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The Hilbert transform has traditionally played an important part in the theory and
practice of signal processing operations in continuous system theory because of its
relevance to such problems as envelope detection and demodulation, as well as its use in
relating the real and imaginary components, and the magnitude and phase components of
spectra. The Hilbert transform plays a similar role in digital signal processing. In this
paper, the Hilbert transform relations, as they apply to sequences and their z-transforms,
and also as they apply to sequences and their discrete Fourier transforms, will be dis-
cussed. These relations are identical only in the limit as the number of data samples
taken in the discrete Fourier transforms becomes infinite.

The implementation of the Hilbert transform operation as applied to sequences usually
takes the form of digital linear networks with constant coefficients, either recursive or
nonrecursive, which approximate an all-pass network with 90° phase shift, or two=-output
digital networks which have a 90° phase difference over a wide range of frequencies.
Means of implementing such phase shifting and phase splitting networks are presented.

1. INTRODUCTION

Hilbert transforms have played a useful role in signal and network theory and
have also been of practical importance in various signal processing systems.
Analytic signals, bandpass sampling, minimum phase networks and much of spec-
tral analysis theory is based on Hilbert transform relations. Systems for per-
forming Hilbert transform operations have proved useful in diverse fields such as
radar moving target indicators, analytic signal rooting [1], measurement of the
voice fundamental frequency [2, 3], envelope detection, and generation of the
phase of a spectrum given its amplitude [4, 5, 6].

The present paper is a survey of Hilbert transform relations in digital sys-
tems, and of the design of linear digital systems for performing the Hilbert trans-
form of an input signal. These subjects have been treated in the published
literature for continuous signals and systems [7]. In this paper we present a
treatment of the subject for digital systems. We will first present various Hilbert
transform relationships followed by several design techniques for Hilbert trans-
formers and a few examples and applications.

2. CONVOLUTION THEOREMS

In this section some notation is introduced and some well-known convolution
theorems are quoted; the interested reader can find proofs of these and other
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236 COMPUTER PROCESSING IN COMMUNICATIONS

theorems of z-transform theory in various books [8, 9]. Let x(n) be a stable
infinite sequence and define the z-transform of x(n) as

=]

X(z) = Z x(n) z™"

n=—o0

Given two such sequences x(n) and h(n) and their corresponding z-transforms
X(2) and H(z), then, if Y(2) = X(2)H(z), we have the convolution theorem

y(n) = Z x(n — m) h(m) = Z x(m) h(n - m) . o

Similarly, if y(n) = x(n) h(n), we have the complex convolution theorem

Y(2) - ZL $X(v) H(z/v) v-‘dv:zi, $X(Z/MHW v dv , (2

28] 7]

where v is the complex variable of integration and the integration path chosen is
the unit circle, taken counterclockwise.

The spectrum of a signal is defined as the value of its z-transform on the unit
circle in the z-plane. Thus, the spectrum of x(n) can be written as X(eig) where
0 is the angle of the vector from the origin to a point on the unit circle.

If x(n) is a sequence of finite length N, then it can be represented by its dis-
crete Fourier transform (DFT). Denoting the DFT values by X (k), we have

N-1
X&) = Z x(n) W=k |
n=0
1 N-1
== X (k) wok | 3
x(m) ¥ Z (k) 3)
k=0
with
W:esz/N

The convolution theorems for these finite sequences specify that if Y(k) =
H(k) X(k), then

N—1 N1
y@) = Z x(m) A (((n — m))) Z x(((n = m))) h(m) )
m=0 m=0

and if y(n) = x(n) h(n), then

N-1 N-1
Y<k>=ﬁ1 > X H (- 1) =1—3 X(k-IyyHdy , (5
{=0 t=0

where the double parenthesis around the expressions k — { and n - m refer to
these expressions modulo N; i.e., ((x)) = the unique integer x + kN, satisfying
0<x+kN<N-1.
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Finally we define an infinite sequence x(n) as ‘‘causal’”’ if x(n) =0 for n <0.
A finite duration sequence of length N is ‘‘causal”’ if x(n) is zero in the latter

N
half of the period 0, 1, .+., N -1, i.e., forn > E

3. HILBERT TRANSFORM RELATIONS FOR CAUSAL SIGNALS

The z-transform X (z) of the impulse response x(n) of a linear stable causal
digital system is analytic outside the unit circle. Under these conditions, inter-
esting relations between components of the complex function X(2z) can be derived,
these relations being a consequence of the Cauchy integral theorem [10]. For
example, X(z) can be explicitly found outside the unit circle given either the
real or imaginary components of X(z) on the unit circle. These relations also
hold on the unit circle; if we write

X% =R +jlEe?) , (6)

where R (e/?) and I(ejg) are the real and imaginary parts respectively of X(efg),
then X (e'?) can be explicitly found in terms of R(e’ﬂ) or in terms of I(e’g) and
therefore R(e’ﬁ) and I(e’e) can be expressed as functions of each other. These
various integral relationships will be referred to as Hilbert transform relations
between components of X (z).

First, we will derive an expression for X(z) outside (not on) the unit circle
given R(e’e) (on the unit circle), beginning with the physically appealing con-
cept of causality. A causal sequence can always be reconstructed from its even
part, defined as

x.(n) =1 [x(n) + x(-n)] . @)

Since x(n) is causal, it can be written
x(n) = 2x.(n) s(n) W
where

s(n) =1 for n>0 }

€]
=0 for n<0
=% for n=0/
Now, consider X(z) outside the unit circle, that is, for z = re!? with r > 1.
Then
X(rel?) = Z x()re-inf - Z x,(n) s(n)r " e~inf | 9

But on the unit circle, the z-transform of x.(n) is R(e’a) and the z-transform

-1 ,-1
of the sequence s(n)r~" is given by 1_+_r_1_z__ Thus, using the complex con-
1-r"tz"
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volution theorem (2), we can rewrite (9) as

X(2)| e :.19§M dv . (10)
7j

Z=re V(V—-r_l)

(In this and subsequent contour integrals, the contour of integration is always
taken to be the unit circle).

Equation (10) expresses X (z) outside the unit circle in terms of its real part
on the unit circle. Equation (10) was written as a contour integral to stress the
fact that in the physically most interesting case when R(z) is a rational fraction,
evaluation of (10) is most easily performed by contour integration using residues.

Similarly, we may construct X (re’ ?) from 1(e’9) by noting that x(n) =
2x,(n) s(n) + x(0) 5(n) where x,(n) denotes the odd part of x(n) and 5(n) is the
unit pulse, defined as unity for n = 0 and zero elsewhere. The result obtained is

~1
X(Z)|z=re,~9 =7—17¢%(_V—:_:—)—) dv + x(0) . an

Now, Equations (10) and (11) also hold in the limit as r — 1, provided care
is taken to evaluate the integral correctly in the presence of a pole on the unit
circle. This can be done formally by changing the integrals in (10) and (11) to
the Cauchy principal values of these integrals, where the latter is defined as

1 p¢ f(2) dz = f(z,) for lzy] <1

2nj J z -z,

o for  |zg|>1 (12)
1
7z

f(zy) for lzol =1

From (10), (11) and (12), it is a simple matter to construct explicit relations
between R(eie) and I(e/?). Alternately, these results could have been derived
by appealing directly to Fig. 1, which shows the explicit relations between the
real and imaginary part of a causal function to be

o () = Lim x, () w, (n)
U1 (13)
Xo(n) = lim [x,(n) wy (n)] + 5(n) x(0)
o1

Figure 2 shows the ring of convergence for the z-transform W,(2) of w,(n) and
Fig. 3 shows the poles and zeros of W, (2).

. 1 R(z/W)(v+1)
2 ,_ ;e —erpgswdv . (14)

e/ (v + 1
R@,_,e =2_17p9§<zv(+)(_v1;_) dv . (15)
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By setting z = e'% and v = e/%, we change the contour integrals (14) and (15)
to line integrals, yielding

m

e =L fﬁ R(e/P=9) cot (§/2)d§
’ (16)

R(e'?) = zi P fzw 1(e/9=9) cot (9/2)d9 + x(0)

7
0

Similar results can be obtained for the real and imaginary parts of the discrete

z - PLANE

RING OF
CONVERGENCE
FOR W, (z)

Figure 2.
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Figure 3.

Fourier transform of a finite duration sequence provided that the sequence is
causal in the sense that, if the sequence x(n) is considered to be of duration N,

N
then x(n) =0 for n > 5 . Defining the even and odd parts of x(n) as

Xe (n) = 2 (x[((a)] + x[(=n))]) ,
and

%o (n) = 1 (x[((a)] - x[((-n))]) ,
it follows (for N even) that

x(n) = x¢(n) f(n) ,

and
x(a) = x, () f(n)+x(0)3(n)+x<%>8<n..%> ,

where

.

1 n=07%

2
f(n)=J2 n=1,2 ..., 1
2
0 n=ﬁ+1,ﬁ+2,...,N..1
L 2773

From these relations, we can then derive that the real and imaginary parts, R(k)
and I(k), of the DFT of x(n) are related by

, 1=
il (& -5 Z R(r) F[((k-o)] , 17)

r=0
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1N~l N
_ 1 0r _ R AL B
R(1<>—NZ0 D) FI(k = ) + x(0) + (-1) <2> (18)

where F (k) is given by

—~j cot "—k k odd
F(k) = N

0 k even

Note that (17) and (18) are circular convolutions which can be numerically evalu-
ated by fast Fourier transform methods. Similar but not identical relations can
also be derived if N is odd.

If instead of working with the z-transform of a sequence, we choose to work
with the logarithm of the z-transform, then comparable Hilbert transform relations
can be derived between the log magnitude of the spectrum and its phase. How-
ever, certain theoretical restrictions arise, due to the fact that a) the logarithm of
zero diverges and b) the definition of phaseis ambiguous. However, the deriva-
tive of the phase (with respect to 2) is not ambiguous; this leads to relationships
based on the definition

-z dX(2)
X(z) dz

D(2) = (19)

The imaginary part of D(e?) is the derivative of log | D(ejg)l and its real
part is the negative of the derivative of the phase of D(e’?). If the inverse

z-transform of D(z) is causal, relations similar to our previous real-imaginary
relations can be derived. For example, results analogous to (16)

]X(elﬁ) ©1 27 W (P -0) ¢ (0/2)d (20
= = ellY—
T 2n"f0 ) cot ($/2)dy (20)
‘P'<ef9)=~2lpf” F (/=0 cot (/24 @1
7

0

where |X| is the magnitude of the spectrum and ¥ its phase and the primes denote
differentiation with respect to 6.

If we impose the condition that ¥ is an odd function, then it must be zero for
¢ = 0 and (20) and (21) may be integrated to give

log |X(e“9)| =2—1 P fm Y (el(P=0)) cot (9/2)d9 , (22)
7

0

Y(e!?) =-2ip f277 log | X (e7(P=) |cot(9/2)dy . (23)
7
0

The requirement that the inverse z-transform of D(z) be zero for n <0 imposes a
restriction on the pole and zero locations of X(z). Since the poles of D(z) occur
whenever there are either poles or zeros of X (2) and since the inverse transform
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of D(z) is zero for n < 0 only if the poles of D(z) are all within the unit circle,
it follows that both poles and zeros of X (z) must be within the unit circle in
order for Equations (20) through (23) to be valid. This is the well-known mini-
mum phase condition [11].

It is also possible to relate the log magnitude and the phase of the DFT by
analogous relations provided that the inverse DFT of the logarithm of the DFT is
causal. The difficulty in applying this notion is that the logarithm of X (k) is
ambiguous since X (k) is complex. For the previous case of the z-transform, this
ambiguity was resolved in effect by considering the phase to be a continuous,
odd, periodic function; this definition of the phase cannot be applied in this
case. Nevertheless, it has been useful computationally for constructing a phase
function from the log magnitude of a DFT by computing the inverse DFT of the
log magnitude, multiplying by the function f(n) and then transforming back [4, 5].
The real part of the result is the log magnitude as before and the imaginary part
is an approximation to the phase.

4. HILBERT TRANSFORM RELATIONS BETWEEN REAL SIGNALS,
AND A FEW APPLICATIONS

The relations of Section 3 were derived via the complex convolution theorem
(2) and the requirement of causality. By interchanging time and frequency and
using the convolution theorem (1), further relations can be found which are of
practical and theoretical interest. One way of obtaining such relations is by the
introduction of the ““ideal’’ Hilbert transformer which has a spectrum defined as
having the value +j for 0 < @ < 7 and ~j for 7 < ¢ < 27, or equivalently, a spec-
trum with flat magnitude vs. frequency and having a phase of *7/2. Thus, a
Hilbert transformer is a (non-realizable) linear network with this transfer function
and, as shown in Fig. 4a, the output of the network is the Hilbert transform of

(a)

._-_>"‘") H () |20

(b)

_-27 -r 0 T h

2r 8

Figure 4.
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the input. Hilbert transform relations can also be realized by having two all-pass
networks having a phase difference of 7/2, as shown in Fig. 4c; such a configur-
ation is useful for synthesis of realizable approximate Hilbert transformers.

The unit pulse response of a Hilbert transformer can be derived by evaluating
its inverse z-transform. Thus

A(m) = L 8611(2) 2"ldz
2mj

T 27
h(n>=—1{f jefede-f jefﬁde} ,
2 o ”
_el7n
h(n):l—-e— for n#0
mn . (24)
=0 for n=0

From (1) the input-output relations can be written down;

_1 o x@1 - el
g _Zm — om 25)
m#n

Equation (25) can be inverted by noting that X (z) = H*(2) Y (z) (where H*(2) is
the complex conjugate of H(2)); this yields

1 s y(ml1 = el
x(o) =~ 2; — (26)
m#n

Thus (25) and (26) can be said to be a Hilbert transform signal pair. The graph

of 1 h(n) is shown in Figure 5.
7

The complex signal s(n) = x(n) +j y(n) (where x(n) and y(n) are a Hilbert
1 'W _’grh(n)
l 1 l { sse

I l 0 n

Figure 5.

see | 1 I
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transform pair) has been called the analytic signal and has the useful property
that its spectrum is zero along the bottom half of the unit circle. One applica-
tion of the analytic signal isto the bandpass sampling problem. Consider the
problem of sampling a real signal having the spectrum of Figure 6a. If this
signal is passed through the phase splitter of Fig. 4c, the resulting analytic sig-
nal has the spectrum shown in Fig. 6b, and thus can be sampled at the rate 1/B.
To reconstruct the original signal requires that the samples be applied to the
unity gain bandpass filter shown in Figure 6¢c. The real part of the filtered sig-
nal corresponds to the original signal.

Another application of Hilbert transformers is to help create a bandpass spec-
trum which is arithmetically symmetric about an arbitrary center frequency. Ef-
fectively, the ability to do this allows us to design bandpass filters which are
linear translations in frequency of prototype low pass filters, thus avoiding the
distortions inherent in the standard low pass-bandpass transformations. Fig-
ure 7a illustrates a symmetric low pass. When a conventional transformation is
applied, the non-symmetric bandpass of Fig. 7b results. Symmetry may be at-
tained with the filter of Fig. 7c; however, we note that the output of such a filter
is a sequence of complex numbers and, also, that by merely taking the real part
we must introduce the complex conjugate pole, thus destroying the symmetry. To
maintain symmetry of a real output over the range 0 through 7 can be accom-
plished by the configuration of Fig. 8, where H, (2) and H, (2) are all pass phase
splitters such as shown in Figure 4. If only the real part of the signal is desired
then a single phase splitter (rather than two) is needed. A filter satisfying the

SPECTRUM

(a) J'/[

(b) rL

!
- =B T 27 @

(c) ﬂ

!
!

Figure 6.
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FOR Fig.7c PART OF > OF OUTPUT
B— OUTPRUT

Figure 8.

pole-zero pattern of Fig. 7c is easily made and well-known and has usually been
referred to as the coupled form [12, 9].

5. DIGITAL HILBERT TRANSFORM NETWORKS

A. Recursive Networks

Analog phase splitting networks have been extensively analyzed and syn-
thesized [13, 9]. Since the desired networks are all-pass with constant phase
difference over a frequency band, it is feasible to use the bilinear transformation
[14, 15, 9] to carry analog designs into the digital domain. The resulting net-
works are all-pass, so that each pole at, say, z = a, has a matching zero at
z=1/a. An equiripple approximation to a constant 90° phase difference is ob-
tained by the use of Jacobian elliptic functions [16], with the added advantage
that all the poles and zeros lie on thereal axis.

Let the two networks comprising the phase splitter be H, (2) and H, (2).

To synthesize the all pass networks H; (z) and H, (2) in an efficient manner,
we note that the first order difference equation

y(@=x(n-1) +aly(n-1) - x(a)] , 27
corresponds to the digital network
—1

H(z) = z7 -a

1 - az

(28)

—1

This shows that an all pass network with a pole at z = a and a zero at z = 1/a
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can be synthesized with a single multiply in a first order difference equation. In
Fig. 9 a complete digital 90° phase splitter is shown which meets the require-
ments that the phase difference deviates from 90° in an equiripple manner by
11° in the range 10° through 120° along the unit circle. From (28) we see that
the coefficients in Fig. 9 are equal to the pole positions. The nomenclature of
Fig. 9 is the following: the box z~! signifies a unit delay, the plus signifies
addition and a number-arrow combination signifies both direction of data flow and
multiplication by the number. Arrows without numbers signify only data flow.

Now it is well known [9, 12, 17, 18, 19, 20, 21, 22] that because of finite
register length, the performance of the actual filter deviates somewhat from that
of the design. These effects can be categorized as follows:

a) Quantization of the input signal

b) Roundoff noise caused by the multiplications

(fixed point arithmetic is assumed)
c) Deadband effect

d) A fixed deviation in the filter characteristic caused by inexact coeffi-
cients.

The analysis of these effects is simplified because the networks H, (2) and
H,(z) are all-pass. Thus, signal to noise ratios caused by (a) are the same at
the output of the networks as at the input. Item (b) can be analyzed for H, (2)
or H, (2) by inserting noise generators at all adder nodes following multiplica-
tions. But each noise is then filtered by a cascade combination of the pole of
the section in which the noise is generated, and an all-pass network. The
well-known formula for the output variance of a network which has been subjected
to a white noise input with uniform probability density of amplitude is given by

o0
(E3/12) Z B2 (n) ,
n=0
where E; is a quantum step and h(n) is the network impulse response. For a
single pole at z = a, h(n) = a”; assuming m independent noise generators and
m poles at a, a,, +++, a, causes a total variance

(29)

——0y, (nT)

x{nT) 0——*E}—<

oyz(nT)

Figure 9.
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We see that only values of a; near unity cause much noise. Thus, for our
numerical design example, only about 1 bit of noise is generated. Item (c) can
be analyzed by similar considerations but it is probably not important for band-

pass phase splitters anyway, since it is only an effect when the input is a
constant.

For small errors in coefficients, item (d) can be analyzed in a manner similar
to that of reference {12]. The realization chosen in Fig. 9 guarantees that even
though a given coefficient is in error, the poles and zeros of the networks remain
reciprocals so that only the phase response of the network can be effected. Let
the phase response due to a pole zero pair at a, 1/a be ¥(9, a). The phase error
for a coefficient error Aa is approximated by

Wy, 10

A‘Pnga+2 e (Aa)2 + o

It is easily shown, using (28), that
Y _- 2 tan™! _ﬂi )
a-cos @)
¥ -2 sin @

9a a? - 2acos P+1

19*Y 2 sin ¢(a-cos 9)
2 9a?  (a® - 2a cos @+ 1)2

Therefore a good approximation to the error in phase, is given by the early terms
of the series

4 s

AW - -2 sin @ Aa + 2 sin @ (a -~ cos @) (Aa)?
a’ -2acos ¢+ 1 (a? - 2acos v + 1)?2

Using this approximation for each of the poles one can estimate how many bits
are necessary to keep the phase error within a given tolerance. Of course, once
a coefficient has been specified, the phase difference can be computed precisely.

B. Non-Recursive Networks

The phase splitting network we have described above is called recursive be-
cause, in the computation (27), a new output depends on a previous output. Re-
cursive networks always have poles and unit pulse response of infinite duration.
By contrast, a nonrecursive network has only zeros and a finite duration unit
pulse response. As we have shown, perfectly all pass, recursive phase splitters
with equiripple phase characteristics can be constructed. Such criteria cannot,
in general, be met by nonrecursive networks. However, useful constructions are
certainly possible. We have studied one method of nonrecursive design which is
based on sampling in the frequency domain [19]. The sampling formula which re-
lates the z-transform of a finite duration sequence of length N to the values H,
of its DFT is given by

1_. N N-1 27

Z Hk —-i
H(z) = —— - W= N 30
(2) N ;} T e (30)
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Thus, an approach to the design of a nonrecursive Hilbert transformer is to
specify the phase and magnitude of the network at the N equally spaced points
around theunit circle, that is, the N values of H,. If the unit pulse response of
H(z) is constrained to be real, then we must specify that H, has even magnitude
and odd phase. For example, if we specify the magnitude of H, to be unity for
all k and the phase to be /2 in the first half of the period and —#/2 in the
second half, as in Fig. 10, then an interpolated spectrum results, such as shown
by the dotted curve of Figure 10.

Exact 90° phase can be attained at every frequency, by specifying that the
H, be purely imaginary. However, for real unit pulse response, such a phase
shifter must have a magnitude characteristic which passes through zero at 0, 7,
2m etc., as shown in Figure 11. Thus, an ideal phase can be attained by further
degrading the all pass property of the network near 0 and #.

Nonrecursive networks can also be arranged as phase splitters, which has the
advantage that the two components of the resulting analytic signal can have the
same delay. It has been found experimentally that the arrangement indicated in
Fig. 12, whereby each arm of the splitter has nominal phase of *7/4 leads to a
low value of ripple of the interpolated phase difference. Further reduction of rip-
ple is possible at the expense of bandwidth, by specifying intermediate values of
H, in the transition region when the sign of the phase is changing.
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