks, and the achievable rate-
distortion-robustness trade-offs of coded LBM with
uniform scalar quantization are 2.43 dB worse than
those of (17) [7, 11]. For bounded host-distortion chan-
nels, it can be shown [7, 11] that an in-the-clear at-
tacker, one who knows everything about the embed-
ding and decoding processes including any keys, can
remove spread spectrum and LBM embedded water-
marks and improve the signal quality (Dy ≤ Ds) at the
same time. In contrast, to remove a watermark embed-
ded with QIM methods (including coded binary dither
modulation with uniform scalar quantization), the in-
the-clear attacker’s distortionDy must be greater than
the embedding-induced distortionDs.

A number of capacity results are also developed
in [11] for the case of AWGN channels and white,
Gaussian host signals. For example, results in [31] are
applied to show that the information-embedding capa-
city, the maximum achievable embedding rateRm for
a given expected distortionDs and noise varianceσ 2

n ,
is

CAWGN = 1

2
log2(1+ DNR), (18)

where, again, DNR is the distortion-to-noise ratio
Ds/σ

2
n . Remarkably, the capacity is the same as the
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case when the host signal is known at the decoder, im-
plying that an infinite energy host signal causes no de-
crease in capacity in this Gaussian case. (Moulin and
O’Sullivan [32] have extended this result to the case of
intentional square-error distortion-constrained attacks,
where the optimal attacks turns out to be multiplica-
tion by a constant followed by addition of Gaussian
noise.) QIM methods exist that achieve performance
within 4.3 dB of capacity, i.e., they achieve the same
rate (18) with at most 4.3 dB additional DNR. Further-
more, the QIM gap to capacity goes to 0 dB asymp-
totically at high rates, and the gap to capacity of
distortion-compensated QIM is 0 dB at any rate, i.e.,
no embedding method exists that can achieve
better performance than the best possible distortion-
compensated QIM method. The low-complexity, bi-
nary dither modulation with uniform scalar quantiza-
tion methods described in Section 4.3 can achieve
performance within 13.6 dB of capacity even withno
error correction codingand no distortion compensa-
tion. In contrast, the gap to capacity ofcoded spread
spectrum is 1+SNRx, where SNRx is the ratio between
the host signal varianceσ 2

x and the noise varianceσ 2
n .

Again, SNRx is typically quite large since the channel
is not supposed to degrade the host signal too much.
Thus, even with very high-complexity error correction
codes, the gap between a spread spectrum system and
capacity is typically very large.

5. General Gaussian Capacities

In this section, we develop capacity results for the more
general Gaussian case, where both the host signal and
channel noise are colored. Thus, these results apply to
a wider variety of channel degradations than the re-
sults cited above for the case of white host signals and
white channel noise. We also discuss the implications
for some multimedia applications.

We consider the super-channel model of Fig. 2 with
the further assumptions thatx and n are statistically
independent and can be decomposed into

x = [x1 · · · xN/L ]T and n = [n1 · · · nN/L ]T ,

where thexi are independent and identically dis-
tributed (iid), L-dimensional, zero-mean, Gaussian
vectors with covariance matrixKx and theni are iid,
L-dimensional, zero-mean, Gaussian vectors with co-
variance matrixKn. This model is appropriate when
the channel is an additive (colored) Gaussian noise

channel, the host signal is colored and Gaussian, but the
power spectra of the host signal and channel noise are
sufficiently smooth that one can decompose the chan-
nel intoL parallel, narrowband subchannels, over each
of which the host signal and channel noise power spec-
tra are approximately flat. Many hybrid transmission
applications are examples of such a scenario, and this
model may also apply to optimal, i.e., rate-distortion
achieving [30], lossy compression of a Gaussian
source. As discussed in [7, 11], the super-channel
model of information-embedding allows one to use ear-
lier results on the capacity of channels with random
states [33] to show that the information-embedding
capacity is

C = max
pu,e|x(u,e|x)

I (u; y)− I (u; x), (19)

whereI (·; ·) denotes mutual information [30],u is an
auxiliary random variable, and the maximization is sub-
ject to a distortion constraint, or equivalently an energy
constraint one.

Below, we first determine the capacity when the host
signal is colored, but the channel noise is white. Then,
we use this result to determine capacities when both the
host signal and channel noise are colored. Finally, we
give examples of how one might apply these results to
several multimedia hybrid transmission applications.

5.1. Colored Host, White Noise

We consider the case where the host signal is colored
with covariance matrixKx = Qx3x QT

x , where the
columns of the orthogonal matrixQx are the eigenvec-
tors of Kx and3x is a diagonal matrix of the corre-
sponding eigenvalues, and the channel noise is white
with covariance matrixKn = σ 2

n I . The distortion con-
straint is

L

N

N/L∑
i=1

eT
i ei ≤ L Ds, (20)

and the corresponding constraint onpu,e|x(u, e|x) in
(19) is E[eT e] ≤ LDs. Thus,LDs is the maximum
average energy of theL-dimensional vectorsei , soDs

is still the maximum average energy per dimension.
One way to determine the capacity in this case is

to consider embedding in a linear transform domain,
where the covariance matrix of the host signal is dia-
gonal. Because the transform is linear, the transformed
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Figure 12. Embedding in transform domain for colored host signal and white noise. The dashed box is the equivalent transform-domain
channel.

host signal vector remains Gaussian. One such orthogo-
nal transform is the well-known Karhunen-Loeve trans-
form [34], and the resulting transformed host signal
vector is

x̃ = QT
x x,

with covariance matrixK x̃ = 3x. The distortion con-
straint (20) in the transform domain on the vectors
ẽ = QT

x e is

L

N

N/L∑
i=1

ẽT
i ẽi ≤ LDs,

since

ẽT
i ẽi = eT

i Qx QT
x ei = eT

i ei .

An overall block diagram of the transformed problem
is shown in Fig. 12. The transform-domain channel
outputỹ is

ỹ = ẽ+ x̃+ ñ,

where the transform-domain noiseñ has the same co-
variance matrix asn,

Kñ = QT
x

(
σ 2

n I
)
Qx = σ 2

n I = Kn.

Since bothK x̃ and Kñ are diagonal, in the transform
domain we haveL parallel,independentsubchannels,
each of which is an AWGN channel with noise vari-
anceσ 2

n and each of which has a white, Gaussian host
signal. Thus, as we show formally in App. A, the over-
all capacity is simply the sum of the capacities of the
individual subchannels (18),

CL =
L∑

i=1

1

2
log2(1+ DNR)

= L

2
log2(1+ DNR). (21)

This capacity is in bits perL-dimensional host signal
vector, so the capacity in bits per dimension is

C = 1

2
log2(1+ DNR), (22)

the same as the capacity when the host signal is white
(18). Thus, not only is the capacity independent of the
host signal power for white Gaussian host signals as
discussed above in Section 4.5, but in the more general
Gaussian case where the host signal has any arbitrary
covariance matrix, the capacity is independent ofall
host signal statistics. (The statistics of a Gaussian ran-
dom vector are completely characterized by its mean
and covariance.)

5.2. Colored Host, Colored Noise

We now extend our results to the case where both the
host signal and the noise are colored. The host signal co-
variance matrix is the same as above,Kx = Qx3x QT

x .
However, the noise covariance matrix takes the form
Kn = Qn3n QT

n , whereQn is an orthogonal matrix of
the eigenvectors ofKn and3n is a diagonal matrix of its
eigenvalues, all of which are assumed to be non-zero,
i.e., we assumeKn is invertible.

Because the channel noise is not white, issues arise
as to how to measure distortion and how to define
distortion-to-noise ratio. One may want to make the
embedding-induced distortion “look like” the channel
noise so that as long as the channel noise does not cause
too much perceptible degradation to the host signal,
then neither does the embedding-induced distortion.
One can impose this condition by choosing distortion
measures that favor relatively less embedding-induced
distortion in components where the channel noise is
relatively small and allow relatively more distortion in
components where the channel noise is relatively large.
Then, the embedding-induced distortion will look like
a scaled version of the channel noise, with the DNR as
the scaling factor. If the DNR is chosen small enough,
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then the embedding-induced distortion will be “hidden
in the noise”.

Below, we consider two such ways to measure dis-
tortion and DNR and show that in each case when we
impose this constraint that the embedding-induced dis-
tortion signal look like a scaled version of the channel
noise, the information-embedding capacity is indepen-
dent of the host and noise statistics and depends only
on the DNR. In the first case, we constrain the weighted
average square-error distortion, more heavily weight-
ing or penalizing distortion in components where the
channel noise is small. In the second case, we use sepa-
rate, simultaneous distortion constraints on each of the
components, allowing more distortion where the chan-
nel noise is large and less distortion where the channel
noise is small.

5.2.1. Weighted Square-Error Distortion. One natu-
ral distortion measure and constraint is

L

N

N/L∑
i=1

eT
i K−1

n ei ≤ LDNR, (23)

so that the corresponding constraint onPu,e|x(u, e | x)
in (19) isE[eT K−1

n e]≤ LDNR. As desired, the weigh-
ting matrix K−1

n more heavily penalizes distortion in
the directions of eigenvectors corresponding to small
eigenvalues (noise variances). Thus, the embedding-
induced distortion will tend to be large only in those
components where the channel noise is also large, and
the distortion will tend to be small in the components
where the channel noise is also small. As we show
below, this case is equivalent to the colored host and
white noise case discussed in the last section, and there-
fore, the capacity is also given by (22). This equiv-
alence will be made apparent through an invertible,
linear transform.

The transform required in this case not only diago-
nalizes the noise covariance matrix, but also makes the
transformed noise samples equivariant. Specifically,
the transform matrix is3−1/2

n QT
n , and the transformed

host signal vector

x̃ = 3−1/2
n QT

n x

has covariance matrix

K x̃ = 3−1/2
n QT

n Kx Qn3
−1/2
n .

A block diagram for the overall problem is similar to
the one in Fig. 12, with the transform matrixQT

x re-
placed by3−1/2

n QT
n and the inverse transform matrix

Qx replaced byQn3
1/2
n . Because the transform is in-

vertible, there is no loss of optimality from embedding
in this transform domain. The transform-domain chan-
nel outputỹ is

ỹ = ẽ+ x̃+ ñ,

where the transform-domain noisẽn has covariance
matrix

Kñ = 3−1/2
n QT

n

(
Qn3n QT

n

)
Qn3

−1/2
n = I . (24)

Thus, the components ofñ are uncorrelated (and inde-
pendent sincẽn is Gaussian) and have unit variance.

The distortion constraint (23) in the transform do-
main is

L

N

N/L∑
i=1

ẽT
i ẽT

i ≤ LDNR

since

eT
i K−1

n ei = eT
i

(
Qn3

−1
n QT

n

)
ei

= (eT
i Qn3

−1/2
n

)(
3
−1/2
n QT

n ei
)

= ẽT
i ẽi .

Thus, the transform domain distortion constraint in this
case is the same as the non-transform domain distortion
constraint (20) of the last section. In both cases the host
signal is colored and Gaussian, and the channel noise
is white and Gaussian. Thus, the capacity in both cases
is the same (22),

C = 1

2
log2(1+ DNR), (25)

and was determined in the last section.

5.2.2. Multiple, Simultaneous Square-Error Distor-
tion. An alternative, and more restrictive, distortion
constraint to (23) arises by strictly requiring that the
embedding-induced distortion in components corre-
sponding to small noise eigenvalues be small rather
than simply weighting these distortions more heavily.
Specifically, we consider the set of constraints

L

N

N/L∑
i=1

(
qT

j ei
)2 ≤ DNRλ j , j = 1, . . . , L , (26)
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whereq j andλ j are the j -th eigenvector and eigen-
value, respectively, ofKn. Any distortion signal that
satisfies (26) also satisfies (23) since

L

N

N/L∑
i=1

eT
i K−1

n ei = L

N

N/L∑
i=1

(
QT

n ei
)T
3−1

n

(
QT

n ei
)

= L

N

N/L∑
i=1

L∑
j=1

(
qT

j ei
)2 1

λ j

=
L∑

j=1

[
L

Nλ j

N/L∑
i=1

(
qT

j ei
)2]

≤ LDNR,

where the first line follows from the factorization
K−1

n = Qn3
−1
n QT

n and where the final line follows
from (26). Thus, the constraint (26) is indeed more re-
strictive than (23).

To determine the information-embedding capacity
in this case, we again consider the noise-whitening lin-
ear transform3−1/2

n QT
n . The j -th component of the

transform-domain distortion vectorẽi =3−1/2
n QT

n ei is

[ẽi ] j = 1√
λ j

qT
j ei .

Thus, the transform-domain distortion constraint
equivalent to (26) is

L

N

N/L∑
i=1

[ẽi ]
2
j ≤ DNR, j = 1, . . . , L . (27)

By (24), the transform-domain noise covariance matrix
is the identity matrix. Thus, if we treat each of theL
subchannels independently, each with its own distor-
tion constraint (27) and a noise variance of unity, then
on the j -th subchannel we can achieve a rate

Cj = 1

2
log2(1+ DNR),

so the total rate across allL channels in bits per dimen-
sion is

C = 1

L

L∑
j=1

Cj = 1

2
log2(1+ DNR). (28)

Since this rate equals the capacity (25) corresponding
to a less restrictive distortion constraint (23), we cannot
hope to achieve a rate higher than this one. Thus, treat-
ing theL subchannels independently does not result in

any loss of optimality, and the achievable rate (28) is
indeed the capacity.

Thus, for Gaussian host signals and additive
Gaussian noise channels, with the constraint that the
embedding-induced distortion signal “look like” the
channel noise, the information-embedding capacity is
independent of the host and noise covariance matrices
(Since the signals are Gaussian, the capacity is actually
independent of all host signal and noise statistics.) and
is given by (18), (22), (25), and (28).

5.3. Capacities for Multimedia Host Signals

The capacity expressions in Section 5.1 and Section 5.2
apply to arbitrary host and noise covariance matrices
and, thus, these achievable rate-distortion-robustness
expressions are quite relevant to many of the multi-
media applications mentioned in Section 1, especially
those where one faces incidental channel degradations.
For example, these capacities do not depend on the
power spectrum of the host signal and thus these results
apply to audio, video, image, speech, analog FM, ana-
log AM, NTSC television, and coded digital signals, to
the extent that these signals can be modeled as Gaus-
sian. Also, the additive Gaussian noise with arbitrary
covariance model may be applicable to lossy compres-
sion, printing and scanning noise, thermal noise, adja-
cent channel and co-channel interference (which may
be encountered in DAB applications, for example), and
residual noise after appropriate equalization of inter-
symbol interference channels or slowly varying fading
channels. Furthermore, when considering the amount
of embedding-induced distortion, in many applications
one is most concerned with the quality of thereceived
host signal, i.e., the channel output, rather than the qual-
ity of the composite signal. For example, in FM digi-
tal audio broadcasting applications, conventional re-
ceivers demodulate the host analog FM signal from the
channel output, not from the composite signal, which
is available only at the transmitter. Similarly, in many
authentication applications, the document carrying the
authentication signal may be transmitted across some
channel to the intended user. In these cases one can
use the capacity expressions of the last section to con-
veniently determine the achievable embedded rate per
unit of host signal bandwidth and per unit of received
host signal degradation, as we show in this section.

In each of the cases considered in Section 5.1 and
Section 5.2, the measure of distortion, and hence
the DNR, is defined to make the embedding-induced
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distortion signal “look like” the channel noise, the
idea being that if channel noise distortion to the host
signal is perceptually acceptable, then an embedding-
induced distortion signal of the same power spectrum
will also be perceptually acceptable. As discussed in
those sections, one can view the DNR as the amount by
which one would have to amplify the noise to create a
noise signal with the same statistics as the embedding-
induced distortion signal. Thus, if one views the re-
ceived channel output as a noise-corrupted version of
the host signal, then the effect of the embedding is to
create an additional noise source DNR times as strong
as the channel noise, and therefore, the received signal
quality drops by a factor of (1+ DNR) or

10 log10(1+ DNR) dB. (29)

Since the capacity in bits per dimension (bits per host
signal sample) is given by (28), and there are two inde-
pendent host signal samples per second for every Hertz
of host signal bandwidth, the capacity in bits per second
per Hertz is

C = log2(1+ DNR) b/s/Hz. (30)

Taking the ratio between (30) and (29), we see that the
“value” in embedded rate of each dB drop in received
host signal quality is

C = log2(1+ DNR)

10 log10(1+ DNR)

= 1

10
log2 10≈ 0.3322 b/s/Hz/dB (31)

Thus, the available embedded digital rate in bits per
second depends only on the bandwidth of the host sig-
nal and the tolerable degradation in received host signal
quality. Information-embedding capacities for several
types of host signals are shown in Table 1.

Table 1. Information-embedding capacities for transmis-
sion over additive Gaussian noise channels for various types
of host signals. Capacities are in terms of achievable embed-
ded rate per dB drop in received host signal quality.

Host signal Bandwidth Capacity

NTSC video 6 MHz 2.0 Mb/s/dB

Analog FM 200 kHz 66.4 kb/s/dB

Analog AM 30 kHz 10.0 kb/s/dB

Audio 20 kHz 6.6 kb/s/dB

Telephone voice 3 kHz 1.0 kb/s/dB

It is shown in [11] that for white, Gaussian host
signals and AWGN channels, there exist distortion-
compensated QIM methods, with distortion-compen-
sation parameterα given by (13), that can achieve
capacity (18). The results of Moulin and O’Sullivan
[32] imply that, in the case of arbitrary square-error
distortion-constrained attacks, distortion-compensated
QIM with a different value ofα can achieve capacity,
although Moulin and O’Sullivan do not explicitly state
this observation. Their results also imply that in the case
of non-Gaussian host signals, distortion-compensated
QIM can achieve capacity asymptotically with small
embedding-induced distortion and attacker’s distor-
tion, which is the limiting case of interest in high fi-
delity applications. The connection between capacity
and distortion compensation in these cases is explained
in more detail in App. B.

Since the colored Gaussian cases considered in this
section can be transformed into a case of indepen-
dent, parallel AWGN channels with white host sig-
nals, capacity-achieving distortion-compensated QIM
methods also exist for these cases. Similarly, it is also
shown in [7, 11] that regular QIM methods exist that
achieve performance within 1.6 dB of capacity. For ex-
ample, referring to Table 1, to embed 200 kb/s in a
200-kHz analog FM signal with a capacity-achieving
method requires that we accept a 3-dB drop in re-
ceived host signal quality. Therefore, there exists a QIM
method that can achieve an embedding rate of 200 kb/s
with at most a (3+ 1.6)-dB= 4.6-dB drop in received
host signal quality.

6. Simulation Results

In Section 5 we established the existence of capacity-
achieving and near capacity-achieving embedding and
decoding methods within the distortion-compensated
QIM and regular QIM classes, respectively, for
Gaussian embedding problems. In Section 4.3 we pre-
sented low-complexity realizations of QIM involving
dither modulation and uniform, scalar quantization.
These realizations could also be combined with dis-
tortion compensation. Several simulation results for
dither modulation implementations are reported below
for both Gaussian and non-Gaussian channels.

6.1. Gaussian Channel

It can be shown fairly easily [7, 11] that for additive
white Gaussian noise (AWGN) channels andRm < 1,
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the bit-error probabilityPb of the uncodedspread-
transform dither modulation (STDM) with uniform,
scalar quantization method discussed in Section 4.3
is upper bounded by

Pb ≤ 2Q

(√
3

4
DNRnorm

)
, (32)

where DNRnorm is the rate-normalized distortion-to-
noise ratio

DNRnorm
1= DNR

Rm
(33)

For example, one can achieve a bit-error probability of
about 10−6 at a DNRnormof 15 dB. Thus, no matter how
noisy the AWGN channel, one can reliably embed us-
ing uncoded STDM by choosing sufficiently low rates,

Rm ≤ DNR

DNRnorm
.

This case is illustrated in Fig. 13, where despite the
fact that the channel has degraded the composite image
by over 12 dB, all 512 embedded bits are recovered
without any errors from the 512-by-512 image. The
actual bit-error probability is about 10−6.

One can improve performance significantly using
error correction coding and distortion compensation.
In fact, from the capacity expressions (18) and (22) for
the case of white, Gaussian noise, we see that reliable
information embedding is possible if

Rm ≤ C = 1

2
log2(1+ DNR)

Figure 13. Composite (left) and AWGN channel output (right) images. The composite and channel output images have peak signal-to-distortion
ratios of 34.9 dB and 22.6 dB, respectively. DNR= −12.1 dB, yet all bits were extracted without error.Rm = 1/512 and DNRnorm= 15.0 dB
so the actual bit-error probability is 10−6.

or, equivalently,

DNR

22Rm − 1
≥ 1.

For smallRm, 22Rm − 1≈ 2Rm ln 2, so this condition
becomes

DNRnorm≥ 2 ln 2≈ 1.4 dB.

Since, as stated above, uncoded STDM with uniform,
scalar quantization requires a DNRnorm of 15 dB for a
bit-error probability of 10−6, there is a gap to capacity
of about 13.6 dB.

We now report the results of one experiment de-
signed to investigate how much of this gap can be
closed with practical error correction codes and dis-
tortion compensation. In our experiment we embedded
107 bits in a pseudorandom white Gaussian host using
memory-8, rate-1/2 and rate-1/4, convolutional codes
with maximal free distance. Table 2 contains the gener-
ators and free distances of these codes [35, Tbl. 11.1].
Experimentally measured bit-error rate (BER) curves
are plotted in Fig. 14. We observe an error correction
coding gain of about 5 dB at a BER of 10−6. Distortion
compensation provides an additional 1-dB gain.

From the definition of DNRnorm (33), we see these
gain factors translate directly into

Table 2. Convolutional code parameters. Each
code has a memory of 8 (constraint length of 9).

Rate (Rconv) Generators (octal) dfree

1/2 561, 753 12

1/4 463, 535, 733, 745 24
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Figure 14. Error-correction coding and distortion-compensation
(DC) gains. With common, memory-8 convolutional codes one can
obtain gains of about 5 dB over uncoded STDM. Distortion compen-
sation yields about 1 dB additional gain.

1. a factor increase in rate for fixed levels of
embedding-induced distortion and channel noise
(robustness), or

2. a factor reduction in distortion for a fixed rate and
robustness, or

3. a factor increase in robustness for a fixed rate and
distortion.

Thus, the minimum DNRnorm required for a given bit-
error rate is, indeed, the fundamental parameter of in-
terest and, as one can see from (32), in the Gaussian
case the DNRnorm also completely determines the bit-
error probability for uncoded STDM forRm ≤ 1.

6.2. JPEG Channel

The robustness of digital watermarking algorithms to
common lossy compression algorithms such as JPEG is
of considerable interest. A natural measure of robust-
ness is the worst tolerable JPEG quality factor (The
JPEG quality factor is a number between 0 and 100, 0
representing the most compression and lowest quality,
and 100 representing the least compression and high-
est quality.) for a given bit-error rate at a given dis-
tortion level and embedding rate. We experimentally
determined achievable rate-distortion-robustness oper-
ating points for particular uncoded implementations of
both STDM and unspread dither modulation (UDM),
where all host signal components were quantized with
the same step size.

These achievable distortion-robustness trade-offs at
an embedding rate ofRm = 1/320 bits per grayscale

Figure 15. Achievable robustness-distortion trade-offs of dither
modulation on the JPEG channel.Rm = 1/320. The bit-error rate is
less than 5× 10−6.

pixel are shown in Fig. 15 at various JPEG quality
factors (QJPEG). The peak signal-to-distortion ratio
(SDR) is defined as the ratio between the square
of the maximum possible pixel value and the av-
erage embedding-induced distortion per pixel. The
host and composite signals, both 512-by-512 im-
ages, are shown in Fig. 16. The actual embedding
is performed in the DCT domain using 8-by-8 blocks
( f1, f2∈ {0, 1/16, . . . ,7/16}) and low frequencies

(

√
f 2
1 + f 2

2 ≤ 1/4), with 1 bit embedded across 5 DCT
blocks. STDM is better than unspread dither modula-
tion by about 5 dB at (100−QJPEG) of 50 and 75. One
explanation for this performance advantage is given in
[11] in terms of the number of “nearest neighbors”, or
the number of directions in which large perturbation
vectors can cause decoding errors.

Although no bit errors occurred during the simula-
tions used to generate Fig. 15, we estimate the bit-error
rate to be at most 5× 10−6. At an embedding rate of
1/320, one can only embed 819 bits in the host signal
image, which is not enough to measure bit-error rates
this low. However, one can estimate an upper bound
on the bit-error rate by measuring the bit-error rateε
at an embedding rate five times higher (Rm = 1/64)
and calculating the coded bit-error probability of a rate-
1/5 repetition code when the uncoded error probability
is ε assuming independent errors, which can approxi-
mately be obtained by embedding the repeated bits
in spatially separated places in the image. This coded
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Figure 16. Host (left) and composite (right) image. After 25%-quality JPEG compression of the composite image, all bits were extracted
without error.Rm = 1/320. Peak SDR of composite image is 36.5 dB.

bit-error probability is

Prep=
5∑

k=3

(
5

k

)
εk(1− ε)5−k (34)

If ε ≤ 32/4096, then (34) impliesPrep ≤ 4.7× 10−6.
Thus, to obtain Fig. 15, we first embedded at a rate of
1/64 adjusting the SDR untilε ≤ 32/4096. Then, we
embedded at a rate of 1/320 using a rate-1/5 repetition
code to verify that no bit errors occurred.

A similar set of experiments was performed to illus-
trate to advantages of distortion-compensated STDM
over regular STDM against JPEG compression attacks.
Again, a rate-1/5 repetition code was used to embed
1 bit in the low frequencies of five 8-by-8 DCT blocks
for an overall embedding rate of 1/320. Using Fig. 15,
we chose a low enough distortion level (SDR= 43 dB)
such that we would be able to observe errors in the 819
decoded bits after 25-percent quality JPEG compres-
sion. Then, we measured the decoded bit-error rate with
different distortion compensation parametersα (12).
The results are shown in Fig. 17.

We see that distortion compensation is helpful,
provided that one choosesα to obtain an efficient
trade-off between minimum distance and distortion-
compensation interference, both of which are increased
by decreasingα, as discussed in Section 4.2. The mea-
sured distortion-to-noise ratios in the projections of the
received signals onto the STDM pseudorandom vec-
tors were between 3.2 dB and 3.6 dB. For DNRs in this
range, theα given by (13), which maximizes “SNR at
the decision device” and is optimal for AWGN chan-
nels, is between 0.67 and 0.69. Although the measured
bit-rate error in Fig. 17 is lower forα = 0.8 than for
α = 0.7 (21/819 vs. 24/819), these measurements are
within statistical uncertainty.

Figure 17. Bit-error rate for various distortion compensation pa-
rameters for JPEG compression channel of 25%-quality.Rm =
1/320. The peak SDR, between 43.3–43.4 dB, is chosen high enough
to obtain a measurable bit-error rate.

7. Concluding Remarks

We have presented a class of information embedding
methods called quantization index modulation (QIM)
along with several low complexity realizations based
on dither modulation and uniform scalar quantization.
These methods can also be combined with suitable pre-
processing and postprocessing steps such as distortion
compensation. It is shown in [7, 11] that these meth-
ods achieve provably better rate-distortion-robustness
trade-offs than previously proposed classes of meth-
ods such as spread spectrum and low-bit(s) modulation
against worst-case square-error distortion-constrained
intentional attacks, which may be encountered in a
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number of copyright, authentication, and covert com-
munication multimedia applications.

In this paper we have determined information-
embedding capacities in the case of Gaussian host sig-
nals and additive Gaussian noise with arbitrary statis-
tics. The capacities in these cases equal that of the white
host signal and white noise case, which are presented
in [11]. When applied to multimedia applications such
as hybrid transmission and embedding of authentica-
tion signals, these results imply a capacity of about
1/3 b/s for every Hertz of host signal bandwidth and
dB drop in received host signal quality. QIM methods
exist that achieve performance within 1.6 dB of these
capacities, and even this small gap can be eliminated
with distortion compensation.

Finally, we have implemented a number of dither
modulation examples and demonstrated their perfor-
mance against Gaussian noise and JPEG compression
attacks. Other attacks such as those arising from geo-
metric distortions are left for future work.

Appendix A. Formal Capacity Proof: Colored
Host, White Noise

In this appendix we formally complete the derivation of
capacity (22) that is sketched in Section 5.1 for the case
of a colored Gaussian host signal and white Gaussian
noise. As described in that section, our goal is to find
a probability density function (pdf)pũ,ẽ|x̃(ũ, ẽ | x̃) that
maximizes the transform-domain version of (19),

C = max
pũ,ẽ|x̃(ũ,ẽ|x̃)

I (ũ;ỹ )− I (ũ; x̃ ), (35)

subject to the constraint

E[ẽT ẽ] ≤ LDs. (36)

Our strategy is to hypothesize a pdfpũ,ẽ|x̃(ũ, ẽ | x̃) and
show that with this choice of pdfI (ũ; ỹ) − I (ũ; x̃) in
(35) equals the expression in (21). Since this expression
is also the capacity in the case when the host signal is
known at the decoder [11], we cannot hope to achieve a
higher rate, and hence, this pdf must indeed maximize
(35).

We consider the pdf corresponding to the case where

ũ = ẽ+ αx̃, ẽ ∼ N (0, DsI ), (37)

ẽ and x̃ are statistically independent, andα is given
by (13). (The notationv ∼ N (µ, K ) means thatv is

a Gaussian random vector with meanµ and covari-
ance matrixK .) Clearly, this choice of pdf satisfies the
distortion constraint (36). Also, as explained in Sec-
tion 5.1,x̃ ∼ N (0,3x) soũ ∼ N (0, DsI +α23x). The
differential entropyh(v) of anL-dimensional Gaussian
random vectorv ∼ N (µ, K ) is [30]

1

2
log2(2πe)L |K |,

which for diagonal covariance matricesK =
diag(k1, . . . , kL) reduces to

L∑
i=1

1

2
log2(2πeki ). (38)

Therefore,

I (ũ; x̃) 1= h(ũ)− h(ũ | x̃)
= h(ũ)− h(ẽ)

=
L∑

i=1

1

2
log2[2πe(Ds+ α2λx,i )]

−
L∑

i=1

1

2
log2(2πeDs)

=
L∑

i=1

1

2
log2

Ds+ α2λx,i

Ds
, (39)

whereλx,i denotes thei -th diagonal entry of3x. The
second line follows from (37) and the statistical inde-
pendence of̃e and x̃, and the third line follows since
ũ andẽ have diagonal covariance matrices and, hence,
have entropies of the form (38). Thus, all that remains
is to computeI (ũ; ỹ) in (35).

The transform-domain channel outputỹ = ẽ+ x̃+ ñ
has a diagonal covariance matrixK ỹ = DsI+3x+σ 2

n I
and via (37) can be written in the form

ỹ = ũ+ (1− α)x̃+ ñ. (40)

Thus, the differential entropy of̃y is given by (38)

h(ỹ) =
L∑

i=1

1

2
log2

[
2πe

(
Ds+ λx,i + σ 2

n

)]
. (41)

One can similarly determineh(ỹ | ũ) after determining
K ỹ|ũ. Sinceỹ and ũ are jointly Gaussian vectors, the
conditional density of̃y is Gaussian with conditional
covariance matrix [34, (Eq. 1.150)]

K ỹ|ũ = K ỹ − K ỹũK−1
ũ K T

ỹũ. (42)
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From (40) and (37), one can infer that

K ỹ = Kũ + (1− α)2K x̃ + Kñ + (1− α)
(
K x̃ũ + K T

x̃ũ

)
and

K ỹũK−1
ũ K T

ỹũ

= [Kũ + (1− α)K x̃ũ
]
K−1

ũ

[
Kũ + (1− α)K T

x̃ũ

]
= Kũ + (1− α)

(
K x̃ũ + K T

x̃ũ

)
+ (1− α)2K x̃ũK−1

ũ K T
x̃ũ.

Inserting these expressions into (42), we obtain

K ỹ|ũ = Kñ + (1− α)2
[
K x̃ − K x̃ũK−1

ũ K T
x̃ũ

]
,

which is a diagonal matrix sinceKñ, K x̃, K x̃ũ, andKũ
are all diagonal. Thei -th diagonal entry is

[K ỹ|ũ] i i = σ 2
n + (1− α)2

[
λx,i −

α2λ2
x,i

Ds+ α2λx,i

]
= σ 2

n (Ds+ α2λx,i )+ (1− α)2λx,i Ds

Ds+ α2λx,i

Thus, the conditional entropy (38) of this conditionally
Gaussian random vector is

h(ỹ | ũ) =
L∑

i=1

1

2
log2[

2πe
σ 2

n (Ds+ α2λx,i )+ (1− α)2λx,i Ds

Ds+ α2λx,i

]
,

(43)

and taking the difference between (41) and (43), one
obtains

I (ũ; ỹ) =
L∑

i=1

1

2
log2[ (

Ds+ λx,i + σ 2
n

)
(Ds+ σ 2λx,i )

σ 2
n (Ds+ α2λx,i )+ (1− α)2λx,i Ds

]
.

(44)

Substituting (44) and (39) into (35) yields

I (ũ; ỹ)− I (ũ; x̃)

=
L∑

i=1

1

2
log2

[
Ds(Ds+ λx,i + σ 2

n )

σ 2
n (Ds+ α2λx,i )+ (1− α)2λx,i Ds

]

=
L∑

i=1

1

2
log2

[
DNR

1+ DNR+ SNRx,i

DNR+α2SNRx,i + (1−α)2DNR SNRx,i

]
,

where SNRx,i = λx,i /σ
2
n is the host signal-to-noise

ratio in thei -th channel. Finally, substituting (13) into

this expression yields

I (ũ; ỹ )− I (ũ; x̃ ) =
L∑

i=1

1

2
log2[

(1+ DNR)2DNR

× 1+ DNR+ SNRx,i

DNR(1+ DNR)2 + DNR2 SNRx,i + DNR SNRx,i

]

=
L∑

i=1

1

2
log2

[
(1+ DNR)2

1+ DNR+ SNRx,i

(1+ DNR)2 + SNRx,i (1+ DNR)

]

=
L∑

i=1

1

2
log2(1+ DNR),

which equals the desired expression (21).

Appendix B. Distortion Compensation
and Capacity

Distortion-compensated QIM (DC-QIM) can achieve
capacity in a number of important scenarios as we dis-
cuss in this appendix. Indeed, as we show below, there
exists a capacity-achieving DC-QIM method whenever
the maximizing distributionpu,e|x(u, e | x) in (19) is
of a form such that

u = e+ αx. (45)

This condition is satisfied in at least three important
cases: (1) the case of a Gaussian host signal and an
additive Gaussian noise channel [11]; (2) the case
of a Gaussian host signal and arbitrary square-error
distortion-constrained attacks [32]; and (3) the case of
arbitrary square-error distortion-constrained attacks, a
zero-mean, finite variance host signal whose proba-
bility density function is bounded and continuous, and
asymptotically small embedding-induced distortionDs

and channel perturbation (attacker’s distortion)σ 2
n [32].

To understand why a distribution that satisfies the
condition (45) implies the optimality of DC-QIM,
we first discuss the achievability of (19). Our dis-
cussion of achievability here is basically a summary
of Gel’fand and Pinsker’s capacity-achievability proof
[33], with added interpretation in terms of quanti-
zation (source coding). Suppose, we draw the code-
words u (reconstruction vectors) of our QIM quan-
tizer ensemble from the iid distributionpu(u), which
is the marginal distribution corresponding to the host
signal distributionpx(x) and the maximizing condi-
tional distributionpu,e|x(u, e | x) from (19). We draw
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2N(I (u;y)−ε) total codewords and assign an equal num-
ber of them to each of 2N(C−2ε) quantizers. Thus, since
C = I (u; y)− I (u; x), each quantizer has 2N(I (u;x)+ε)

codewords. The encoder finds a vectoru0 in them-th
quantizer’s codebook that is jointly distortion-typical
with αx and generatese(u0, x). (From convexity prop-
erties of mutual information, one can deduce that the
maximizing distribution in (19) always has the pro-
perty thate is a deterministic function of (u, x) [33]. If
the maximizing distribution satisfies (45), for example,
thene = u0 − αx.) Since them-th quantizer’s code-
book contains 2N(I (u;x)+ε) = 2N(I (u;αx)+ε) vectors, the
probability that there is nou0 that is jointly distortion-
typical withαx is small. (This is one of the main ideas
behind the rate-distortion theorem [30, Ch. 13].) The
decoder finds au that is jointly typical with the channel
outputy and declareŝm = i if this u is in thei -th quan-
tizer’s codebook. Because the total number of vectors
u is 2N(I (u;y)−ε), the probability that au other than the
u0 is jointly typical withy is small. Also, the probabil-
ity thaty is jointly typical withu0 is close to 1. (These
are two of the main ideas behind the classical channel
coding theorem [30, Ch. 8].) Thus, the probability of
error Pr[m̂ 6= m] is small, and we can indeed achieve
the capacity (19).

To see that DC-QIM can achieve capacity when the
maximizing pdf in (19) satisfies (45), we show that one
can construct an ensemble of random DC-QIM code-
books that satisfy (45). First, we observe that quantizing
x is equivalent to quantizingαx with a scaled version
of the quantizer and scaling back, i.e.,

q(x;m,1/α) = 1

α
q(αx;m,1). (46)

This identity simply represents a change of units to
“units of 1/α” before quantization followed by a change
back to “normal” units after quantization. For example,
if α = 1/1000, instead of quantizingx volts we quan-
tizeαx kilovolts (using the same quantizer, but relabel-
ing the reconstruction points in kilovolts) and convert
kilovolts back to volts by multiplying by 1/α. Then,
rearranging terms in the DC-QIM embedding function
(12) and substituting (46) into the result, we obtain

s(x,m) = q(x;m,1/α)+ (1−α)[x− q(x;m,1/α)]
= αq(x;m,1/α)+ (1− α)x
= q(αx;m,1)+ (1− α)x. (47)

We construct our random DC-QIM codebooks by
choosing the codewords ofq(·;m,1) from the iid dis-
tribution pu(u), the one corresponding to (45). (Equi-

valently, we choose the codewords ofq(·;m,1/α)
in (12) from the distribution ofu/α, i.e., the iid dis-
tribution αpu(αu).) Our quantizersq(·;m,1) choose
a codewordu0 that is jointly distortion-typical with
αx. The decoder looks for a codeword in all of the
codebooks that is jointly typical with the channel out-
put. Then, following the achievability argument given
above at the beginning of this appendix, we can achieve
a rateI (u; y)− I (u; x). From (47), we see that

s(x,m) = x+ [q(αx;m,1)− αx] = x+ (u0− αx).

Sinces(x,m) = x+ e, we see thate= u0− αx. Thus,
if the maximizing distribution in (19) satisfies (45), our
DC-QIM codebooks can also have this distribution and,
hence, achieve capacity (19).

Thus, indeed, capacity-achieving DC-QIM methods
exist whenever the capacity-achieving probability dis-
tribution has a form satisfying (45). In the case of a
Gaussian host signal and an additive Guassian noise
channel, the optimal distortion compensation para-
meter is [11]

α = DNR

DNR+ 1
.

This value ofα is also asymptotically optimal with
small embedding-induced distortion and attacker’s dis-
tortion for the case of arbitrary square-error distortion-
constrained attacks and non-Gaussian host signals with
zero-mean, finite variance, and a bounded and contin-
uous probability density function [32]. In this case the
DNR is defined as the ratio between the embedding-
induced distortion and the attacker’s distortion (as op-
posed to additive noise variance). With this definition
of DNR, the optimal (even non-asymptotically)α in
the case of arbitrary square-error distortion-constrained
attacks with a Gaussian host signal is [32]

α = DNR

DNR+ β , β = SNRx + DNR

SNRx + DNR− 1
,

where SNRx is defined as the ratio between the host
signal variance and the attacker’s distortion.
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Notes

1. Some types of distortion, such as geometric distortions can be
large in terms of square error, yet still be small perceptually.
However, in some cases these distortions can be mitigated either
by pre-processing at the decoder or by embedding information
in parameters of the host signal that are less affected (in terms of
square error) by these distortions. For example, a simple delay or
shift may cause large square error, but the magnitude of the DFT
coefficients are relatively unaffected.

2. The duality between this problem and the problem of source
coding with side information at thedecoderis explored in [36].

3. To generate the curve, robustness is measured by the ratio in dB
between noise variance and square-error embedding-induced dis-
tortion, the rate is the information-theoretic capacity (Eq. (18) and
[37, Eq. (16)] for host-interference rejecting and non-rejecting,
respectively) in bits per host signal sample, and the ratio between
the host signal variance and the square-error embedding-induced
distortion is fixed at 20 dB.

4. A uniform distribution for the dither sequence implies that the
quantization error is statistically independent of the host signal
and leads to fewer “false contours”, both of which are generally
desirable properties from a perceptual viewpoint [25].

5. By worst case, we mean the case where the attacker knows
everything about the embedding function, i.e., a no-key scenario.
Moulin and O’Sullivan [32] have examined “optimal” attacks rel-
ative to a randomizedsetof codebooks (embedding functions),
which may be interpreted as a private-key scenario. We discuss
implications of their results later in this paper.
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