
Design of Fault-Tolerant LTI State-Space Systems�
C. N. Hadjicostisy G. C. Verghese

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge, MA 02139

chris@allegro.mit.edu verghese@mit.edu

Abstract

The design of linear time-invariant (LTI) systems in
state form has traditionally focused on implementations
that require the least number of state variables. Such
minimal designs have attempted to limit the required re-
sources, such as hardware, computation time or power, by
minimizing the system dimension. In recent years, how-
ever, the increasing necessity for the design and imple-
mentation of fault-tolerant systems has proved that “con-
trolled redundancy” (that is, redundancy that has been in-
tentionally introduced in some systematic way) can be ex-
tremely important: it can be used to detect and correct
errors or to guarantee desirable performance despite hard-
ware or computational failures.

Modular redundancy, the traditional approach to fault
tolerance, is prohibitively expensive because of the over-
head in replicating the hardware. This paper discusses
alternative methods for systematically introducing redun-
dancy for LTI systems in state form. Our approach con-
sists of mapping the state space of the original system
into a redundant space of higher dimension while preserv-
ing, within this larger space, the properties of the original
system in some encoded form. We provide a complete
characterization of the class of appropriate redundant LTI
systems and illustrate through several examples ways in
which our framework can be used for achieving fault tol-
erance.

1 Introduction

In this paper we explore a design methodology for
fault-tolerant linear time-invariant (LTI) systems in state
form. Our approach is based on mapping the state of the
original system into a larger, redundant space while at the
same time preserving the properties and information con-
tained in the original system — perhaps in some encoded�This work has been supported in part by the Department of the Navy,
Office of the Chief of Naval Research, contract number N00014-93-1-
0686 as part of the Advanced Research Projects Agency's RASSP pro-
gram.yAddress for correspondence: Room 36-615, MIT, Cambridge, MA
02139. Tel: (617) 253-0565 Fax: (617) 253-8495.

form. The redundancy we add into the system can be used
to achieve error correction or robust performance despite
hardware failures.

Traditional system design has aimed at the realization
of minimal systems, i.e., systems that require minimal re-
sources (these resources could be hardware, computation
time, power consumption, system dimension, etc.). Re-
cently, however, there has been an increasing interest in
redundant systems that arefault-tolerant. The traditional,
but rather inefficient, way of designing fault-tolerant sys-
tems is to useN -modular hardware redundancy (many
variations of the original scheme introduced by von Neu-
mann in [1] exist): we perform the desired function in
parallel by replicating the original systemN times. The
outputs of all replicas are compared, and the final result
is chosen based on what the majority of them has agreed
upon. Also, those in the minority are declared faulty.

Research in communications has extensively explored
alternative, more efficient ways of utilizing redundancy
for error detection and correction. Examples of such ef-
ficient schemes are the error correcting codes that are
used when one transmits digital data through an imperfect
channel, [2]: instead of replicating the links between two
sites, or sending multiple replicas of a message (which
amount to modular and time redundancy respectively),
one sends only a fraction of additional orparity bits. The
receiver uses the relations that govern the additional bits
to try and correct possible bit-errors that took place dur-
ing the transmission. In more complex systems that in-
volve not only simple transmission of the data but also
some form of processing on the data (e.g., computational
or DSP systems), the application of such error correcting
ideas is more challenging. Work in this direction includes
arithmetic codes (see, for example, [3]) and algorithm-
based fault tolerance (ABFT) techniques (introduced by
Abraham, [4]–[6], and subsequently developed by oth-
ers). These techniques have been quite successful, but
they have to be cleverly tailored to the specific applica-
tions under consideration.

More broadly applicable and systematic approaches for
introducing redundancy in general computational systems
were studied recently by Beckmann, [7]–[9], and later by
us, [10]–[12]. Beckmann's work focused on computa-

1

tions that can be modeled as abelian group operations1,
and used group homomorphisms both to introduce redun-
dancy and to analyze its properties. Our work extended
Beckmann's framework and analyzed operations that can
be modeled as occurring insemigroups or semirings. Even
though this is a very broad setting, we have been able to
generalize most of Beckmann's results and to develop an
algebraic framework for analyzing a large class of fault-
tolerant computational systems.

This paper describes a mathematical framework for the
design of fault-tolerant LTI systems in state form. Our
approach, motivated by our earlier work, consists of map-
ping the original state vector into a higher dimensional
space in a way that preserves the evolution and properties
of the original system. This results in an embedding of
the original system into a larger, redundant system. We
are able to completely characterize all possible redundant
systems of this type and to illustrate that our method es-
sentially amounts to augmenting the original system with
redundantmodes that areunreachable but observable un-
der fault-free conditions. Because these modes are not ex-
cited initially, they manifest themselves only when a fault
takes place. We describe these results in Section 2 and
present examples of error detection and correction in Sec-
tion 3. We summarize our presentation and discuss future
directions in Section 4.

2 Redundant LTI Systems

2.1 LTI State-Space Models

Linear time-invariant systems in state form constitute a
well studied class of dynamic systems with a variety of
applications, such as digital filter design, system simula-
tion and model-based control, [13]–[15]. Throughout the
analysis in this paper, we assume that the state, input and
output vectors have elements drawn fromR, the field of
real numbers. Although our discussion is focused on the
discrete-time case, most of our results and examples can
be translated to the continuous-time case in a straightfor-
ward manner.

An LTI system is represented in state form by the fol-
lowing pair of equations:x[k+ 1] = Ax[k] + Bu[k] (1)y[k] = Cx[k] +Du[k] (2)

wherek is the discrete-time index,x[k] is thestate vec-
tor, u[k] is the input vector, andy[k] is theoutput vec-
tor. Assume that the vectorx is n-dimensional (n is also
known as thesystem order), u is p-dimensional andy ism-dimensional. Eq. (1) is referred to as thestate evolu-
tion equation and eq. (2) is theoutput equation;A;B;C,

1These results can be generalized to systems whose operations take
place in a ring or a field, because of the underlying group structure.

andD are constant matrices of appropriate dimensions.
One can obtain equivalent state-space models (withn-
dimensional state vectorx0[k]) through similarity trans-
formation, [14], [15]:x0[k + 1] = (T�1AT)x0[k] + (T�1B)u[k]� A0x0[k] + B0u[k]y[k] = (CT)x0[k] +Du[k]� C 0x0[k] +D0u[k]
whereT is an invertiblen � n matrix such thatx[k] =Tx0[k]. The initial conditions for the transformed system
can be obtained asx0[0] = T�1x[0]. Systems related in
such a way are known assimilar systems.

Given an input-output specification of an LTI system,
there exist many possible ways ofrealizing it, that is, re-
lating it to a particular state-space representation as in
eqs. (1) and (2) above. A realization that uses the mini-
mum possible number of state variables is calledminimal.
The analysis and design of LTI state-space systems has
aimed almost exclusively at such systems. As we have
already argued in the introduction, redundancy is not nec-
essarily undesirable because it can be used to provide fault
tolerance to a given system. In the next section we study
ways of systematically introducing redundancy in order to
achieve error detection and correction.

2.2 Systematic Introduction of Redundancy

In order to achieve error detection and correction in an
LTI state-space systemS of dimensionn, we embed this
system in a redundant state-space systemS of dimension� � n + d, d > 0. The state vector ofS at thek-th time
step,�[k], provides complete information aboutx[k], the
state of the original systemS at timek, but thed addi-
tional state variables of can be used for error protection.
We develop this claim in more detail next. For the rest of
this paper, we essentially ignore the output equation (2)
and focus on the state evolution equation (1).

Let the state evolution equation of the original systemS be given byx[k+1] = Ax[k]+Bu[k], and the evolution
of the redundant systemS by�[k + 1] = A�[k] + Bu[k] : (3)

We wish to ensure that, at every time stepk, the state vec-
tor x[k] (and therefore the output vectory[k]) can be re-
covered from�[k] through aconstant n� � decoding ma-
trix L, i.e. x[k] = L�[k] for all k :
(Note that under the assumptions so far the redundant sys-
temS can be regarded as acover for S. The term “cover”
has been used mostly in the language of finite automata,
[16]: a finite automatonS is a cover for an automatonS

Figure 1: Relationships between original and redundant
systems.

if, given the input ofS, S is cable of concurrently simu-
latingS, that is, there exists a mapping that maps the state
of S at any given time to the corresponding state ofS —
for more details refer to [16].)

In order to achieve fault-tolerance, we impose a de-
sign requirement on the states of the redundant systemS:
there should exist a constant linear mapping from the set
of states ofS to the set of states ofS. This is a natural con-
straint from the perspective of using the redundancy inS
in some useful way (though, in general, the mapping need
not be linear). This linear mapping can be represented by
an� � n encoding matrix� which satisfies�[k] = �x[k] for all k :

Under the above assumptions,L� = In (whereIn is
then�n identity matrix). Note that this equation by itself
does not uniquely fixL or �. Fault detection is straight-
forward: since the redundant state vector�[�] must be in
the column space of� under fault-free conditions, all we
need to check is that at each time stepk, �[k] lies in the
column space of�. Equivalently, we can check that�[k]
is in the null space of an appropriateparity check matrix�, so��[k] = 0 under fault-free conditions. We illustrate
ways of obtaining the matrix� later in this section.

Figure 1 gives a picture of the relationships between
the original and redundant systems. The dynamics of the
systemS on the left are governed by the matricesA, B,C, andD, whereas the dynamics of the redundant systemS are governed by appropriately chosen matricesA, B, C,D. We can move between the two state vectorsx[�] and�[�] using the encoding and decoding matrices (� andL
respectively). We are now in a position to prove the main
theorem of this section.
Theorem In the setting described above, a systemS (of
dimension� � n+ d, d > 0) is a redundant version ofS
if and only if it is similar to astandard redundant systemS� whose state evolution equation is given by��[k + 1] = � A A120 A22 � �� [k] + � B0 �u[k] : (4)

HereA andB are the matrices in eq. (1),A22 is ad � d
matrix that describes the redundant modes that have been
added, andA12 is ann� d matrix that describes the cou-
pling between the redundant and non-redundant modes.
Associated with this standard redundant system is the

standard decoding matrixL� = � In 0 �
, the standard

encoding matrix�� = � In0 �
and the standard parity

check matrix�� = � 0 Id �
.

Proof Let S be a redundant version ofS. FromL� = In,L is a full-row-rankn � � matrix and there exists an in-
vertible��� matrixT1 such thatLT1 = � In 0 �

. If we
apply the transformation�[k] = T1�0[k] to the systemS,
we obtain a similar systemS 0 whose decoding mapping isL0 = LT1 = � In 0 �

, whereas the encoding mapping�0 = T �11 � = � InK �
(whereK is ad� n matrix).

We can simplify things further by applying an-
other transformation:�0[k] = T2�00[k], where T2 =� In 0K Id �

. We now obtain a redundant systemS 00 (sim-

ilar to bothS andS 0) whose state evolution is given by�00[k + 1] = (T �12 T �11 AT1T2)�00[k] + (T �12 T �11 B)u[k]� A00�00[k] + B00u[k] : (5)

By employing the above transformation, we have achieved
a system for whichL00 is still given by

� In 0 �
,

whereas the encoding matrix is now�00 = T �12 �0 =� In0 �
.

Therefore, for all time stepsk, and under fault-free con-

ditions, �00[k] = �00x[k] = � x[k]0 �
. Combining the

state evolution equations of the original and redundant
systems (eqs. (1) and (5) respectively), we see that�00[k + 1] = A00�00[k] + B00u[k])� Ax[k] + Bu[k]0 � = � A0011 A0012A0021 A0022 �� x[k]0 �+ � B001B002 �u[k] :

We conclude that the following equations have to hold:Ax[k] + Bu[k] = A0011x[k] + B001u[k]0 = A0021x[k] + B002u[k] :
By setting the inputu[k] � 0 for all k, we see thatA0011 =A andA0021 = 0. With the input now allowed to be non-
zero, we conclude thatB001 = B andB002 = 0.

The systemS 00 is therefore in the form of the standard
systemS� in eq. (4) with appropriate decoding and en-
coding matrices. At this point, however, the check matrix�00 is given by �00 = � 0 P �
whereP can beany invertible d � d matrix. A trivial
third similarity transformation will ensure that the parity
check matrix takes the from

� 0 Id �
, while keeping the

system in the standard formS� in eq. (4), except with

A12 = A0012P andA22 = P�1A0022P . The decoding, en-
coding and check matrices are then as claimed in the state-
ment of the theorem.

The converse, namely that ifS is similar to a standardS� as in (4), then it is a redundant version of (1), is easy
to show. 2

The above theorem establishes a complete characteri-
zation of all possible fault-tolerant designs (subject to our
restrictions) of a given LTI state-space model. The ad-
ditional modes introduced by the redundancy never get
excited under fault-free conditions because they are ini-
tialized to0 and they are unreachable from the input. Due
to the existence of the coupling matrixA12, the additional
modes are not necessarily unobservable through the de-
coding matrix.

2.3 Error Model

A more detailed discussion of error detection and correc-
tion requires a particular error model. In this section we
describe the sorts of hardware faults that might plausibly
take place in the implementation of our systems, and the
way we reflect these faults into our theoretical framework
(i.e., we describe our error model).

There are two kinds of hardware faults:transient and
permanent faults, [7]. A transient fault at time stepk
causes errors at that particular time step, but disappears
at the following ones. Therefore, if the errors are cor-
rected before the initiationof stepk+1, the system will re-
sume its normal mode of operation. A permanent fault, on
the other hand, causes errors at all remaining time steps.
Clearly, a permanent fault can be treated as a transient
fault for each of the remaining time steps (assuming error
correction at every single time step), but in certain cases
one can deal with it in more efficient ways (e.g., reconfig-
uration). In the examples of Section 3 we will be mostly
concerned with transient faults; in Section 3.3 we will deal
with permanent faults.

The error model does not have to exactly mimic the
actual fault mechanism. For example, we can model the
error due to a fault in a multiplier as additive, or that of
a fault in an adder as multiplicative2. However, efficient
error models need to be close to reality; otherwise, a sin-
gle actual fault might manifest itself as an unmanageable
number of errors in the error model. Therefore, in order
to evaluate the performance of our redundant system, we
need to know its actual hardware implementation so that
we can choose an efficient error model.

In most of the examples in Section 3 we assume that
we implement our LTI systems using memory elements
(delays), adders and multipliers (gains) that we intercon-
nect in some appropriate way. These realizations can be

2The faulty resultrf of areal-number multiplier can always be mod-
eled in an additive error fashion asrf = r + e wherer is the correct
result ande is the additive error that has taken place. Similarly for an
adder.

+ +

Delay

x[k+1]

x[k]

u[k] y[k]b0

b1a

Figure 2: A delay-adder-gain diagram for a first-order LTI
state-space system (single-input single-output case).

represented using signal flow graphs, or delay-adder-gain
diagrams as shown in Figure 2. Note that the same state-
space description (matricesA, B, C, andD for the redun-
dant system) corresponds to a number of different delay-
adder-gain diagrams and, consequently, it can have a num-
ber of different hardware realizations, [13]. This makes
the connection with hardware failures more complicated.
For example, in certain implementations a single fault in a
multiplieror an adder can corrupt more than a single entry
in the matricesA, B, C, andD (and, consequently, more
than one state variable). For the delay-adder-gain diagram
in Figure 2,A = a, B = 1, C = b1 + ab0, andD = b0.
Clearly, a failure in a single multiplier can manifest itself
in many ways: e.g., if the gainb0 fails, C andD will be
incorrect.

One way to avoid this problem is to assume that we
implement our systems using delay-adder-gain diagrams
in which the longest delay-free path is of length one. In
such a case, the multiplier gains are directly reflected as
the entries in the matrices of the state-space description,
[13]. We can then model faults in the multipliers (and the
adders) as corruptions in individual entries of the matricesA, B, C, andD. This is the assumption that we make in
analyzing our examples in the next section3.

The importance of the actual hardware implementation
can also be seen from the following example: if our re-
dundant system is directly implemented in the form (4),
with the parity check matrix�� = � 0 Id �

, then the
redundancy is quite useless: under the assumptions of the
previous paragraph, the only faults that are detected are
the ones that have affected the redundant modes of the
system at time stepk (because the additional modes can-
not be influenced by the original modes or the input). This
is pointless, because our objective is to use the redundancy
to protect the original system, not to protect redundancy it-
self. However, systems that aresimilar to the standard one
can be designed to efficiently provide error protection.

3A future step is to study more general descriptions by studying fac-
tored state variable descriptions, [13]. It is also possible to accommo-
date for implementations that are based on more general delay-adder-
gain diagrams by looking at the techniques in Section 3.3, orby employ-
ing the computation trees in [17].

3 Examples of Fault-Tolerant
Systems

In this section we present examples of achieving fault
tolerance using the redundant systems developed in the
previous section.

3.1 Triple Modular Redundancy

Triple modular redundancy (TMR) maintains three sep-
arate copies of the original system. These copies (mod-
ules) useseparate hardware and operate identically under
fault-free conditions. By comparing their state vectors at
a given time step, one is able to detect transient or perma-
nent errors. In fact, single errors can easily be corrected
using a non-linear, but otherwise simple, voting scheme:
we select the state agreed upon by two or more systems.

TMR in our LTI state-space setting corresponds to a
system of the form�[k+ 1] � 24 x1[k + 1]x2[k + 1]x3[k + 1] 35 = 24 A 0 00 A 00 0 A 35 �[k]+24 BBB 35u[k] (6)

where the initial conditions are chosen so that the state
vectorsx1[k], x2[k] and x3[k] of the three subsystems
evolve in the same way as the original one (i.e.,x1[0] =x2[0] = x3[0] = x[0]). The encoding matrix� is given

by

24 InInIn 35, whereas the decoding mappingL can be� In 0 0 �
,
� 0 In 0 �

,
� 0 0 In �

, or others
(e.g., convex combinations). In this example, we assume
thatL = � In 0 0 �

. The parity check matrix� can

be simply4
� �In In 0�In 0 In �

. When a non-zero entry

appears on the upper (respectively, lower) half of the2n-
dimensional vector��[k], we know that a fault took place
in subsystem 2 (respectively, 3). When non-zero entries
appear in both the top and bottom half-vectors, then a fault
exists in subsystem 1.

The system is easily shown (for example withT =24 In 0 0In In 0In 0 In 35, �[k] = T ��[k]) to be similar to�� [k+ 1] = 24 A 0 00 A 00 0 A 35 ��[k] + 24 B00 35u[k]
which is of the form described in the theorem of the pre-
vious section. The initial conditions are now��[0] =

4Other parity check matrices are also possible.

T �1�[0] = 24 x[0]00 35 where x[0] is the initial condi-

tion associated with the original system. Note that all
modes of the original system are replicated twice (A22 =� A 00 A �

) and there is no coupling (A12 = 0). The

check matrix for the standard system is�� = �T =� 0 In 00 0 In �
.

Once the encoding matrix� is fixed, the additional
freedom in choosing the decoding matrixL can be used
to our advantage. For example, when our checking pro-
cedure detectspermanent faults in the first subsystem, we
can change our decoding matrix fromL = � In 0 0 �
to L = � 0 In 0 �

. This will ensure that our overall
system still outputs the correct result. In fact, this idea can
be generalized a little bit. We discuss an adaptive frame-
work with this flavor in Section 3.3.

3.2 Checksum and Linear Coding

Checksum

A scheme for detecting errors in LTI state-space systems
was presented in [4] under the name “state variable filter”.
The basic idea was to include an extra state variable,c[k],
that forms the sum of all other state variables at each time
step (i.e.,c[k] = Pni=1 xi[k]). This was accomplished
using the following redundant system:�[k + 1] � � x1[k+ 1]c[k+ 1] � = � A 0Pi ai 0 � �[k]+ � BPi bi �u[k]
whereai denotes thei-th row vector of the matrixA andbi denotes thei-th row vector of matrixB. The encod-

ing matrix� is now
� In1 1 : : :1 �

, whereas the decod-

ing matrix isL = � In 0 �
. The initial condition is�[0] = � x[0]Pni=1 xi[0] � so that under fault-free conditions�[k] = � x[k]Pni=1 xi[k] � for all k :

The parity check matrix is given by� =[1 1 : : : 1 � 1], i.e., it checks that the variablec
is indeed the sum of all original state variables. When one
of the state variables is updated incorrectly, then the par-
ity check is not0 and we are able to detect that a fault has
taken place.

The above system is included in our framework. Indeed
the redundant system is similar to the standard form�� [k + 1] = � A 00 0 � �� [k] + � B0 �u[k] :

The transformation matrix we need to use isT =� In 01 1 : : :1 1 �
. The initial condition in the standard

case is�� [0] = � x[0]0 �
; the parity check matrix of the

standard system is�� = [0 0 : : :1] and simply checks
that the(n+ 1)-st state variable is zero.

The importance of the actual hardware implementa-
tion and the need to assume an implementation that cor-
responds to a delay-adder-gain diagram with delay-free
paths of unit length (or use the techniques pointed out in
Section 2.3) can be seen from the following simple exam-
ple. Suppose that our hardware calculatesc[k+1] by first
calculating allx1i [k+ 1] (which we have to calculate any-
way) and then settingc[k + 1] = Pni=1 x1i [k + 1]. This
is a perfectly valid implementation. Its delay-adder-gain
diagram, however, has delay-free paths of length greater
than one, and an error in the calculation of state variablex1i [k + 1] will also appear inc[k + 1]. In fact, our system
will not be able to detect the error because the parity check
will still be valid. It is crucial thatc[k + 1] be calculated
a different scheme, otherwise we run the risk of adding
redundancy that checks itself.

Linear Codes

The checksum scheme above is a very basic one because
it only provides single-error detection. Using our frame-
work, we can develop schemes that provide detectionand
correction of multiple transient faults. The following is a
simple motivating example to illustrate the idea. Let the
original system bex[k+ 1] = 2664 :2 0 0 00 :5 0 00 0 :1 00 0 0 :6 3775x[k] + 2664 3�170 3775u[k] :
This system can be protected against single transient er-
rors in the state variables. First consider using three ad-
ditional modes, implemented in the standard redundant
form:��[k + 1] = 2666666664 :2 0 0 0 0 0 00 :5 0 0 0 0 00 0 :1 0 0 0 00 0 0 :6 0 0 00 0 0 0 :2 0 00 0 0 0 0 :5 00 0 0 0 0 0 :3 3777777775 ��[k]+ � 3 �1 7 0 0 0 0 �T u[k] :

Error detection in this form requires checking that����[k] is 0, where�� is the parity check matrix given
by �� = � 0 I3 �

. However, as we argued in the pre-
vious section, redundant systems in standard form can-
not be used for detecting or correcting errors in theorigi-
nal modes: given a faulty state vector�f� [k], the fact that

���f� [k] 6= 0 will simply mean that an error took place in
the calculation of theredundant modes. What we would
really like is to protect against errors that appear in the
original modes. One way to achieve this is to employ a
system similar to the standard redundant system, but with
the following parity check matrix:� = 24 1 1 1 0 1 0 01 1 0 1 0 1 01 0 1 1 0 0 1 35 : (7)

The choice of this� is motivated by the structure of Ham-
ming codes in communications, see [2]. With a suit-
able similarity transformation, the corresponding redun-
dant system is�[k+ 1] = 2666666664 :2 0 0 0 0 0 00 :5 0 0 0 0 00 0 :1 0 0 0 00 0 0 :6 0 0 00 �:3 :1 0 :2 0 0:3 0 0 �:1 0 :5 0:1 0 :2 �:3 0 0 :3 3777777775 �[k]+ � 3 �1 7 0 �9 �2 �10 �T u[k] :

Using this equivalent system, we can detect and locate
transient faults that cause the value of a single state vari-
able to be incorrect at a particular time step. To do this, we
check for non-zero entries in the vector�[k] � ��[k]. If,
for example,�1[k] 6= 0, �2[k] 6= 0, and�3[k] 6= 0, then the
value of�1[k] is corrupted; if�1[k] 6= 0, �2[k] 6= 0, and�3[k] = 0, then a fault has corrupted�2[k]; and so forth.
Once the erroneous variable is located, we can easily cor-
rect it using any of the parity equations in which it ap-
pears. For example, if�2[k] is corrupted, we can calculate
the correct value by setting�2[k] = ��1[k]��3[k]��5[k]
(i.e., using the first parity equation). Since the faults are
transient, the operation of the system will resume nor-
mally in the following steps.

The above approach uses a parity check matrix that
forms a Hamming code, as we noted. Such codes can
perform single-error correction very efficiently: insteadof
replicating the whole system, we only need to add a few
redundant modes. In fact, as long as2d � 1 > � (where� � n + d is the dimension of the redundant system),
we can guarantee the existence of a similar system that
achieves single-error correction.

In contrast to the binary coding scheme presented
above, the authors of [17] have developed areal coding
scheme. This scheme (also included in our framework)
performs single-error correction using only two additional
state variables, but needs more complicated error detec-
tion and correction mechanisms5. The additional modes
in the fault-tolerant scheme in [17] are set to0. Clearly, as

5It would be worthwhile to compare the numerical properties and
limitations of the two schemes imposed by finite precision arithmetic.

the example of this section has demonstrated, this is not
necessary; in fact, in the next section we make use of the
additional non-zero modes to design a scheme that adapts
to permanent faults during operation.

3.3 Adaptive Decoding

Let us examine the TMR example in eq. (6) a little closer.
A permanent fault in any subsystem can be detected us-

ing the parity check matrix� = � �In In 0�In 0 In �
. The

corrupted state variable(s) can be corrected e.g., by simple
majority voting or by using any of the valid parity equa-
tions. However, since the fault is permanent, we would
like to be able to avoid the overhead of error correction
at each time step. In the TMR case, this can be done
in a straightforward way: for example, once a fault per-
manently corrupts the first subsystem (by corrupting en-
tries in itsA orB matrices), we can switch our decoding
matrix fromL = � In 0 0 �

to L = � 0 In 0 �
(or L = � 0 0 In �

or others) and ignore the parity
checks that involve variables in the first subsystem. This
ensures that the output of the redundant system is still cor-
rect. We can continue to perform error detection, but have
lost the ability to do error correction. We now formalize
and generalize this idea.

Consider again the redundant systemS whose state
evolution equation is given by eq. (3). Under fault-free
conditions,x[k] = L�[k] and�[k] = �x[k] for all k. Sup-
pose that we implement this system using a delay-adder-
gain interconnection with delay-free paths of unit length.
A permanent fault in a multiplier of the system manifests
itself as a corrupted entry in the matricesA orB: thei-th
state variable�i[k] (and other�j[�] at later steps) will be
corrupted if some of the entries6 A(i; l1) and/orB(i; l2)
for somel1 in f1; 2; :::; ng, and somel2 in f1; 2; :::; pgare
corrupted right after time stepk � 1. We assume that we
can locate the faulty state variable through the use of some
linear error correcting scheme as in the previous section.
We are allowed to adjust the decoding matrixL to a new
matrixLa, but we do not have control over the entries inA andB. We would like to know which entry corruptions
can be tolerated, and how to chooseLa.

The answers are rather straightforward. First, however,
we need to find out which state variables will be corrupted
eventually. If at time stepk0 we detect a corruption at thei-th state variable, then we know exactly the end result: at
time stepk0+1, state variable�i[k0] will corrupt the state
variables that depend on it (letMi1 be the set of indices of
these state variables — includingi); at time stepk0 + 2,
the state variables with indices in setMi1 will corrupt the
state variables that depend on them; let their indices be in
setMi2 (which includesMi1); and so on. Eventually, the
final set of indices for all corrupted state variables is given

6We useA(i; l) to denote the element in thei-th row and thel-th
column of matrixA.

by the finite setMif (note thatMif = Mi� = Mi1 [Mi2 [Mi3 ::: [Mi�). The sets of indicesMif for all i
in f1; 2; :::; �g can be calculated in an efficient manner by
computingR(A), thereachability matrix ofA, as outlined
in [18].

Once we have detected a fault at thei-th state vari-
able, we know that our new decoding matrixLa (if it
exists) should not make use of state variables with in-
dices inMif . Equivalently, we ask the question: does
there exist a decoding matrixLa such thatLa�a = In?
Here,�a is the same as the original encoding matrix�
except that�a(j; l) is set to zero for allj in Mif , withl in f1; 2; :::; ng. If �a is full-column-rank, such anLa
exists. In this case, our redundant system can withstand
corruption of entries in thei-th row(s) ofA and/orB; anyLa that satisfiesLa�a = In is suitable.

Examples

TMR is clearly a special case of the above formulation:
corruption of a state variable of the first subsystem is guar-
anteed to remain within the first subsystem. ThereforeMf � f1; 2; :::; ng and (very conservatively)�a = 24 0InIn 35 :
Two possible La' s are (among others)La =� 0 In 0 �

andLa = � 0 0 In �
.

Less obvious is the following case (based on the linear
coding example of the previous section). Suppose�[k+ 1] = 2666666664 :2 0 0 0 0 0 00 :5 0 0 0 0 00 0 :1 0 0 0 00 0 0 :6 0 0 00 �:3 :1 0 :2 0 0:3 0 0 �:1 0 :5 0:1 0 :2 �:3 0 0 :3 3777777775 �[k]+ � 3 �1 7 0 �9 �2 �10 �T u[k]
whereL = � I4 0 �

and� is given by� = 2666666664 1 0 0 00 1 0 00 0 1 00 0 0 1�1 �1 �1 0�1 �1 0 �1�1 0 �1 �1 3777777775 :
If A(2; 2) (whose value is:5) becomes corrupted, then

the set of indices of corrupted state variables is clearly

M2f = f2; 5g and�a is given by�a = 2666666664 1 0 0 00 0 0 00 0 1 00 0 0 10 0 0 0�1 �1 0 �1�1 0 �1 �1 3777777775 :
A suitableLa is given byLa = 2664 1 0 0 0 0 0 0�1 0 0 �1 0 �1 00 0 1 0 0 0 00 0 0 1 0 0 0 3775 :

Using thisLa, the redundant system can continue to
function properly (that is, provide the correct state vectorx[k] for all futurek) despite the corrupted entryA(2; 2).
We can still use the parity check matrix of eq. (7) for
fault detection, except that the checks involving the sec-
ond and/or fifth state variables (i.e., the first and second
checks in��[k]) are invalid.

4 Conclusion

We have outlined a systematic procedure for introduc-
ing controlled redundancy into linear time-invariant sys-
tems in state form. Our approach maps the state vec-
tor of the original system into a larger, redundant space,
while ensuring that the evolution in the redundant space
will preserve the evolution and properties of the original
system. The added redundancy, through proper hardware
implementation, can be channeled towards achieving er-
ror detection and correction under hardware faults. We
have demonstrated ways in which this can be achieved by
several examples. Moreover, we have characterized all
appropriate fault-tolerant designs for such systems. Our
current work focuses on extending some of our results to
redundant Petri net models, max-plus state-space systems,
and other classes of dynamic systems in state form.

References

[1] J. von Neumann,Probabilistic Logics and the Syn-
thesis of Reliable Organisms from Unreliable Com-
ponents. Princeton University Press, 1956.

[2] S. B. Wicker, Error Control Systems. Englewood
Cliffs, New Jersey: Prentice Hall, 1995.

[3] T. R. N. Rao,Error Coding for Arithmetic Proces-
sors. New York: Academic Press, 1974.

[4] K.-H. Huang and J. A. Abraham, “Algorithm-based
fault tolerance for matrix operations,”IEEE Trans-
actions on Computers, vol. 33, pp. 518–528, June
1984.

[5] V. S. S. Nair and J. A. Abraham, “Real-number
codes for fault-tolerant matrix operations on pro-
cessor arrays,”IEEE Transactions on Computers,
vol. 39, pp. 426–435, April 1990.

[6] J.-Y. Jou and J. A. Abraham, “Fault-tolerant
FFT networks,”IEEE Transactions on Computers,
vol. 37, pp. 548–561, May 1988.

[7] P. E. Beckmann,Fault-Tolerant Computation Us-
ing Algebraic Homomorphisms. PhD thesis, EECS
Department, Massachusetts Institute of Technology,
Cambridge, MA, 1992.

[8] P. E. Beckmann and B. R. Musicus, “Fast fault-
tolerant digital convolution using a polynomial
residue number system,”IEEE Transactions on Sig-
nal Processing, vol. 41, pp. 2300–2313, July 1993.

[9] P. E. Beckmann and B. R. Musicus, “A group-
theoretic framework for fault-tolerant computation,”
in Inter. Conf. on Acoustics, Speech, and Signal Pro-
cessing, vol. V, pp. 557–560, 1992.

[10] C. N. Hadjicostis, “Fault-tolerant computation in
semigroups and semirings,” M. Eng. thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA,
1995.

[11] C. N. Hadjicostis and G. C. Verghese, “Fault-tolerant
computation in semigroups and semirings,” inPro-
ceedings of Inter. Conf. on Digital Signal Process-
ing, vol. 2, (Limassol, Cyprus), pp. 779–784, 1995.

[12] C. N. Hadjicostis and G. C. Verghese, “Fault-tolerant
computation in semigroups and semirings.” Submit-
ted for publication, 1996.

[13] R. A. Roberts and C. T. Mullis,Digital Signal Pro-
cessing. Reading, Massachusetts: Addison-Wesley,
1987.

[14] D. G. Luenberger,Introduction to Dynamic Systems:
Theory, Models, & Applications. New York: John
Wiley & Sons, 1979.

[15] T. Kailath,Linear Systems. Englewood Cliffs, New
Jersey: Prentice-Hall, 1980.

[16] A. Ginzburg,Algebraic Theory of Automata. New
York: Academic Press, 1968.

[17] A. Chatterjee and M. d' Abreu, “The design of fault-
tolerant linear digital state variable systems: theory
and techniques,”IEEE Transactions on Computers,
vol. 42, pp. 794–808, 1993.

[18] J. P. Norton, “Structural zeros in the modal matrix
and its inverse,”IEEE Transactions on Automatic
Control, vol. AC-25, pp. 980–981, 1980.

