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ABSTRACT In this paper, we expand on this recent work by allowing for

. . . multiple classes in the MLLR adaptation: this groups thetomix
Speaker recognition using support vector machines (SVM#) w components of the GMM UBM into classes and applies a differen

features derived from generative models has been shownfrPe o storm to each of the classes. We introduce the extemsitive

well. Typically, a gni\{ersal background model (UBM) is aFteIpto GSV kernel and the MLLRSV kernel for the multi-class MLLR eas
each utterance yielding a set of features that are used ivéh S e also present the details of the implementation of thisreded

We consider the case where the UBM is a Gaussian mixture modg . ; :
. o . ; stem. Multi-class MLLR is also used in the LVCSR/SVM syste
(G.MM).’ and maximum likelinood linear regression (MLLR) ga roposed in [3] where it is used to adapt a large vocabulaggcip
tat|on_ IS (;J?ﬁd to tadafpt ttk;]e means ﬁf the UFEA'IT\;BI_CEEHWM; hay ecognition system (LVCSR). We therefore briefly discusw lioe
examined this setup for the case where a gioba ranmstor nv1LLRSV kernel can be used in conjunction with an LVCSR system
is applied to all the TT“X“”e components of the GMM UBM' This as we believe it willimprove the performance over the cutyamsed
Wf)rk pro_duced positive result_s that warrant examining m“_yp kernels. It is important to note that one of the goals of thisknis
with multl-cla§s MLLR adaptation, V.Vh'Ch groups the UBM mire to demonstrate that a simpler GMM UBM designed specificalty f
compone_nts into classes and applies a different transforaat_th speaker recognition can be used in place of an LVCSR system to
class. This paper gxtends the MLLR/GMM framework to the mult obtain gains with multiple classes. Throughout this paperwill
cIas; case. Expe!'lments on the NIST SRE 2006 corpus show thBFesent in detail the implementation of the two class cagension
multi-class MLLR Improves on global M_LLR and that the propds to a larger number of classes is straightforward. We alssgmteand
system’s performance is comparable with state of the aress discuss results for the two and four-class cases.
Index Terms— Speaker recognition, MLLR, Support vector
machine, Kernel, Adaptation 2. BACKGROUND
2.1. Support Vector Machines

1. INTRODUCTION An SVM [41 is a two-class classifier constructed from sums of a
kernel functionk (-, -),

SVMs have become a popular and powerful tool in text-inddpah
speaker verification. At the core of any SVM system is a choice
SVM feature expansion and an associated choice of kernelféh
ture expansion maps a given utterance to a feature vectohigha ) L
dimensional SVM feature space, and the kernel induces andist where thet; are the ideal outputsy ;" , vit; = 0, andy; > 0.

metric in this space. A recent trend has been to derive eiqraby The vectorsx; are support vectors and obtained from the training
adapting a UBM to an utterance-specific model. set by an optimization process [5]. The ideal outputs afeeit or

Recent work [1] used MLLR to adapt the means of a GMM —1, depending upon whether the corresponding support vestor i
UBM to a given utterance, and the kernel used was the Gaussian class0 or classl, respectively. For classification, a class decision is
pervector (GSV) kernel. The GSV kernel [2] is derived fromagn based upon whether the valy&x), is above or below a threshold.
proximation of the KI_. dlverg.ence between two adapted GMW an 5 o Maximum Likelihood Linear Regression
corresponds to a weighted inner product between the Gawssia Maxi likelihood i . MLLR) ad .
pervectors (GSVs), which are vectors formed by stackingrnibans aximum likelihood linear regression ( ) adaptationapts

of the adapted GMMs. The work in [1] focused on MLLR adaptatio th? means of the. mixture compongnts of a GMM by applying an
that applied the same global affine transformation to thenmegall affine trqnsformatlon. The tsame affine transform may be eiaye
the mixture components of the UBM. It also presented an equiv all the mixture components:

lent implementation of the GSV kernel, called the MLLRS Vet m; = Am; + b Vi, o)

as a weighted inner product between the MLLR transformersct

which are formed by stacking the elements of the affine taansd-  wherem; are the means of the unadapted GMM, ang are the
tion. The results of this work were promising and warrantethier  adapted means.

exploration. Alternatively, the mixture components may be grouped into
classes and a different affine transform shared by all thetumgx
components in each of the classes:

L
Fx) =D it (x,%:) + &, @)

i=1
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In both the single and multi-class cases the transforms leoeen
to maximize the likelihood that the utterance was generbtethe
adapted model [6]. The MLLR algorithm computes the tramsfor
A andb, not the transformed means; and subsequently additional
computation is needed to obtain the transformed means.
Multi-class MLLR adaptation allows for more freedom in atlap

ing the GMM, since all the means are not constrained to moge th

same way. The choice of how to group mixture components hr&o t
different classes and the number of classes is non-triddale can
group the mixture components via a data-driven approactctim-
bines together mixture components that are close in acos|séice.
Alternatively, as in this paper, the grouping can be donetham
broad phonetic classes. We explore the two and four-classcéhe
two-class case groups sonorants into one class and oltstinem
the other, the four-class case further divides the soneiatd vow-
els and sonorant consonants and the obstruents into ¥eeatind
stops. The two and four-class break-up is presented in &ityur

Global 1 Class
T~
Sonorants  Obstruents 2 Class
T ~
Vowels Sonorant Consonants Fricatives Stop4 Class

Fig. 1. Class-division tree structure.

As the number of classes increases the amount of adaptatian
assigned to each class decreases. This leads to instaneestivre
is not enough adaptation data to obtain a good transform dorem

class. A common method to handle these instances is to “backY

off” from the class-specific transform and use a more germmeal
to transform the means of that class. For example, if thereois
enough data to obtain a transform for the vowels we back+udf a
use the transform for the sonorants to adapt the vowels. Idere

tails on how the mixture components were chosen and the dfck-

technique used will follow in Section 5.

3. MLLR FEATURE EXPANSIONS

The SVM feature expansion is a map between an utterance and

high-dimensional vector in the SVM feature space. We witlu®
on the case of two-class MLLR adaptation and will present éwo
pansions which are byproducts of this adaptation.

The UBM, used to model a wide range of speakers, i&/anix-
ture diagonal covariance GMM;(x). It is formed by a weighted
sum of twoN/2 mixture GMMs: the firstV/2 mixture components
are assigned to the sonorants and the rest to the obstriitietpro-
cess of assigning components and the choice of the weigfjing
andy,.) are discussed in more detail in Section 5.

N/2 N
9(x) = s D NN, B) + e D AN (x50, B5),
i=1 i=N/2+1

where N (x; m;, 3;) is a Gaussian with meam; and covariance

separated by the corresponding entriebgf The process is shown
in Figure 2.
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Fig. 2. Two choices of feature expansions for the two-class case.

4. MLLR KERNELS

A major component of an SVM system is the kernel, which defines
a distance between two different points in the SVM featuracep

d In our context, this translates to defining a distance beatwe®

utterances. In this section, we will discuss the Gaussipersactor
(GSV) kernel we have used and equivalent implementation in the
VILLR transform feature space, which we call the MLLRSV kdrne
Our focus on the GSV kernel is motivated by [1] which compated
to other kernels and showed that it outperformed them.

4.1. Gaussian Supervector (GSV) Kernel

Suppose we have two utterances, w@hd utg. We adapt the GMM
UBM g(x), via MLLR adaptation of the means, to obtain two new
GMMs, g (x) andgs(x) respectively, that represent the utterances.
The GSV kernel Ksv (utt,, uttg), is derived in [2] by upperbound-
ing the KL divergence between the two new GMMs:

Ksv(utty, utts) = SN, <\/A_z~2f%m?)t (x/k_iﬁf%m?) 5)
(6)

_ matAmB7
wherem® andm? are the Gaussian supervectors of the utterances
andA = diag(v M E7, ..., VANER') is a diagonal matrix since
the33;s are also diagonal matrices.

SinceA is a diagonal matrix anth is the stacked means of the
different classes, then the multi-class extension to the &Bnel is:

Ksv (utty, utt) = us Ksv,s(Utty, Uttg) + po K sv,0 (Utta, Uttg), (7)

where Ksv,s(utty, utts) and Ksv,o(utty, utts) are the class-

%;. Adapting the means of the UBM via two-class MLLR to a given genendent GSV kernels for the sonorants and obstruentsceesp

utterance utt produces a transformation matel and offset vector

tively.

bs for the sonorants, which can be used to adapt the means of the

UBM assigned to the sonorants, aAd, andb, for the obstruents,

which can be used to adapt the means of the UBM assigned to t#e2. MLLRSV Kernel

obstruents.
The first expansion is the Gaussian superveatowhich is con-
structed by stacking the means of the adapted model. Thadéxo

the MLLR transform-vectotr which consists of stacking the trans-
posed rows of the transform mattxs separated by the correspond-

ing entries of the vectdbs followed by the transposed rows &f,

Multi-class MLLR transforms the means of all the mixture qmm
nents in a given class of the GMM UBM by the same affine trans-
formation, as in equations (3) and (4). This constraintvadlais to
derive a MLLRSV kernel in MLLR transform-vector space that i
equivalent to the GSV kernel. We begin by replacing the adapted
means in equation (7) with the affine transforms of the UBM insea



Ag, Ao, bg, b are the transforms fartt, andCs, Co, ds, do are
the transforms fouttg.

st(utta, Uttg) = ,usstys(Utfa, Uttg) + uostyo(Utta, Uttg)
N/2
= s
i=1
N

MOZ

i=N/24+1

t

wherem; is the mean vector of thé" mixture component of the
UBM, the diagonal matrixA,; = \;=;'. Expanding the sonorant

part of equation (8) yields
> N2 (A%b )t (A%d )
=1 i S i S

Ksv,s(utty, uttg) =

1 ¢ 1
+ N <Af Ast) (Af Csrm)
N/2 i ‘ i
+ Zz:/]. <Ai2 Asﬁli) <Ai2 dS)
N/2 3 ! P
+ > (Af bs) (AZ? Csml) . (9

After some manipulation, details of which are in [1], we dbta

KSVA,S(Utta7 Uttﬁ) = 221:1 bsk dskésk + Ziwzl a;kRskcsk
+ 0L dekalirer + Spl, berrhicsr (10)
- Téa QSTSB (11)

where M is the number of rows ilAs, asx andcg, are the trans-
pose of thekt” rows of As and Cs respectively,bs;, anddsy are
the k** elements ob, andd respectively,A;;, is the k*" diago-
nal element of the diagonal matrix;, Rsx = Zf\;/f A;pm;mt,

ror = SN2 Agamy, 6 = SN2 Ak, Tsa andTss are the
sonorant parts of the MLLR transform-vectors of the utteesn and
Qs is a block diagonal matrix consisting @ blocks Qs Of size

(M +1)x(M +1). Equation (12) shows the structure of the blocks:

Rsk

t
Tsk

Qu= (T ). (12)

Note that the summations Rsy, rsi andds; are from: = 1 to

<A§ (Aom; + bo))t (A? (Com; + do)> , (8

An advantage of equation (14) over equation (7) is that time-nu
ber of multiplies it requires only depends on the size of thé\NG
feature vectors and number of MLLR classes not on the number o
mixture components in the GMM. Another advantage is thabésd
not require transforming the means, this saves computatioire-
moves the need for storing the adapted means. These two-advan
tages and the block diagonal structure@fresult in and order of
magnitude reduction in multiplies, for our system (detadlEL]), by
using the MLLRSV implementation over the original GSV kdrne
this reduction becomes more significant as the number ofumgxt
components increases.

4.3. MLLRSV Kernel for LVCSR systems

The LVCSR/SVM system presented in [3] uses MLLR adaptation
with a speaker independent LVCSR system and a kernel censist
ing of an inner product between rank-normalized transfueettors.
Recent results, presented in [1], showed the advantagesdt 8V
kernel over other kernels that are inner products betweemale
ized MLLR transform-vectors, including the one used in f8},the
case where the UBM is a GMM. Unfortunately, the GSV kernel, if
applied in its original form (7), can be computationally pitmtive
since the number of multiplies increases@V?) whereN is the
number of Gaussian mixture components in the system, whigip+
ically more than a hundred thousand for an LVCSR system. How-
ever, since MLLR adaptation is being used to adapt the meees,
can follow the steps taken in Section 4.2 to derive a similay to
compute the GSV kernel in terms of an inner product between th
MLLR transform-vectors significantly reducing computatio

5. IMPLEMENTATION

There are a number of issues that have to be addressed wih@n bui
ing the multi-class MLLR/GMM system. The first, is how to diei
the mixture components of the GMM into multiple classes. ther
two-class case, we chose to perform the divide along broadeitt
classes: sonorants and obstruents. However, since our SBM an
LVCSR system where it is clear which mixture components tglo
to which phoneme and thus to which of our two classes, we lave t
explicitly assign them: we assign the fif§}/2 mixture components

to the sonorants class and the remainiy® to the obstruents class.
We also perform open-loop phonetic recognition on all the daed

to train the UBM, the background, and the speaker recogn#is-
tem and to test the system; this allows us to assign whichopéne
data will be used to train/test each class. We also trieduadesplit-
ting of the GMM mixture components amongst the classes, hemwe

N/2, only over the mixture components pertaining to the sortoranthis reduced performance.

class. With this in mind the form of the obstruent part of tieeriel
is

Ksv,0(Utta, Utts) = ToaQoTos; (13)
where the summations Ro, rox anddor are fromi = N/2 + 1

Second, we use EM to train two class-depend€p2 mixture
GMMs each using the corresponding class-specific UBM tngini
data. TheN mixture GMM UBM is then created by combining
the two NV/2 mixture GMMs and scaling their weights so that the

to N, only over the mixture components pertaining to the obstrue Weights of the UBM add up ta. The scalingys and ., is done

class.

according to the class priors, calculated as the percenfafgemes

From equations (11) and (13) we note that the GSV kernel can b@SSigned to each of the two classes in the background tgatiita.

written as a weighted inner product between the MLLR tramsfo
vectors.

Ksv(utta, utts) = [Téa Tf,a] I:MSSQS /1'0(2;20:| |::SL;]

It is important to note that since th® matrix depends only on

Third, the MLLR transformation matrix and offset vector for
each of the two classes are computed by separately adapting,
MLLR, the class-dependent GMMs using only the frames of the
adaptation utterance corresponding to each class. If thbeuof
frames of the utterance assigned to a class is below a setemumb
empirically we chos&00, we back-off and use the fulV’ mixture
GMM and all the frames of the utterance to obtain the MLLR ¢ran
formation matrix and vector. This transform computed bykirag-

the UBM means, covariances and mixture weights it can be comeff is then used to adajunly the /2 means of theriginal class-

puted offline.

dependent GMM. Similarly, in the four-class case if the nemdf



frames allocated to one of the four classes is beldvthen for that
class one would back-off one level, e.g. from Vowels to Sants;
if after backing-off one level the number of allocated franeless
than500 then one would back-off one more level.

6. EXPERIMENTS

We performed experiments on the 2006 NIST speaker recogniti
(SRE) corpus. We focused on the single-side 1 conversataom, t
single-side 1 conversation test, and the multi-languagetneld
telephone task (the core test condition) [7]. This setuplted in
3,612 true trials andt7, 836 false trials.

For feature extraction, a 19-dimensional MFCC vector isitbu

In [1] we showed that the GSV kernel could be computed ef-
ficiently as an inner product between MLLR-transform vestir
MLLR is used to adapt the means of the GMM UBM, and that
the GSV kernel outperformed other kernels that are innedyots
between MLLR-transform vectors. We had speculated thatgusi
multi-class MLLR, as in the LVCSR/SVM system presented ih [3
which uses eight-class MLLR adaptation, would improve qerf
mance. As expected, the two-class system yield5% improve-
ment over the single class system, however there was neftirth
provement for the four-class system. This lack of improvenier
the four-class is most likely due to the unstable transsripbvided
by the open-loop phonetic recognizer, which become leszhbtelas

from pre-emphasized speech every 10 ms using a 20 ms Hammifge number of classes increases. It is important to notetttieagain

window. Delta-cepstral coefficients are computed over2aframe
span and appended to the cepstra producing a 38 dimensiaaid
vector. An energy-based speech detector is applied tordiseators
from low-energy frames. To mitigate channel effects, RASAl
mean and variance normalization are applied to the features
For the two-class case, two class-speciig2 = 256 mixture

in performance cause by two-class MLLR does require aditio
computation due to the phonetic recognition.

In this paper we have focused on attempting to understand the
improvement that multi-class MLLR could provide over thegie
class, and accordingly we kept the total number of mixtunethée
GMM UBM to N = 512. Thus, even though there are similari-

GMM UBMs were trained using EM on the corresponding class+ies between our system and the LVCSR/SVM system, they ¢anno

dependent data from the following corpora: Switchboard &spht,
Switchboard 2 phase 4 (cellular), and OGI national celluldrese
GMMs were combined with weightgs 71 and po = .29 to
form aN = 512 mixture GMM UBM. For the four-class case, four
class-specifidV/4 = 128 mixture GMM UBMs were trained and
combined to form &12 mixture GMM with weights: .46 for vowels,
.25 for sonorant consonants, .15 for fricatives, and .14tops.

be directly compared because of the miss-match betweerotile t
number of mixture components in the UBM and the stabilityhef t
transcripts provided by the systems. Specifically, the LRGys-
tem has more than a hundred thousand mixture components whil
we use512 and the transcripts provided by the LVCSR are signifi-
cantly more stable than the ones provided by our open-loopétic
recognizer. An avenue of future work is to explore thesedssur-

We produced the SVM feature expansion on a per conversatiother.

(utterance) basis using multi-class MLLR adaptation. Ttiepsa-

8. CONCLUSION

tion was done per class-specific GMM. We used the HTK toolbox

version3.3 [8] to perform one iteration of MLLR to obtain the trans-
formation. The various kernels were implemented using Suidi
as an SVM trainer [5]. A background for SVM training consisfs
SVM features labeled as1 extracted from utterances from exam-
ple impostors [2]. An SVM background was obtained by extract

This paper expands the MLLR/GMM SVM speaker recognition
framework presented in [1] to handle multi-class MLLR adaioi.
This extension allows for greater flexibility in adaptingetmeans
of the GMM UBM resulting, for the two-class case, ins% rela-
tive improvement in performance over the single class cak&h

SVM features fromd174 conversations in a multi-language subset approaches that of the state of the art MAP/GMM SVM system [2]

of the LDC Fisher corpus. In our experiments the size of thtMSV
features ar88 « 512+ 1 for the supervector features aB&l« 39 + 1
for the MLLR transform-vector features; note that we stacleke-

However, further increasing the number of classes does ietit y
better results as is seen from the four-class scores. Ther pégp
derives the implementation of the MLLRSV for the multi-dasse,

ment of valuel at the end of each feature vector to incorporate thewhich is a computationally efficient implementation of thauSsian

bias¢ into the SVM features.

For enrollment of target speakers, we produtegVM feature
vector per conversation side. We then trained an SVM modegus
the target SVM feature and the SVM background. This resutted
selecting support vectors from the target speaker and bawgkd
SVM feature vectors and assigning the associated weights.

7. RESULTS AND DISCUSSION

We compared the global single class MLLR/GMM and GSV kernell[3]

system (LCMLLRSV) with the two and four-class MLLR/GMM
and GSV kernel systems (2@LLRSV and 4CMLLRSV) and a
state of the art MAP/GMM system (MAPSV) described in [2] wder
the same GMM UBM is adapted via MAP adaptation and the GSV
kernel is used. Equal error rates (EER) and NIST minimumsilei
cost functions (DCF) for the various kernels are shown inddb

Table 1. EER and min DCF scores.

| Kernel | EER [ min DCF ||
1C_.MLLRSV 9.46% .039
2C_MLLRSV 7.81% .035
4C_MLLRSV 8.19% .037
MAPSV 7.24% .031

supervector kernel that scales linearly with the numberasfdforms
and is independent of the number of mixture components.
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