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ABSTRACT

In this paper we propose Hidden Markov Models as an ap-
proach to the DNA basecalling problem. We model the
state emission densities using Artificial Neural Networks,
and provide a modified Baum-Welch re-estimation proce-
dure to perform training. Moreover, we develop a method
that exploits consensus sequences to label training data, thus
minimizing the need for hand-labeling. Our results demon-
strate the potential of these models and suggest further re-
search. We also perform a careful study of the basecalling
errors and propose alternative HMM topologies that might
further improve performance. We conclude by suggesting
further research directions.

1. INTRODUCTION AND BACKGROUND

In recent years DNA sequencing has become a popular tool
in Biology, significantly affecting the practice in the field.
The impact of this method has created a need to automate
the translation of sequencing signals (electropherograms)
to the corresponding sequence of bases, a process known
as basecalling. The most successful basecaller is PHRED
[1, 2], currently used by the Human Genome project. More
recently researchers have attempted to provide some statis-
tical foundations to the problem and use statistical models
to solve it (see e.g. [3, 4, 5]). In fact, in [4] the process
is modeled as a Markov Chain and analyzed using Markov
Chain Monte Carlo methods.

In this paper we use Hidden Markov Models (HMMs) to
provide an alternative statistical foundation to the problem.
Our approach has the advantage that it does not assume a
particular peak shape at the cost of requiring some initial
training. An excellent summary of HMMs, is contained in
[6].
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2. MODEL TOPOLOGIES FOR DNA SEQUENCING

A key observation is that the DNA basecalling problem is
similar to the speech recognition problem: Specifically, a
time signal is to be translated to a sequence of symbols un-
der a particular set of rules. In the case of speech recogni-
tion the grammar of the language forms these rules. On the
other hand, in the case of DNA sequencing the “grammar”
is very simple: the sequence is an i.i.d. process drawn from
fA, T, C, Gg. This similarity makes HMMs potentially ap-
plicable to the basecalling problem.

In order to use HMMs we need to formulate two models:
the Markov Chain to model the underlying Markov process
and the probability density model of the state emissions.
Early experimentation with the data showed that Artificial
Neural Networks (ANNs) can capture the state emission
statistics more accurately than Gaussian Mixture Models.
Thus we use a 3-layer ANN with a softmax output func-
tion. The input feature vector is a 33-sample window of
the four-channel electropherogram, centered at the current
time point. We normalize the 132 points feature vector to
have a maximum of 1. Using ANNs for the state emission
models requires some modifications to the Baum-Welch re-
estimation algorithm, which we describe in Appendix A.

2.1. The basic models for recognition and training

We model the sequence using the Markov Chain of Fig. 1(a),
which generates an i.i.d. sequence, as desired. We repre-
sent each base in the sequence by the three-state model of
Fig. 1(b), corresponding to the rise, the apex, and the fall
of the corresponding peak in the electropherogram. The re-
sulting model is shown in Fig. 1(c).

Similarly, we need a model to train the system. This
should be generated by the sequences corresponding to the
training data. For example the sequence AATCA should
produce the model in Fig. 2. The same type of model will
also be used in Section 3 to generate training data.
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(c) The result of combining (a) and (b)

Fig. 1. The model used for sequencing.
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Fig. 2. The left-to-right model used to train the basecaller,
generated from the sequence of the training samples.

2.2. Alternative model configurations

The topologies we propose are not the only possible ones,
and possibly not the best ones. Figure 3 illustrates some
possible modifications—motivated by the analysis in Sec-
tion 4—intended to accommodate effects that our design
does not. For example, Fig 3(a) shows how an additional
state captures the merging of the peaks when two bases of
the same type (e.g. AA) appear next to each other.

Another alternative is to assume a second order underly-
ing Markov chain and replace Fig. 1(a) with Fig. 3(b). This
generates a 16-state Markov chain, where each state corre-
sponds to the last two symbols of the sequence at any given
time. This model captures any effects that require a second
order Markov chain, such as the merging of the peaks de-
scribed above and the compression effects described in [7].
Each of the boxes in the figure corresponds to a three state

or

(a) A replacement
for 1(b) intended to
reduce undercalls.

A|A T|A A|T T|T

C|TG|TC|AG|A

A|G T|G A|C T|C

C|G C|CG|G G|C

(b) A model that incorporates
second order effects.

Fig. 3. Alternative models that can be used for basecalling.

sequence, as in Fig. 1(b), and the result is a 48-state Hidden
Markov Model. Further discussion on alternative models
can be found in [8].

3. GENERATING TRAINING DATA AND
TRAINING THE MODEL

One issue in DNA sequencing problems is the lack of la-
beled training data, especially for new equipment. Hand
labeling of electropherograms is very expensive and labor
intensive. Basecaller-labeled data, on the other hand, are in-
accurate for training purposes and create a chicken-and-egg
problem.

Instead of labeled data, however, we can use electro-
pherograms of fragments of published consensus sequences.
Yet, these electropherograms do not all start from the same
location in the sequence and do not have the same length. In
order to generate labeled data, we need to find which portion
of the sequence corresponds to each electropherogram.

To locate electropherograms in the consensus sequences
we use a variation of the Viterbi algorithm. We apply it
on a left-to-right model like the one in Fig 2, generated by
the consensus sequence. This model is large and requires
significant computation, but we only need to label the data
once. In any case, this method is cheaper and faster than
hand-labeling.

The data generation involves partially training a HMM,
with a set of parameters denoted by �p, using very few la-
beled electropherograms. To obtain these, some minimal
human labor is necessary, either to locate them in the con-
sensus sequence, or to hand-label them. Based on �p we
generate the left-to-right model with parameters �c which
corresponds to the consensus sequence. The difference is
that we assume that the initial probabilities are the same for
all the states: �i = 1

3N , where N is the number of bases in
the consensus sequence. Then we execute the Viterbi algo-
rithm on the electropherograms that we need to locate in the



consensus sequence. Indeed, this results to the most likely
path in the sequence, which we use to label the data. The
method we propose only requires a poorly trained model
because it exploits the significant side information embed-
ded in the consensus sequence. Details of the process are
described in [8].

4. RESULTS

We implemented the proposed model in MATLAB and eval-
uated its performance on 10 electropherograms of PBlue-
script sequences (different than the training sequences), pre-
processed with the standard software of the ABI 377 se-
quencing system with primer-dye chemistry. We compared
our calls to the consensus sequence [9] using CROSS MATCH
[1] to determine the number of insertion, deletion and sub-
stitution errors. Figure 4 shows the comparison of our base-
caller with PHRED version 0.990722g. We are plotting
the average number of errors of each type versus the read
length, as well as the average of the total number of errors.
We should note here that PHRED is heavily optimized, and
its preprocessor is tuned to work with its basecaller.
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Fig. 4. Comparison of PHRED to the HMM basecaller. The
total error performance is comparable.

From the results we see that although the HMM base-
caller performs better than PHRED in terms of insertions
and substitutions, it generates a significant number of dele-
tion errors. However, the overall performance is compara-
ble, encouraging further research and fine tuning.

Close inspection of the deletion errors showed that there
is room for improvement. Specifically, the basecaller often
merged bases of the same type and recognized them as only
one peak. For example it would call a GAATC as GATC.
This is due to the differences in the feature statistics of the

AA transition compared to, for example, the GA transition.
It is reasonable to believe that the models in Figure 3 will
significantly improve performance.

5. CONCLUSIONS AND FUTURE WORK

We believe we have demonstrated the suitability and the po-
tential of Hidden Markov Models as a basecalling tool. In
fact, the results encourage further research in several areas:

5.1. Confidence Measures

Although HMMs provide a direct probabilistic interpreta-
tion of the results in terms of likelihoods, this interpretation
is different than the PHRED confidence scores described in
[2]. Further work is needed to provide intuition on compar-
ing these two measures.

5.2. Model Topology

Our system produced a significant number of deletion errors
using the simple model to perform recognition. Although
we believe that the alternative models we propose will im-
prove the results, we still need to test them. Furthermore,
other models might exhibit even better performance and re-
search is needed to determine them.

5.3. Features Selection

In this work we did not try to optimize our feature selection.
With appropriate features selection the data might be better
represented, improving performance or reducing complex-
ity. For example we might be able to use Gaussian Models
for emission densities and thus achieve faster convergence
in training.

5.4. Preprocessing

Another step of the process we have not examined is the
preprocessing of the electropherogram before it is fed to the
basecaller. Especially the low-pass filtering used to remove
the noise has the potential of destroying subtle but important
features. Our basecaller does not depend on a noise-free
signal to operate since a noise model can be incorporated in
the state emission statistics. Thus, it might be desirable to
modify the preprocessing steps to improve performance.

5.5. Extensions

The potential applications of HMMs in other areas of bi-
ology, such as SNP detection and DNA fingerprinting are
very promising. Furthermore, similar models can be used
for protein sequencing, aiding the field of proteomics. We
believe that the potential applications in other fields are nu-
merous.
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A. COMBINING HMMS AND ANNS

In this appendix we present a modification of the Baum-
Welch algorithm to train HMMs with emission probabilities
modeled by ANNs, similar to [10]. In doing so we use the
ANN to estimate the N -dimensional emission probability
density vector bi[t] = P (q[t] = ijO[t]), where O[t] is the
observation vector and q[t] the state at time t.

Using bi we compute �i[t] = P (O[1:::t];q[t]=ij�)
P (O[1:::t]) and

�i[t] =
P (O[(t+1):::T ]jq[t]=i;�)

P (O[(t+1):::T ]) (here � is the model) using
a slightly modified forward-backward algorithm:

�j [t] =

(
�j

bj [1]
Pi

t = 1hPN

i=1 �j [t� 1]aij

i
bj [t]
Pj

t > 1

�i[t] =

(
1 t = TPN

j=1 aij
bj [t+1]

Pj
�j [t+ 1] t < 1

;

where �i is the initial probability of state i, and Pi is the
unconditional probability of being in state i at any time.

Thus, we can estimate 
i[t] = P (q[t] = ijO[1 : : : T ]; �)
and �ij [t] = P (q[t] = i; q[t+ 1] = jjO[1 : : : T ]; �) using:

�ij [t] =
�i[t]aij

bj [t+t]
Pj

�j [t+ 1]PN

k=1

PN

l=1 �k[t]akl
bl[t+t]

Pl
�l[t+ 1]


i[t] =
�i[t]�i[t]PN

j=1 �j [t]�j [t]
=

NX
j=1

�ij [t]

Given 
 and �, we use the usual re-estimation formulas for
all the model parameters except the emission densities:

��i = 
i[1]

�aij =

PT�1
t=1 �ij [t]PT�1
t=1 
j [t]

�Pi =

PT

t=1 
i[t]

T

Finally, we use (O[t]; 
i[t]) as input-output vector pairs to
update the parameters of the ANN. This training schedule
is summarized in Figure 5. [8] provides an extended discus-
sion of the method.

� �
?

P (q[t]jO[1 : : : T ]; �)

Estimate
P (q[t]jO[1 : : : T ]; �)
using P (q[t]jO[t]).

Train the emissions model
using P (q[t]jO[1 : : : T ]; �)
and estimate P (O[t]jq[t]).

� �6
P (O[t]jq[t])

Fig. 5. The modified Baum-Welch procedure.


