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Abstract—Signal processing is a discipline in which functional composi-
tion and decomposition can potentially be utilized in a variety of creative
ways. From an analysis point of view, further insight can be gained
into existing signal processing systems and techniques by reinterpreting
them in terms of functional composition. From a synthesis point of view,
functional composition offers new algorithms and techniques with modu-
lar structure. Moreover, computations can be performed more efficiently
and data can be represented more compactly in information systems
represented in the context of a compositional structure. Polynomials
are ubiquitous in signal processing in the form of z-transforms. In
this paper, we summarize the fundamentals of functional composition
and decomposition for polynomials from the perspective of exploiting
them in signal processing. We compare exact polynomial decomposition
algorithms for sequences that are exactly decomposable when expressed
as a polynomial, and approximate decomposition algorithms for those
that are not exactly decomposable. Furthermore, we identify efficiencies
in using exact decomposition techniques in the context of signal processing
and introduce a new approximate polynomial decomposition technique
based on the use of Structured Total Least Norm (STLN) formulation.
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I. INTRODUCTION

Functional composition can be defined as the application of one
function F pxq to the results of another function Gpxq to obtain the
composition Hpzq “ F pGpxqq. Conversely, functional decomposi-
tion is the process of obtaining two or more functions which, when
composed, yield the original function. The functions F,G and H
involved in these operations may belong to general classes such as
continuous or discrete functions, polynomials, boolean functions or
simply tabular functions given in the form of a truth table, decision
table or more generally as a list of possible multi-valued inputs and
corresponding multi-valued outputs.

Factorization, namely the representation of computationally com-
plex functionals or tasks as a cascade of sub-functionals or sub-tasks,
has been used widely in the fields of mathematics, computation and
signal processing, including singular value decomposition of matrices
and implementation of LTI systems as a cascade of at most second
order systems among many others. Composition and decomposition,
which are two operations different from factorization in their nature,
also have naturally arisen or been used in signal processing such as
frequency or phase modulation. Filter sharpening is another example
where a given filter is interconnected repeatedly with adders and
multipliers to obtain sharper filter characteristics than the original
filter, the structure of which can conveniently be represented using
functional composition [1], [2], [3]. Aside from naturally arising
in such applications, functional composition has been exploited in
various signal processing and filter design techniques by a number of
authors [4], [5], [6], [7]. For instance, as an extension of filter sharp-
ening method proposed in [1], Saramaki [3] proposed designing filters
in the form of composed polynomials, which breaks the problem of
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designing the overall filter into two simpler filter design problems and
makes optimization easier and more efficient. Although incorporating
functional composition and decomposition in these applications has
proven to be useful, attempts to more broadly exploit composition
and decomposition in signal processing have been limited.

Polynomial composition and decomposition deserve particular
attention since polynomials are ubiquitous in the form of the z-
transform representation of discrete-time filters and signals. As a
potential application of polynomial decomposition, a discrete time
signal hrns can be represented by fewer parameters than the number
of its nonzero coefficients if its z-transform Hpzq is decomposable
as F ˝ Gpzq since in general the order of Hpzq is larger than
the sum of the orders of F pzq and Gpzq. This offers the poten-
tial, for example, for more efficient signal representation and for
highly modular system implementation. In this paper, we briefly
summarize the existing mathematical literature on the fundamentals
of polynomial decomposition as well as exact and approximate
polynomial decomposition techniques [8], [9], [10], [11], [12], [13],
[14]. Furthermore, we report improved performance for a certain
exact decomposition technique when it is specifically used in the
context of signal processing; and also introduce a new approximate
polynomial decomposition technique based on the Structured Total
Least Norm (STLN) formulation.

II. POLYNOMIAL COMPOSITION AND DECOMPOSITION

Consider F pxq, the polynomial that represents a length-pM ` 1q
sequence fn,

F pxq “
M
ÿ

n“0

fnx
n, (1)

which corresponds to the z-transform of fn for x “ z´1. Composing
F pxq with another polynomial that represents a length-pN ` 1q
sequence gn, we obtain

Hpxq “ F pGpxqq “
M
ÿ

n“0

fnG
n
pxq. (2)

Hence hn, the sequence represented by Hpxq becomes

hn “ f0pg
p0q
q ` f1pg

p1q
q ` f2pg

p2q
q ` f3pg

p3q
q ` . . . (3)

where gpiq corresponds to i self-convolutions of the sequence gn.
Equivalently

h “ Cf (4)

where the kth column of the matrix C consists of gpk´1q; and f
and h are the coefficient vectors of F pxq and Hpxq in the ascending
order, respectively. Therefore, it is relatively straightforward to obtain
the coefficients of the composition polynomial Hpxq given the
coefficients of its components F pxq and Gpxq. The inverse problem
is, however, more difficult.



While decomposable polynomials have the form of equation (2)
or (4), decomposability cannot be easily inferred directly from the
polynomial coefficients. A key observation first made by Fried and
MacRae [9] is that a polynomial Hpxq has another polynomial Gpxq
as a decomposition factor if and only if the bivariate polynomial

φGpy, zq
∆
“
Gpyq ´Gpzq

y ´ z
(5)

divides φHpy, zq resulting in a bivariate polynomial in y and z. This
follows easily by expressing φHpy, zq using equations (1) and (2)

φHpy, zq “
Hpyq ´Hpzq

y ´ z
“

M
ÿ

n“1

fn
Gnpyq ´Gnpzq

y ´ z
, (6)

and factoring φGpy, zq out from the summation. The bivariate poly-
nomials φp¨q defined as in equation (5) have a specific symmetry in
their coefficients, namely the terms that have the same total order of
y and z have the same coefficients.

A stronger statement regarding decomposability of a given polyno-
mial Hpxq without the need for testing against a potential decompo-
sition factor Gpxq was also provided by Fried ([15], Theorem 1), and
refined by Turnwald more recently ([16], Theorem 1). Specifically,
a given polynomial Hpxq with a non-prime order is decomposable
if and only if φHpy, zq is factorable. Moreover, if φHpy, zq is
factorable, then at least one of its factors has to be of the form
φGpy, zq since Hpxq is decomposable. We note that in the context of
signal processing, a sequence that corresponds to a nondecomposable
polynomial with a prime order may easily be modified to obtain a
non-prime order polynomial leading to a potentially decomposable
polynomial through delaying the sequence in time.

Factorability of φHpy, zq can be determined using a particular test
for bivariate polynomial factorization that was introduced by Ruppert
[17], [18], [19], [20]. Specifically, φHpy, zq is factorable if and only
if its associated Ruppert matrix R is rank deficient, where R is a
p4P 2

´10P`6qˆp2P 2
´3P q matrix the entries of which are linear

functions of the coefficients of Hpxq. Therefore rank deficiency of
R directly implies decomposability of Hpxq.

The linearity of the Ruppert matrix in the coefficients of φHpy, zq
allows rewriting R as the linear combination of a basis for Ruppert
matrices. More specifically

R “ RtHpxqu “ Rt
P
ÿ

i“1

hix
i
u “

P
ÿ

i“1

hiRtx
i
u

∆
“

P
ÿ

i“1

hiRi. (7)

In equation (7), the summation index starts from 1 since the Ruppert
matrix of a constant polynomial is the zero matrix. Although each
monomial term xi has order less than or equal to P , the matrices
Ri, i “ 1 . . . P have the same dimensions as R since they corre-
spond to the Ruppert matrix of the degenerate P th order polynomial
0xP ` xi and can be considered to be a basis for Ruppert matrices
of all polynomials of order P . The formulation of the Ruppert
matrix as in equation (7) will provide a basis for certain approximate
polynomial decomposition techniques discussed in Section IV.

III. EXACT DECOMPOSITION OF POLYNOMIALS

In this section, we introduce four polynomial decomposition
algorithms which obtain the components F pxq and Gpxq if the
polynomial Hpxq is a composition, i.e., Hpxq “ F pGpxqq. These
algorithms focus on obtaining the right decomposition factor Gpxq
first since F pxq can be obtained relatively easily from the linear
relationship given in equation (4) once Gpxq is known.

Based on the observations of Fried and MacRae [9] as summarized
in Section II, Barton and Zippel [10] proposed a decomposition algo-
rithm which, given Hpxq, obtains the bivariate polynomial φHpy, zq
and examines all of the factors of φHpy, zq to find a factor that
has the form of φGpy, zq described in Section II. The requirement
to examine all combinations of the factors to obtain a factor of the
form φGpy, zq makes this algorithm computationally inefficient since
the number of combinations is exponential in the number of factors.
A slightly more efficient algorithm, proposed by Alagar and Thanh
[11], uses the fact that the derivative of a decomposable polynomial
Hpxq as in equation (2) has G1pxq as one of its factors since

H 1pxq “ F 1pGpxqqG1pxq.

However, it still requires examining each factor of H 1pxq with
appropriate order as a candidate for G1pxq.

A more systematic polynomial decomposition algorithm is given
by Kozen and Landau [12]. M and N , the orders of F pxq and Gpxq
respectively, are required as part of the input. The algorithm uses
the fact that the coefficients of the terms with the highest N orders
in Hpxq are determined only by fM , namely the coefficient of the
highest order term in F pxq, and all the coefficients of Gpxq as seen
from equation (3).

As the first step, Hpxq is scaled to be monic, i.e. to have unity
as the coefficient of the highest order term, which does not affect
decomposability. Restricting Gpxq and F pxq to be also monic, the
coefficients of Gpxq are obtained in the order of decreasing powers
through solving N equations systematically involving the coefficients
of Gpxq. After the decomposition is obtained for the monic polyno-
mial, the scaling is undone. This algorithm is computationally much
more efficient than the previous algorithms, but requires knowledge
of the degrees of the decomposition components. If this information
is not available, the algorithm is then implemented repetitively for
candidate orders M and N , which are factors of the order of Hpxq.

A different class of decomposition algorithm proposed by Aubry
and Valibouze [21] utilizes the relationship between the coefficients
of a polynomial and the power sums of its roots, known as the Newton
identities. More specifically, the coefficients of an N th order monic
polynomial Gpxq can be uniquely determined from the nth power
sums of its roots for n “ 1, . . . N defined as

N
ÿ

i“1

rng,i n “ 1 . . . N, (8)

where rg,i i “ 1, . . . N are the roots of Gpxq. A decomposable
monic polynomial Hpxq “ F pGpxqq can be written as

Hpxq “
M
ź

j“1

pGpxq ´ rf,jq
∆
“

M
ź

j“1

G̃jpxq, (9)

where rf,j j “ 1 . . .M are the roots of F pxq. Newton’s identity
suggests a method to obtain the coefficients of G̃jpxq except its
constant term from the coefficients of N highest order terms in Hpxq
since the roots of G̃jpxq are also the roots of Hpxq. This estab-
lishes the basis of a decomposition algorithm since each polynomial
G̃jpxq, j “ 1 . . .M has the same coefficients as Gpxq except the
constant term, which can be chosen freely for a valid decomposition.

Both Kozen and Landau’s algorithm [12] and Aubry and Vali-
bouze’s algorithm [21] are based on using the coefficients of N
highest order terms in Hpxq. Due to representation of these coeffi-
cients and their manipulations with finite precision, the performance
of both algorithms deteriorates with increasing polynomial orders.
This problem can partially be avoided in the context of signal



processing applications where the roots of polynomials might be
more relevant than its coefficients to a specific application since
signals and systems often are represented through their poles and
zeros. Computation of nth power sums in equation (8) can be
performed directly from the poles and zeros in the implementation of
Aubry and Valibouze’s algorithm leading to significantly enhanced
precision for the decomposition factors Gpxq and F pxq. Figure 1
shows a comparison of the performance of three algorithms, namely
Kozen and Landau’s algorithm and Aubry and Valibouze’s algorithm
implemented using firstly the coefficients and secondly the roots of
Hpxq. The polynomials Hpxq were obtained by composing random
polynomials F pxq and Gpxq with the coefficient of the highest orders
fixed to be unity and where the respective orders M and N were
chosen equal and varied from 5 to 75 with increments of five. For easy
comparison of algorithms, constant term of Gpxq was set to zero. The
decomposition is considered successful if the SNR is more than 80dB,
where the error is defined as the difference between the true and the
obtained decomposition factors. The two algorithms using coefficients
show an almost identical success rate whereas the implementation
of the A-V algorithm using the roots of Hpxq directly outperforms
the others significantly. All of the polynomials of order 625 were
successfully decomposed by this algorithm while 76 polynomials of
order 4900 were decomposed successfully.
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Fig. 1. The comparison of number of successful decompositions of Hpxq “
F ˝Gpxq by Kozen and Landau’s method and Aubry and Valibouze’s method
implemented using coefficients and the roots of polynomials.

IV. APPROXIMATE DECOMPOSITION OF POLYNOMIALS

Section III focused on algorithms for obtaining the decomposition
factors when it is known that a given polynomial is decomposable.
Modeling nondecomposable polynomials by decomposable ones is
also of significant interest, particularly in such applications as signal
representation and compression because of the inherent reduction in
the number of free parameters. In this section, we introduce two
approximate polynomial decomposition algorithms, which can be
viewed as an extension of the exact decomposition algorithms.

Corless et al [13] proposed two approximate decomposition meth-
ods that start from an initial guess for the decomposition factors
F pxq and Gpxq, which are obtained using Kozen-Landau algorithm in
Section III, and iteratively obtain a nearby decomposable polynomial.
The first algorithm determines ∆Gpxq at each iteration to minimize

}Hpxq ´ FkpGkpxq `∆Gpxqq}

« }Hpxq ´ FkpGkpxqq ´ F
1
kpGkpxqq∆Gpxq},

(10)

where the subscript k represents the current iteration step, }¨} denotes
the l2 norm and only the first term in the Taylor series is taken
into account since ∆G is assumed to be small at each iteration.
This algorithm approximates a nonlinear optimization problem with
a simpler one and if it converges, the convergence rate is linear.
The second algorithm attempts to solve the nonlinear problem of
minimizing }Hpxq´F pGpxqq} directly using Newton iteration where
convergence is quadratic at the expense of increased computational

complexity. The quality of the decomposition obtained by these
algorithms is highly dependent on the validity of the assumption that
there is a decomposable polynomial close to Hpxq since the initial
guess is obtained through Kozen-Landau decomposition algorithm.

Given an overdetermined and nonconsistent set of linear equations
Ax « b, the solution that minimizes }Ax´b} is given by the well
known least squares solution. This solution leads to Ax̂ “ b`∆b,
i.e. only the entries of b are altered to satisfy the equation and
A remains intact. A generalization of this problem is called total
least squares (TLS) where the entries of A are also subject to
possible change. More specifically the Euclidean norm of the matrix
r∆A|∆bs is minimized such that

pA`∆Aqx “ b`∆b. (11)

This is equivalent to finding the closest rank deficient matrix rA `

∆A|b`∆bs since equation (11) can be expressed as

rA`∆A|b`∆bsy “ 0, (12)

where y “ rxT ,´1sT . The solution is obtained by suppressing
the smallest singular value of the matrix rA|bs, however in general
A and rA|bs do not retain their previous structure such as sparsity
or the structure of a Ruppert matrix. The collective algorithms that
assert retaining any matrix structure are referred to as Structured Total
Least Square Norm (STLN) [22] for a general norm and reduce to
Structured Total Least Square (STLS) for the choice of l2 norm [23].

As an alternative method for approximate polynomial decompo-
sition, Botting [24] proposed a solution in the STLS framework to
the problem of finding a rank deficient Ruppert matrix for which the
corresponding polynomial is close in l2 to Hpxq since the equivalence
of polynomial decomposability to having a rank deficient Ruppert
matrix is established. Specifically, the approximate decomposition
problem reduced to the optimization problem specified as ([23])

min
h̃i,w

P
ÿ

i“1

ph̃i ´ hiq
2 such that R̃w “ 0 and wTw “ 1, (13)

where h̃i, i “ 1, . . . , P are the coefficients of a decomposable
polynomial H̃pxq and R̃ is its Ruppert matrix. The second constraint
ensures that w is not identically zero so that R̃ has a nontrivial null
space. The optimization problem (13) is shown to be equivalent to
a nonlinear generalized singular value decomposition referred to as
Riemannian SVD problem in [23], namely finding the triplet pu, τ,vq
corresponding to the smallest scalar τ that satisfies

Rv “ Dvuτ , uTDvu “ 1, RTu “ Duvτ , vTDuv “ 1

where Du and Dv are matrices with entries quadratic in the vectors
u and v and also a heuristic iterative solution is provided leading to
a decomposable polynomial with coefficients h̃i “ hi ´ uTRivτ .
The iteration ends when the smallest singular value of R̃ gets less
than a given threshold, however no guarantee for convergence exists.

V. STLN FORMULATION FOR APPROXIMATE DECOMPOSITION

The exploitation of structure preserving low rank approximation
(SPLRA) formulations such as STLN as described in [22] for finding
a rank deficient Ruppert matrix has been suggested as a potentially
useful method ([20], Remark 6), however no implementations or
results were reported. In this section, we propose a new STLN-based
algorithm for approximate polynomial decomposition in order to
solve equation (12) using the iterative methods proposed in [22] and
[25] to find a rank deficient Ruppert matrix the associated polynomial
of which is close to a given nondecomposable polynomial. This



method requires solving a simple quadratic optimization problem at
each iteration step.

The rank deficiency of the Ruppert matrix can be ensured by
writing one of its column in terms of other columns. In order to
formulate this problem as in equation (12), we set the column vector
b as one of the columns of the Ruppert matrix R and A equal to
R excluding the column vector b. This column can be specified as
the one that minimizes the residual when expressed in terms of other
columns, i.e.

arg min
b

´

min
x
}Ax´ b}2

¯

. (14)

If r∆A|∆bs is constrained to be of the form
řP
i“1 αirAi|bis for

real scalars αi, i “ 1 . . . P , where Ai and bi are obtained from
Ri consistent with the column index of b in R, the resulting matrix
rA`∆A|b`∆bs in equation (12) will retain the same structure
as rA|bs due to the linear relationship given in equation (7). We
are interested in minimizing the change in the coefficients of the
polynomial to be decomposed subject to the rank deficiency constraint
in equation (12), i.e.

min
αi,y

P
ÿ

i“1

α2
i such that r̂ “ rA`∆A|b`∆bsy “ 0, (15)

where r̂ is the residual that is ideally zero. The similarity of the
optimization problems given in equations (13) and (15) is obvious
since we chose to minimize the l2 norm of the coefficient perturbation
vector α “ rα1 α2 . . . αP s

T . An explicit constraint for y to be
nonzero is not required in equation (15) since it is restricted to be of
the form y “ rxT ,´1sT with this formulation.

Consider a relaxation of the nonlinear optimization problem in (15)

min
αi,y

αTα` λ2r̂T r̂ (16)

where λ is the penalty parameter for any nonzero residual r̂ and is
required to be chosen appropriately large for a good approximation
to the original problem. An iterative algorithm for the solution of
the nonlinear optimization problem in (16) is given in [22]. In the
context of this algorithm, the residual r̂ defined in equation (15) is

r̂ “ Ax`∆Ax´ b´∆b
∆
“ Ax`Xα´ b´Qα (17)

where the matrix X is obtained by

∆Ax “
P
ÿ

i“1

αiAix “
P
ÿ

i“1

pAixqαi
∆
“ Xα. (18)

More specifically the ith column of X consists of Aix. Similarly, ith

column of Q consists of bi. The steps of the iteration are summarized
in Algorithm 1.

ALGORITHM 1

Input: Hpxq with coefficients hi, i “ 1, . . . , P .
Output: Decomposable H̃pxq with coefficients h̃i.
Specify A,b from R as in (14). Set xpkq “ arg minx }Ax´ b}2
and αpkq “ 0. Obtain Ai,bi from Ri, i “ 1, . . . , P . Set Q “

rb1 | . . . | bPs.
1. Set Xpkq

“ rA1xpkq | . . . | APxpkqs, Kpkq
“ Xpkq

´Q. In
first step only, set λ “ pσKpkqq

´1, the inverse of minimum
singular value of Kpkq.

2. Solve the following quadratic program:

minimize
∆α,∆x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

„

λKpkq λApkq

I 0

ˆ

∆α
∆x

˙

`

ˆ

λr̂pkq

αpkq

˙ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

3. Set xpk`1q
“ xpkq`∆x,αpk`1q

“αpkq`∆α, h̃i“hi`α
pk`1q
i .

4. Exit if R̃pk`1q
“R̀

řP
i“1α

pk`1q
i Ri rank deficient; else, go to 1.

VI. SIMULATIONS

In this section, the performance of the Riemann SVD (RiSVD)
formulation summarized in Section IV and the Structured Total Least
Norm (STLN) formulation developed in Section V are compared in
the context of approximating Ruppert matrices with those that are
rank deficient. One hundred decomposable polynomials Ĥpxq were
obtained by composing a random M th order polynomial F pxq with
an N th order random polynomial Gpxq, the coefficients of both of
which are selected from a standard normal distribution except the
highest order terms that are fixed to be unity to avoid degenerate
compositions. The coefficient vector ĥ of each polynomial Ĥpxq is
then perturbed by an error vector e to obtain a nondecomposable
polynomial Hpxq, where the coefficients of e are obtained from a
standard normal distribution and scaled so that }e}2 “ 10´2

}ĥ}2,
i.e. the SNR is 40dB.

The iterations in both RiSVD and STLN methods were ended when
the Ruppert matrix is considered numerically rank deficient where
this is defined as the existence of a significantly large ratio between
any two consecutive singular values among the smallest twenty
singular values of the Ruppert matrix. More specifically, the Ruppert
matrix is considered to be rank deficient when the maximum ratio
between consecutive singular values are greater than one hundred
times that of the original Ruppert matrix or 104, whichever is smaller.

Table I summarizes the results of the iterations for the STLN
and RiSVD methods tested against nondecomposable polynomials
of different orders. The success rates are calculated as the ratio of
the number of cases where the ending criterion was met before one
hundred iterations to the total number of polynomials that did not
have numerically rank deficient Ruppert matrices at the initial stage.
The STLN method proves to be more successful than the RiSVD
method for all orders.

The approximate decomposition method introduced by Corless
et al [13] and summarized in Section IV obtains a decomposable
approximation to Hpxq in all the cases shown in Table I, how-
ever a comparison cannot be made between this method and the
STLN or RiSVD methods since Corless’ method is not based on
approximating Ruppert matrices. However, when Kozen and Landau’s
exact decomposition algorithm [12] is applied to the polynomials
obtained by STLN method, a faithful decomposition cannot be
obtained. In fact, the polynomials obtained by RiSVD yield more
consistent decomposition factors when decomposed by this method.
This suggests that our rank deficiency definition does not necessarily
represent decomposability by Kozen and Landau’s method. We mo-
tivate exploring a more consistent rank deficiency metric for Ruppert
matrices consistent with exact decomposability of the corresponding
polynomials and other exact decomposition algorithms that faithfully
decompose polynomials obtained through STLN method.

TABLE I
SUCCESS RATE OF APPROXIMATE DECOMPOSITION METHODS (%)

degpF q degpGq degpF ˝Gq STLN RiSVD
2 2 4 100.0 73.0
2 3 6 97.0 2.0
3 2 6 96.0 9.0
2 4 8 92.0 5.0
4 2 8 94.8 7.3
3 3 9 86.0 5.0
2 5 10 81.0 1.0
5 2 10 90.0 10.0
2 6 12 79.0 2.0
3 4 12 83.7 12.2
4 3 12 82.2 10.0
6 2 12 95.0 11.3
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