
Homomorphic 
Analysis of Speech 

Abstract-Classes of systems which satisfy a generalized 
principle of superposition have  been previously proposed and  termed 
“homomorphic systems,” emphasizing  their  interpretation as 
homomorphic (i.e., algebraically linear) transformations. One  such 
class  appears  suited to the  separation of signals  that have been 
convolved. In this paper, an approach to deconvolution of speech, 
based on these  ideas,  is discussed. 
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INTRODUCTION 

T IS GENERALLY accepted  that a reasonable 
model  for the speech  waveform  consists of a convolu- 
tion of components  representing  the  contributions 

of vocal  cord  timing,  glottal  pulse,  and vocal tract  im- 
pulse  response. Both  for  speech  bandwidth  compression 
and for  basic  studies of the  nature of the speech  wave, 
it is desirable  to  isolate  the effects of each of these  com- 
ponents. 

In  this  paper,  a  procedure  for  separating  the  com- 
ponents of speech is proposed and  discussed. The  proce- 
dure is based on an  approach  to  nonlinear  filtering of 
signals  which  have  been  nonadditively  combined, that 
has been termed  generalized  linear  filtering. In  its re- 
alization  for  the  deconvolution of speech, i t  is similar in 
some  respects to  cepstral  analysis,[’]  with the  primary 
difference resulting  from  its  application to  the  separa- 
tion of the  components  rather  than  detection.  The mo- 
tivation  for  applying  these  ideas  to speech  processing 
was a direct  result of the success of cepstral  pitch  detec- 
tion, as discussed  by Noll.fZ1 

HOMOMORPHIC  DECONVOLUTION 

Consider  a  signal s ( t )  consisting of the  convolution of 
two  components sl(t)  and s2(t) so that  s ( t )  =sl(t)@sz(t), 
where 8 denotes  convolution. In a  manner  similar  to 
the linear  filtering  problem, we can  restrict  the class of 
filters to  those  having  the  property  that, if q5 denotes  the 
transformation of the filter,  then 

O[Sl(Q €3 s&)l = 4 J M t ) I  €3 4 [Sz(01.  (1) 

In  other words, the filter  satisfies  a  principle  of  super- 
position  under  an  operation  (convolution)  which is 
matched  to  the  way in which the signals to be separated 
have been combined, in the  same  way  that  linear filters 
are  matched  to signals  which  have been added.  The gen- 
eral  class of systems  satisfying  a  principle of superposi- 
tion  under  some  rule of combination  for  the  inputs  and 
outputs,  has been termed  homomorphic The  
particular class of homomorphic  systems  represented  by 
(1) has been studied in detail. A canonic  representa- 
tion  for this class of filters is shown  in  Fig. ,1, in which 

D k) 4 D-‘(.) LINEAR 

Fig. 1. Canonic form for  homomorphic  deconvolution. 

the  system D is invertible  and  has  the  property  that 

N S l ( t >  8 SZ(0l = D[Sl(t)I + D[SZ(t)]  (2) 

and  the  system is the inverse of the  system D. The 
system L is a  linear  system.  Thus,  any  system  having 
the  property specified by (1) can  be  decomposed  in the 
form of Fig. 1, and  any  system of this  form will have  the 
property of (1). 
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There  are  several possible equivalent  representations 
of the  system D. The  most  straightforward  and  most 
generally  applicable is shown  in  Fig. 2. In  this  represen- 
tation,  the response S ( t )  of the  system D is related  to  the 
excitation s ( t )  through  the  equation 

where S(jo) and 3 ( j w )  are  the complex Fourier  trans- 
forms of s ( t )  and S ( t ) ,  respectively,  and O(jw) is the 
phase  associated  with S(ju).  We note  that S ( t )  is similar 
to  the  cepstrum in that  i t  results  from a spectral  trans- 
formation  on  the log spectrum.  The differences result 
from  the  fact  that  the  cepstrum  incorporates  only  spec- 
tral  magnitude  information,  whereas S ( t )  uses both spec- 
tral  magnitude  and  phase.  For  this  reason, i t  has been 
convenient  to refer to S ( t )  as the complex cepstrum,  em- 
phasizing  the use of the complex Fourier  transform  and 
the complex logarithm. 

I 

I 

COMPLEX 
FOURIER 

I TRANSFORM 

Fig. 2. Realization of the transformation D ( . )  of Fig. 1. 

PROPERTIES OF THE COMPLEX CEPSTRUM 
In realizing the  transformation D ,  i t  is  necessary to 

use a digital  computer;  consequently,  the  input  and 
output  are viewed as  discrete  sequences,  and  the  Fourier 
transformation is replaced by the  z-transform  evaluated 
on the  unit circle. Thus, we will represent  the  input 
sequence as s(n) , the complex cepstrum  as i (n) ,  and 
their  z-transforms as S(z)  and  s(zj,  respectively, so that  

S(2) = logS(2). 

The  phase  associated  with S(z)  evaluated on the  unit 
circle is considered as a continuous  and  odd  function of 
w in the  range -T<w<T. 

If we restrict S(z) to be of the  form 

(1 - eiz-1) TI (1 - biz) 
mo nz I 

i=l 
S(2) = I K I  Z " p 0  

i=l 

PI 

(1 - ctz-1) TI (1 - diZ) 
i= 1 i-1 

where ai and ci are  the zeros and poles, respectively, in- 
side  the  unit  circle,  and ( l / b i j  and (l/di) are  the zeros 
and poles respectively  outside  the  unit circle, then i t  
can  be  shown1  that 

1 The complex cepstrum ? ( x )  is given by the inverse  z-transform of 

by integrating this equation by parts  for z on the  unit circle. Since the 
log S(z ) ,  i.e., ?(n) = (1 /2z j )$  log S(z)z*-l dz. Equation ( 3 )  is derived 

phase is considered as a continuous and odd function of w ,  it is 
discontinuous a t  w=nn  if r#O. resulting in the first term in (3). 

where the  contour of integration c is  taken  to  be  the  unit 
circle. If s(n) has  no poles or zeros outside  the  unit  circle 
(including poles or zeros at infinity),  corresponding  to  an 
input  sequence which is minimum  phase,  then r = Q  
and (3) becomes 

However,  the poles of the  factor z (S ' ( z ) /S ( z ) )  occur at 
values of z for  which S ( z )  has  either poles or zeros, 
which, for the case of a minimum  phase  sequence,  are 
entirely  within  the  unit  circle in the z-plane. Under  this 
condition,  then, S(n) = O  for n<O; in  other  words,  the 
complex cepstrum of a minimum  phase  sequence is zero 
for n < 0. In a similar  manner, we can consider sequences 
for which S(z)  has all its poles and zeros outside  the  unit 
circle. Such  sequences could appropriately be termed 
maximum  phase sequences. In  this  case,  the complex 
cepstrum is zero for n > 0. 

Because of the  restriction  placed on the  phase of 
S(z) ,  namely,  that i t  is an  odd  function of w ,  the complex 
cepstrum will always  have zero imaginary  part, Le., it 
is always  a  pure  real  function.  This is seen  by  observing 
that 

or,  with  the  contour of integration  taken  to be the  unit 
circle, 

With  log] S(eju) [ an  even  function of w ,  and B(w) an odd 
function of w ,  

1 

2a 
log I S(@) [ cos w n d w  

If the  sequence s ( n )  is minimum  phase,  then i t  is possi- 
ble to  obtain  the complex cepstrum from the  inverse 
transform of the  logarithm of the  spectral  magnitude. 
Let E V [ S ( n ) ]  denote  the even part  of S(nj, i.e., 

EV[S(n)]  = +[3(n) + S(-n)]. 

Since S(n) is zero  for n < O  if s ( n )  is minimum  phase,  then 

~ ( n )  = ~ u ( ~ ) E v [ s ( ~ ) ]  

where 

I' n > o  
= I+ n = O  

[O n < O  
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but 

EV[$(~)]  = z-l[log I S(ejw) I ] ( 5 )  

and,  therefore, 

j(n) = 2u(n) - z-I[log I S(eim) I ] ( 6 )  

where 2-1 denotes  the  inverse  z-transform. 
Determining  the  complex  cepstrum  on  the  basis  of 

(6) corresponds to  reconstructing  the  phase  associated 
with  the  magnitude of the  spectrum  by  using  the  Hilbert 
transform.  We  observe also from ( 5 )  that  E V[t(n)] cor- 
responds  to  the  cepstrum.2  For  minimum  phase se- 
quences,  the  cepstrum  and  the  complex  cepstrum will be 
identical  (except  for a factor  of 2) for n > 0. 

THE COMPLEX CEPSTRUM OF SPEECH 
We  assume  that  samples of the speech  waveform  can 

be  considered as the  discrete  convolution of sequences 
representing  pitch,  glottal  pulse,  and  vocal  tract,  de- 
noted  by p(n) ,  g(n), and n(%) ,  respectively.  Further- 
more, a sequence  to  be processed d l  consist of a  portion 
of the speech  waveform as viewed through a window 
w(n) ,  so that  

4 % )  = [ m  €3 d.1 @J 4 n > l w ( 4 .  ( 7 )  

If we assume that  the  term g(n)@Jn(n) has  an  effective 
duration of N samples,  and w(n) is  smooth  compared 
with  this  term so that   w(nl)sw(nl+N) for any nl, then 
(7) can be approximated as 

4 % )  = [ m w ( n ) l  €3 g(n) €3 4n> .  

Let us  first  consider  the  term p(n)w(n)  which we ab- 
breviate as pl(n) =p(n)w(n) .  Treating  the  sequence of 
pitch  pulses p(n) as a train of equally  spaced  unit  sam- 
ples  with  spacing of T samples,  then  the  z-transform of 
PI(%), denoted  by  Pl(z),  is 

m 

pl(z) = w ( k ~ ) ( 2 7 ) - h .  

Let w,(n) be  defined as the window  compressed in time 
by 7, so that  w,(n) = w ( n ~ )  with W,(z)  and z&(n) denot- 
ing  the  z-transform  and  complex  cepstrum,  respectively, 
of wT(n). Then, 

A=-m 

Pl(2) = ?,V,(ZT) 

and 

log Pl(Z) = log W,(ZT) 

so that  $I(%),  the  complex  cepstrum of PI(%), is given  by 

$I(.) = 6, - n = 0 ,  57, 4 2 7 ,  - .  . (:> = o  otherwise. (8) 

the  cepstrum. In the present context,  the cepstrum is considered as 
As discussed in No11,[2] there  has been a variety of definitions of 

the inverse Fourier transform of the log magnitude of the  Fourier 
transform. 

In  other words, the complex  cepstrum of a train of pitch 
samples  weighted  with a window  can  be  determined by 
compressing the window  by a factor 7 corresponding to 
the  spacing  between  pitch  samples,  determining  the 
complex  cepstrum,  and  expanding  the  result  by a factor 
7-.3 We  observe  that  $l(n) as expressed  by (8) consists of 
a train of samples  with  spacing r ,  in  which the  mth 
sample  has a weighting z&(rn). 

If  we assume that  the original  window w(n) is a min- 
imum  phase  window, i.e., that  all poles and zeros of its 
z-transform lie  inside the  unit circle, then all  poles and 
zeros of the  z-transform of w,(n) lie  inside the  unit circle, 
and, hence, %,(a) is  zero  for n < O .  For a minimum  phase 
window,  then,  the  complex  cepstrum of pl(n) will be 
zero  for n <O. Similarly, if w(n)  is  maximum  phase,  such 
that all  poles and  zeros of its  z-transform lie outside  the 
unit circle,  then $l(n) will be  zero  for n > 0. If the window 
is  symmetric  then  $l(n) will be symmetric. 

The complex  cepstrum of the  sequence v ( n )  corre- 
sponding  to  the  vocal  tract  impulse  response  can be de- 
rived, if we assume that  i t  is representable  as a cascade 
of damped  resonators.  In  this  case, v (n )  is minimum 
phase  and V ( z )  is of the form 

i=1 

Since all poles of V(z) are inside the  unit circle, e(%) is 
determined  from (4), and is given  by 

Evaluating  the  integrand, 

and 

l M  

n i=l 
= - [(ai). + (ai*)"] n > o 

= o  n < O  

or 

n < O  ( 9) 

3 The derivation of this  result assumes that  the phase  associated 
with  the window is zero a t  w = T. 
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where 

ai = 1 ai I e i w i .  

An accurate  analytical  representation of the  glottal 
pulse g(n) is not  known  and,  consequently,  it is difficult 
to  make  any specific statements  regarding i (n) .  If we 
assume that i t  is a  time-limited  pulse,  then  its  z-trans- 
form  is  representable  entirely  by zeros (with  the excep- 
tion of poles at z = O ) .  We  can  expect,  in  general, that  
G(z )  will contain zeros both  inside  and  outside  the  unit 
circle, in other  words will be nonminirnum  phase.4  We 
can  express g(n) as  the  convolution of a  minimum  phase 
sequence  and  a  maximum  phase  sequence, so that  

= gl(4 63 g 2 ( 4  

where gl(n) is minimum  phase,  and g z ( n )  is maximum 
phase. The complex  cepstrum of vl(n) will be  zero  for 
n<O, and will be dominated  for  large n by the zeros 
closest to  the  unit circle. If eal represents  the  distance 
from the origin in the z-plane to the zero of vl(n) closest 
to  the  unit circle,  then  for  large  positive n, Gl(n) behaves 
as enul/n. Similarly, if e‘2 represents  the  distance  from 
the origin in the z-plane to the zero of vz(n) closest to  the 
unit circle,  then  for  large  negative n,  &(n) behaves  as 
enu2/n. Consequently,  the  duration of the complex 
cepstrum of the  glottal  pulse will be  governed  by the 
zeros of its z-transform  which  are closest to  the  unit 
circle. We will assume that e‘l and eaz are  such  that  the 
complex  cepstrum of the  glottal  pulse  has  an  effective 
duration which  is less than a  pitch  period. 

From  the  above  arguments, we can  consider  dividing 
the complex  cepstrum  into  three  regions.  Comparing 
(8) and (9), the complex  cepstrum of the  vocal  tract 
decays  rapidly  relative  to  the  contribution  from  pitch. 
Consequently,  for  the  magnitude of n greater  than  or 
equal  to a  pitch  period,  the  primary  contribution  is  due 
to pitch.  For  positive  values of n less than a  pitch  pe- 
riod,  the  contribution  is  from  the  vocal  tract  and  the 
minimum  phase  component of the  glottal  pulse.  For 
negative n, the  contribution is from the  maximum  phase 
component of the  glottal  pulse. 

To  recover pl(n), we wish to  keep  only  those  points 
in j (n)  for n greater  than,  or  equal  to,  a  pitch  period. If 
the  number of points in a pitch  period  is n,, then  the 
linear  filter  corresponds to multiplying s(n) by  zero  for 
I nl <n, and by unity  for 1 nl > n,. To recover the  term 
gl(n) @ v ( n ) ,  we multiply i(n) by  zero  for n < O  and 
nrn,, and to recover gz(n), we retain  only  those  values 
of 3(n) for -n,<n < O .  After  filtering, the  result  is  trans- 
formed  by  the  inverse of the  system D. 

Since no clear  statements  can  be  made  about  the  rela- 
tive  importance of the  maximum  and  minimum  phase 
components of the  glottal  pulse,  the  notion of recover- 

zeros of the  glottal pulse lie in the  right half of the s-plane, if the 
4 Mathews, Miller, and David[&] have argued that  the  asymptotic 

slope of the leading edge plus the slope of the trailing edge is negative. 
In such cases, then, the  glottal pulse is nonminimum  phase. 

I I I I I 

-10 -5 0 5 10 

MILLISECONDS 

Fig. 3. (a) Sample of the vowel “ah.” (b) Resulting output  due  to 
pitch. (c) Complex cepstrum of (a). 

I , I 

- 10 -5 0 5 10 

MILLISECONDS 

Fig. 4. (a) The speech sample of Fig. 3 resynthesized  with alternat- 
ing pitch. (b) and (c) Output  due  to pitch and  the complex cep- 
strum, respectively. 

ing the  maximum  phase  component  has no obvious  im- 
plications.  However, if we retain  values  in  the  complex 
cepstrum  for  small  positive  and  negative  values of n, 
then  combined  vocal  tract  and  glottal  pulse  information 
can  be  recovered  with  the  appropriate  phase  relations. 

An an example of the recovery of pitch,  consider the 
vowel “ah” as in  father,  shown  in Fig. 3(a).  The speech 
was  sampled a t  10 kHz  and weighted  with a Hanning 
window 25.6 ms in duration.  The  complex  cepstrum is 
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shown  in  Fig. 3(c),  and  the weighted output  due  to  the 
pitch pulses is  shown  in  Fig.  3(b). 

To investigate  the  method for  cases of varying  pitch, 
a single  pulse  was obtained  by “low time  filtering” the 
complex cepstrum  to recover the  term v ( n )  @g((n). The 
speech  wave was then  resynthesized  by  convolving  this 
pulse  with a train of unit  samples  with  alternating 
spacing.  Fig. 4 shows the resynthesized  speech,  weighted 
output  due  to th.e pitch pulses, and complex cepstrum  for 
alternating  pitch. 

From  Fig. 3, it  appears  that for  constant  pitch  there is 
no particular  advantage in carrying  out  pitch  detection 
on the recovered pitch pulses rather  than  the complex 
cepstrum,  and  in  many  similar  examples  tried,  the  peak 
is as evident in the  cepstrum  as in the complex cepstrum. 
Thus, for  examples of this type, where pitch is constant, 
the inclusion of phase  information  and processing  by the 
inverse of the  system D seems to offer no advantage  over 
cepstral  pitch  detection,  as discussed  by Noll. From Fig. 
4, however, it  appears  that  this processing  places in evi- 
dence  individual  variations between pitch periods. These 
conclusions,  however, are based on a small  number of 
examples, and  must be  considered  as tentative  without 
further  experimental  verification. 

A METHOD FOR INVERSE FILTERING 
In the previous  discussion, the  approach  taken was to 

transform  the  convolved  components of speech into 
additive  components in the complex cepstrum,  and 
attempt  to  separate  them by  linear  filtering. An alterna- 
tive  approach is to remove the  unwanted  components 
by subtracting  them,  and processing the  result  by  means 
of the  system D-I. This  approach is entirely  equivalent 
to processing the original  waveform  with a linear  filter 
whose  frequency  response is the reciprocal of the  Fourier 
transform of the  unwanted  components, i.e.,  inverse 
filtering. This  approach  to filtering  requires  an  accurate 
representation of the  components  to be  removed. , 

For  the recovery of source  information,  correspond- 
ing to a train of glottal  pulses, the signal to be removed 
is the vocal tract impulse  response,  or  formant  structure 
of the speech. R. Miller[51 and others[613[’1 have success- 
fully  used the  method of inverse  filtering,  determining 
the  parameters of the inverse  filter  by  trial and error. 
In the m7ork by J .  Miller, the  parameters  are  determined 
by  matching  the  speech  spectrum. In general, it  appears 
to be difficult to  locate  the  formant  frequencies  and 
bandwidths  accurately in the presence of the  spectral 
fine structure,  due to pitch. In the  spectral  matching 
carried out  by J. Miller,  this fine structure was  removed 
by  using  single  pitch  periods. 

From  the  previous  discussion,  it is clear that  the vocal 
tract  and  glottal  pulse  information  can be separated 
from the  spectral fine structure  or  pitch  by  retaining 
only  those  values of the  cepstrum for  values of I nl less 
than a pitch  period. This  corresponds  to  linear  smooth- 
ing of the log spectrum  to  obtain  the  spectral  envelope. 
Vocal tract  parameters  can  then be obtained  by  match- 

Fig. 5. (a) Synthetic vowel used to  illustrate spectral  matching and 

sample.  Upper trace: smoothed log spectrum of ideal resonators. 
inverse filtering. (b) Lower trace: log spectral envelope of speech 

(c) Log spectrum of speech sample, and unsmoothed log spectrum 
of resonators superimposed. (d) Recovered “glottal” pulse. (e) 
Original pulse used to generate the  synthetic speech. 

OPPENHEIM  AND  SCHAFER:  HOMOMORPHIC  ANALYSIS O F  SPEECH 225 



ing  the  smoothed log spectrum  with  the log spectrum of 
a set of ideal  cascade  resonators.  Since  smoothing of the 
log  spectrum  introduces  some  distortion  into  the  spec- 
tral  envelope,  it is desirable to  do  the  same  linear 
smoothing on the log spectrum of the ideal  resonators. 
Equation (9) specifies an  analytic expression  for the 
cepstrum of the  resonators,  and,  therefore, i t  is a 
straightforward  procedure  to  generate  the  cepstrum 
directly,  weighting  with  the  same  window used  on the 
cepstrum of the original  speech  for  smoothing of the log 
spectrum.  When a reasonable  match  has been obtained, 
the complex  cepstrum of the ideal  resonators is sub- 
tracted from that for the original  speech,  and  the  output 
of the  system D-I is  determined. T o  illustrate  the proce- 
dure,  consider  the  synthetic vowel  [‘ah” of Fig. 5(a), 
which  has  been  sampled a t  10 kHz. To  obtain  the 
smoothed log spectrum,  the  cepstral  values  for n <36 
were  used. The resulting  smoothed log spectrum  consists 
of both  vocal  tract  and  glottal  pulse  information. In  
Fig. 5(b),  the lower trace  represents  the  smoothed log 
spectrum of the  synthetic  speech,  and  the  upper  trace 
is the  smoothed log spectrum of a set of resonators,  to- 
gether  with a double  order pole to  represent  the  glottal 
spectrum (a term  to  approximate  the  glottal  spectrum 
is  included  only to  facilitate  the  matching).  In  Fig.  5(c), 
the  unsmoothed log spectrum of the original and  the 
matching  spectrum  are  superimposed.  The  resonator 
frequencies  and  bandwidths  are  identical for Fig.  5(b) 
and (c). The log spectrum of the  glottal  pulses  are ob- 
tained  by  subtracting  the  resonator  spectrum  from  the 
unsmoothed  speech  spectrum. The  “glottal” pulse  ob- 
tained for this  example  is  shown  in  Fig.  5(d).  For com- 
parison,  the  original  pulse  used  to  generate  the  syn- 
thetic speech is shown  in  Fig.  5(e). 
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