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CHAPTER ONE: SIGNAL PROCESSING USING ONLY

SHORT-TIME SPECTRAL MAGNITUDE

The time-invariance of spectral processing [1] is a disadvantage in several applications, par-

ticularly those involving speech and images. For example, a speech waveform consists of voiced

and unvoiced sections [2]. The voiced sections have a periodic structure, whereas the unvoiced

sections consist mainly of wideband random noise. The processing requirements of these two

types of sections are often quite different. In voiced sections, for example, it is important to

preserve the periodicity but no such restriction applies to unvoiced sections. On the other hand,

in unvoiced sections it is often essential to preserve the wideband random noise characteristic.

Even within the various voiced or unvoiced sections, the signal properties tend to change. For

example, within voiced sections, the length as well as the shape of each period is generally

changing as a function of time. In fact, speech characteristics such as periodicity are generally

assumed to be constant over only short durations on the order of 20 milliseconds [2]. In many

cases, therefore, it is inadvisable to apply time-invariant processing to speech over intervals much

greater than 20 milliseconds.

To achieve a degree of time dependence in the processing of signals such as speech, spectral

processing is often applied independently to various short-time sections of a signal. This type of

processing is usually based on the short-time spectrum [3]. In section 1.1 of this chapter, we

present the definition of the short-time spectrum for discrete-time signals. The magnitude and

phase of the short-time spectrum of a signal are usually both required in various signal process-

ing applications. However, as we shall see in section 1.2, there are some applications where it is

desirable to accomplish the processing with only the magnitude of the short-time spectrum. This

has previously not been possible because of the lack of any practically useful results on the rela-

tionship between the short-time spectral magnitude and the corresponding signal. In particular, it

is important to develop results on signal reconstruction from the magnitude of the short-time

spectrum. Furthermore, since a processed short-time spectral magnitude may not necessarily

·--
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correspond to any signal, we would like to be able to obtain reasonable signal estimates in such

cases. This thesis presents a number of important results on these problems that make possible

the practical implementation of signal processing using only the magnitude of the short-time

spectrum. Some previous investigations on this subject are described in section 1.3. Finally, in

section 1.4, we outline the major results of this thesis.

1.1 Short-Time Spectrum

The short-time spectrum has been developed for continuous as well as discrete-time signals.

Excellent references on the subject include the work of C. Weinstein [3], J. Allen [4], and M.

Portnoff [5]. In this thesis, we are interested in discrete-time signal processing with the short-

time spectrum. For a discrete-time signal x(n), the short-time spectrum is a function of time as

well as frequency and it is mathematically expressed as

X,(nL,w) = X(m)w(nL-m )e -j (1.1)

where the subscript w in X, (nL ,) denotes the analysis window, w (n'). The parameter L is an

integer which denotes the separation in time between adjacent short-time sections. This parame-

ter is independent of time and is selected so as to ensure a degree of time overlap between adja-

cent short-time sections. For a fixed value of n, the short-time spectrum X w (nL ,w) defined in

(1.1) represents the Fourier transform with respect to m of the short-time section

fn (m )=x (m )w (nL -m ). The sliding window interpretation [5] views X,, (nL ,o) as being gen-

erated by shifting the time-reversed analysis window across the signal. After each shift of L sam-

pies, the window is multiplied with the signal and the Fourier transform is applied to the pro-

duct. There are other interpretations of the short-time spectrum, including a well known filter

bank interpretation [2]. However, for the purposes of this thesis, we find the sliding window

interpretation to be the most appropriate.

For most signals and analysis windows, the short-time sections fJ,(m) generally do not have

any symmetry with respect to the origin. Consequently, the short-time spectrum is generally a

-·
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complex function. In many short-time spectral processing applications both the magnitude and

the phase of the short-time spectrum are used. As illustrated in the next section, however, it is

important to determine if short-time spectral processing can be accomplished using only the mag-

nitude of the short-time spectrum.

1.2 Applications For Magnitude Only Processing

In this section, we consider two important applications that illustrate the importance of

developing practical signal processing techniques which use only the magnitude of the short-time

spectrum. Specifically, we consider the problems of noise reduction and time-scale modification.

These problems are stated mostly in the context of speech processing. However, it will be clear

from the discussion that the same concepts also apply to other applications.

We first consider the problem of noise reduction. Suppose that a discrete-time signal x (n)

is the sum of a desired signal s (n) and a noise signal e (n). The signal x (n ) may, for example,

represent samples of a noisy speech recording. If e (n) originates from a random process that can

be appropriately modelled as being stationary, there are some classical spectral processing

methods for noise reduction. These include Wiener filtering, power spectrum filtering, and spec-

tral subtraction. A comprehensive survey of such processing is contained in a paper by Lim and

Oppenheim on noise reduction for speech signals [6]. These noise reduction procedures have the

property that they process only the magnitude of the signal spectrum; the spectral phase of the

noisy signal x (n ) is retained in the processed signal. For applications such as speech processing,

these techniques perform relatively better when applied to the short-time spectrum rather than

the (long-time) spectrum of x(n). This way, each short-time section can be filtered according to

its own spectral characteristics. Of course, only the spectral magnitudes of the short-time sections

are affected by the processing. A problem of interest is whether an estimate of the short-time

spectral phase can be obtained from the processed magnitude of the short-time spectrum. This is

equivalent to estimating the processed signal from the short-time spectral magnitude alone.

L-I----~ -·-- CtIIC--- -
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Thus, in addition to obtaining a processed short-time spectral phase estimate, such a technique

would have the property of not requiring any spectral phase information on the noisy signal.

Time-scale modification of signals is another area where short-time spectral processing plays

an important role. The basic problem is to compress or expand the signal without changing its

short-time spectral characteristics. In other words, the rate of change of the spectral characteris-

tics is to be modified without significantly changing the principal frequency locations of spectral

energy within the various short-time sections. In speech, such processing corresponds to a

change in the apparent rate of articulation without any appreciable degradation of perceptual

quality. M. Portnoff 71 has developed a time-scale modification technique based on the short-

time spectrum. The technique applies a linear time-scaling to the short-time spectrum and then

divides an estimate of the unwrapped phase [1] of the short-time spectrum by a factor propor-

tional to the desired rate of time compression or expansion. Finally, the processed short-time

spectrum is used to synthesize an estimate of the time-scale modified signal. Throughout this

technique, both the magnitude and phase of the short-time spectrum are used. However, if signal

estimation could be done directly from the processed short-time spectral magnitude, the phase

processing would be avoided. Thus, in this case, a major incentive for developing techniques for

signal estimation from short-time spectral magnitude is to avoid the computational expense asso-

ciated with phase processing.

1.3 Previous Investigations

The magnitude of the short-time spectrum was the subject of investigations even before the

short-time spectrum itself. In particular, researchers were motivated to study the short-time spec-

tral magnitude because it was physically easier to estimate for signals such as speech. The first

formal definition of the short-time spectral magnitude was introduced by R. Fano [8] in his stu-

dies on speech analysis. Investigations by R. Fano, M. Schroeder and B. Atal [9], and A.

Kharkevich [10] were responsible for developing many aspects of short-time spectral analysis.
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C. Weinstein [3] formally showed that continuous as well as discrete-time signals can be

uniquely determined from the short-time spectrum to within a scale factor. Other investigators

such as J. Allen [4] and M. Portnoff [5] have further refined the results obtained by C. Wein-

stein. For example, several different procedures have been established for signal reconstruction

from the short-time spectrum. Portnoff has recently introduced an elegant approach to signal

reconstruction from short-time spectrum. This approach includes previously established recon-

struction procedures as special cases. As a consequence of all these studies, the short-time spec-

trum has become a very useful signal representation for various signal processing purposes.

The question of unique signal representation with the magnitude of the short-time spectrum

has remained mostly unresolved. A study by Weinstein [31 showed the uniqueness of the short-

time spectral magnitude only for a very restricted class of signals and analysis windows. In partic-

ular, his approach was based on the property that minimum phase signals are uniquely specified

by their spectral magnitude. He observed that if each short-time section were minimum phase,

we could uniquely reconstruct the short-time sections from their spectral magnitudes. If there is

sufficient overlap between short-time sections, all the samples of the original signal may then be

obtained by dividing out the analysis window from the various short-time sections.

More recently, an alternative approach to unique signal representation with short-time

spectral magnitude was used by R. Altes [11]. This approach places no restriction on the signal

to be represented. However, the analysis window is required to satisfy a condition which in

practice means that the analysis window has to be longer than the signal. These results were

obtained using a relationship between the short-time spectral magnitude and an ambiguity func-

tion, which for a discrete-time signal x (n ) is defined as

A,(n,w) = x(m)x(n-m)ej (1.2)
M =--

The results derived by R. Altes show that if the analysis window w (n ) is such that Aw (n ,w):0

for any pair n ,, then the signal x (n) can be uniquely determined up to a sign factor from the

magnitude of Xw (n ,w). Furthermore, if x (n ) is restricted to be a finite-length signal, then the

_-1 __ 11_______---- I-U-I^11- 1 1
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requirement on w (n) is that A, (n ,w) must not be zero for values of n for which A x(n ,) is

nonzero. From (1.2), it can be easily observed that the time duration of the ambiguity function

is proportional to the time duration of the signal it represents. Hence, this approach gives condi-

tions that are sufficient for unique signal representation with short-time spectral magnitude only

for cases where the analysis window is longer than the signal being represented.

In short-time spectral processing we are generally interested in analysis windows whose

lengths are much shorter than the signal to be processed. In this thesis, we present results which

show that the uniqueness of the short-time spectral magnitude for signal representation can also

be extended to such cases.

1.4 Outline of Thesis

In this thesis, we show that in many practical situations a discrete-time signal is uniquely

represented by its short-time spectral magnitude. The key assumption in these results is that the

analysis window is a known finite-length sequence. In such cases, it is seen that if there is suffi-

cient overlap between short-time sections, the problem of determining a signal from its short-

time spectral magnitude requires certain results on the extrapolation of finite-length signals from

(long-time) spectral magnitude. Such results are derived in chapter 2 of this thesis and then used

in chapter 3 for developing :onditions under which the short-time spectral magnitude is a unique

signal representation.

For practical applications, it is necessary to obtain algorithms for signal reconstruction from

samples of the short-time spectral magnitude. In chapter 4, we present a number of such algo-

rithms with various implementation properties. These algorithms have been successfully imple-

mented for the reconstruction of speech signals. They also offer similar potential for other appli-

cation areas, including those with multidimensional signals.

In general, processing the short-time spectral magnitude results in a function which does not

correspond to the short-time spectral magnitude of any signal. An important contribution of this
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thesis is the development of signal reconstruction algorithms that yield reasonable signal estimates

from the processed short-time spectral magnitude. Some general issues involved in applying the

signal reconstruction algorithms to the processed short-time spectral magnitude are discussed in

chapter 5.

The final chapters of this thesis consider the application of the various ideas in chapters 2 to

5 to the problems of time-scale modification and noise reduction, particularly in the context of

speech processing. For time-scale modification, we have implemented a procedure whose perfor-

mance is comparable to previous systems based on both the magnitude and the phase of the

short-time spectrum. In contrast, however, our technique has significantly less computational

complexity.Furthermore, we have also implemented a short-time spectral processing technique

for noise reduction that estimates the processed short-time spectral phase from the processed

short-time spectral magnitude. The performance thus obtained appears comparable to that

obtained with techniques that require both the magnitude and phase of the short-time spectrum

of the noisy signal.

-.( I_� · _I� I_ IIIIIIIIIPtl�---. - ·I_�·I -_1^ �
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CHAPTER TWO: SIGNAL EXTRAPOLATION FROM

SPECTRAL MAGNITUDE

In this chapter, we derive theorems on the extrapolation of discrete-time signals from their

(long-time) spectral magnitude. Besides being important theoretical results in their own right,

these theorems play a central role in deriving conditions under which the short-time spectral

magnitude is a unique signal representation.

In discrete-time signal extrapolation, a signal x(n) known up to n =n' is extended for

n >n', maintaining consistency with all a -priori knowledge on x (n ). The signals considered in

this chapter are known to be zero outside an interval 0 n N for some positive integer N. The

particular location of this interval on the n-axis is for notational convenience only ; none of the

results derived in this chapter are affected by any shift in this location. Given x (n) for

0 S n - M where M < N, we wish to extrapolate x(n) up to n =N, using the spectral magni-

tude, X (o) I, where

X(w)= x(n) c-jn (2.1)

Furthermore, we are interested in determining conditions under which the extrapolation is

unique. Section 2.2 derives two theorems on such extrapolation for the case in which only the

sample x (N) is unknown. This is referred to as single sample extrapolation. Section 2.3 presents

a theorem for the more general case, where several samples of x (n) are extrapolated. These

theorems are used extensively in Chapter 3 for deriving conditions under which the short-time

spectral magnitude is a unique signal representation. The relationship between the theorems in

this chapter and the uniqueness of the short-time spectral magnitude is discussed in the following

section.

_III____I_�Y_·_1LI________I .- ·- � -- _
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2.1 Relation to Short-Time Spectral Magnitude

For a signal x (n ) and a positive integer L, the short-time spectral magnitude is given by

SW (nL ,o)= j x (m)w (nL-m)e -j 12 (2.2)
A, = -x

where the subscript w in S,, (nL ,) refers to the signal w (n), known as the analysis window. In

the sliding -window interpretation [5] of (2.2), the time-reversed analysis window w (-n ) shifts

along the n-axis. After each shift of L samples, w (-n) is multiplied with x (n ); each product is

called a short-time section of x (n). The spectral magnitude of the short-time section for a partic-

ular window shift of noL gives the frequency variation of Sw (nL,w) for n =no. The extent of

any particular analysis window position is defined as the region outside which the samples of the

window are all zero. Then the overlap of two analysis windows is defined as the intersection of

their extents. Note that when L has minimum value 1, adjacent analysis window positions have

maximum overlap for the allowable positive integer values of L. In this case, the short-time spec-

tral magnitude is said to be computed with maximum analysis window overlap. Finally, when

L >1, the short-time spectral magnitude is said to be computed with partial analysis window over-

lap.

If there were a unique correspondence between signals and their spectral magnitudes, the

various short-time sections of x (n ) could be uniquely determined from their spectral magnitudes

in Sw (nL ,w). However, the theory of all-pass spectral transformations [1] tells us that a signal is

not uniquely specified by its spectral magnitude. For example, x (n) and x (-n) have the same

spectral magnitude. More generally, when any poles and zeros of x(n) are replaced by the

inverse of their complex conjugates, a signal y (n) is obtained which has the same spectral magni-

tude as x (n). If any of the replaced poles and zeros is not on the unit circle, y (n) is different

from x(n). Fortunately, S(nL ,) has additional information about the short-time sections

besides their spectral magnitudes. This information is contained in the overlap of the analysis

window positions. For example, if one of the short-time sections is known, then the signals
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corresponding to the spectral magnitude of an adjacent section have to be consistent in the region

of overlap with the known short-time section. That is, the two sections should be identical in

that region after dividing each of their non-zero samples by the corresponding samples of the

analysis window. We will show in this chapter that the samples in the region of overlap can be

uniquely extrapolated to obtain the entire unknown section.

Suppose S, (nL ,) is computed under conditions such that knowledge of any short-time sec-

tion leads to the unique extrapolation of its neighboring short-time sections. Then, knowledge of

just one particular short-time section triggers a series of extrapolations, where as a new short-

time section is extrapolated, it becomes possible to extrapolate a succeeding short-time section

that overlaps the one just extrapolated. Once all the short-time sections have been determined in

this way, the final step is to combine these sections for obtaining the entire signal. Chapter 3

uses exactly such an extrapolation approach to determine conditions under which S, (nL ,w) is a

unique signal representation.

From the above discussion, it follows that the major theoretical problem in establishing

unique correspondence between x(n) and S, (nL ,w) is one of signal extrapolation. Specifically,

we wish to extrapolate a short-time section beyond its known samples, using its spectral magni-

tude. If the analysis window has finite extent, the resulting problem is equivalent to the extrapo-

lation problem considered in this chapter.

2.2 Single-Sample Extrapolation

Consider a discrete-time signal x(n) that is zero outside the interval 0 -- n N.

Theorems 2.1 and 2.2 of this section show that the sample x (N) can be uniquely obtained from

the spectral magnitude , IX () , and x(n) for 0 n< N. However, the two theorems differ

from each other in the number of samples of x (n) and the number of samples of X (o) I actu-

ally used to accomplish the extrapolation. Compared to Theorem 2.2, Theorem 2.1 requires

fewer samples of x (n ). On the other hand, Theorem 2.2 requires fewer samples of IX () than

I·��L·� 11III11 I�----··--·lpi·__ II P--lll�-·l(l
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Theorem 2.1.

Theorem 2.1

Let x(n) be a sequence that is zero outside the interval 0 n N. Suppose x(0) is nonzero.

Then, 2N or more samples of IX (wo) over one period of 2r and the sample x (0) uniquely speci-

fy the sample x (N).

Proof:

From X (w) 2 the autocorrelation function R (n ) of x(n) is obtained through the inverse

Fourier transform.

R(n) = i x(m)x(n+m) (2.3)
m=-x

Since x (0) is the first non-zero sample of x (n ) and x (n )=0 for n >N, it follows that ( see Figure

2.1)

R (N) = x(0) x(N) (2.4)

Therefore, since x (0) is assumed known,

x(N) = R(N) / x(0) (2.5)

Note that the autocorrelation value R (N) is the only information derived from IX (ow) . Since,

x (n ) is N +1 points long, R (n) is 2N + 1 points long and an even function of n. Thus, the entire

sequence R (n) can be obtained without aliasing with a 2N +1 point Inverse Discrete Fourier

Transform (IDFT) of X (wo) 2. However, with a 2N point IDFT, the sample R (N) will be

aliased with the sample R(-N-1). Since R (N)=R (-N), it follows that 2R (N) can be obtained

through a 2N point IDFT, requiring only 2N uniformly spaced samples of X (X) 12. This com-

pletes the proof of Theorem 2.1.
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The next theorem also concerns single sample extrapolation of finite-length signals. How-

ever, it uses a totally different approach in extrapolating x(N) from the preceding samples of

x(n) and X().w) In contrast to the proof of Theorem 2.1, the values of X(w)1 2 are used

directly in the extrapolation instead of first obtaining the autocorrelation R (n) of x (n).

Theorem 2.2

Let x (n) be a sequence that is zero outside the interval 0 < n N . Assume that there is at least

one non-zero sample of x (n) in the interval 0 n < N. Then, x (n) for 0 n < N and two ap-

propriately chosen samples of X(w) , uniquely specify the sample x (N).

Proof:

Let y (n)-=x (n )w (n) where w (n ) is given by

05-n <N -I
w (n) = otherwise (2.6)

Let Y () denote the spectrum of y (n). Then,

x(w) = Y(w) + x(N) c-Ji (2.7)

Taking the magnitude squared of both sides and rearranging the terms,

x 2 (N) + b(w) (N) + c () = 0 (2.8)

where:

b(w)=2 Re [Y(o) CeJN] (2.9)

c () = IY () 12- IX () 12 (2.10)

Note that b (w) and c (c) can both be determined from IX (w) I and the N-i samples preceding

x(N). When (2.8) is solved for x(N), there are two solutions for each value of w. Consider two

distinct values of w, say w1 and 2, in the interval [0, r]. Assume that at least one of b () and

_ _
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c (X) changes when o0 is changed from w1 to 2. Then, from the properties of quadratic equa-

tions, the two solutions associated with w1 cannot be the same as the pair of solutions for 02.

However, one of the solutions must be identical and that is the true value of x(N). It now

remains to show that provided the N-1 values preceeding x (n) are not all zero, one can always

find w1 and w2 for which two different quadratic equations are obtained from (2.8).

Two values of giving two distinct equations from (2.8) can be found if b () is not

independent of w. Our approach here will be to show that b (w) is independent of o in only one

case -- when the N samples preceding x (N) are all zero. The sequence y (n) falls in the region

0 n < N. Thus, the inverse Fourier transform of Y(w)eJ , denoted by y(n), falls in the

region -N - n < 0. However, for b () not to depend on o, the Fourier transform of y (n)

must have a constant real part. That is, y(n) must be of the form A 6(n) + q (n) where A is

real, (n) is the unit sample sequence, and q(n) is an odd sequence. Therefore b (o) is indepen-

dent of only when y(n)=0 for all n, i.e., the N values preceeding x(N) are all zero. In this

situation, c (Z) from (2.10) is also independent of w. Thus, when the N samples of x(n) preced-

ing x(N) are all zero, this is the only situation when (2.8) does-not have a unique solution for

x(N).

In fact, such values of w can be found even when the various frequency functions are sam-

pled at the rate 27r/M where M -2N -2. In such a case, y (n) is replaced by

(in) = C (n+pM) (2.22)

The requirement that b (2irr/M) be independent of r then becomes the requirement that (n) be

an odd sequence. It can be verified that y (n) is odd if and only if y (n)=0 for all n. This com-

pletes the derivation.

2.3 Multiple Samples Extrapolation

This section presents a theorem on the extrapolation of of a finite-length sequence x (n)

II�I� -II·�-�L·L�-- 1^------�------ 11111�---_11 �---�-���
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with more than one unknown sample, using the spectral magnitude, X (w) |. Once again, x (a) is

assumed zero outside the interval 0 n N. As indicated in the beginning of this chapter, the

location of this interval on the n-axis may be changed without affecting the results derived here.

It should be noted that theorem 2.3 below uses the autocorrelation function, R (n ), of x (n )

to determine the unknown samples. This is analogous to the way x(N) was determined from

R (n) in the proof of theorem 2.1. In fact, theorem 2.1 can be derived as a corollary of theorem

2.3. However, we chose not to do this in order to emphasize the simplicity of the direct proof of

theorem 2.1.

Theorem 2.3

Let x(n) be a sequence that is zero outside the interval 0 < n N. Suppose x(0) is non-zero.

Then, 2N or more samples of IX () over one period of 27r and the P samples of x (n ) in the

interval 0 -- n <P uniquely specify the entire sequence x(n) if and only ff P 2 r[M/2

(where M =N +1 and a I is the smallest integer greater or equal to a).

Proof:

Throughout this proof, the samples of x (n) for 0 s n < P will be referred to as the inital P

samples of x(n). We first provide a counter-example to show that if P < M/2 ], then x(n)

cannot in general be uniquely specified by X (w) and the initial P samples.

With P < LM2 consider any sequence x(n) such that x(n)=x(M-1-n) for

n=0,1,...P-1, and x(n)$x(M-1-n) for n=P,P+I,...,M-P-1 (See Figure 2.2). Then, the

sequences x(n) and y (n)=x (M-1-n) have the same samples for n =0,1,...P -1. Furthermore,

since y (n) is a time-reversed version of x(n), the two sequences have the same Fourier

transform magnitude [1]. Since x (n ) x (M -1-n) for n =P ,P +1,...,M-P -1, y (n ) and

I - - - -
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0 P-1 M

Counter-example for the Proof of Theorem 2.3

0 P-1 M
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x (n ) ae distinct. Thus, the initial P samples and IX (X) are not sufficient to uniquely represent

x(n).

We now develop a procedure for uniquely recovering the unknown samples of x (n) when

P> [M/2 . From 2N uniform samples of IX () , we saw in the proof of Theorem 2.1 that the

autocorrelation R (n) of x (n) can be obtained.

M-1-n

R(n) =x(n)*x(-n) = x(m)x(n+m) (2.11)

Consider the case where M is even. From (2.11), M/2 linear equations are obtained in M/2 unk-

nowns, x(M/2),x((M/2)+1),...,x(M -1). In matrix form these equations are:

x (0) X (M -1) R (M-1)
x(1) x(0) x(M -2) R (M -2)
x(2) x(1)

(2.12)

x((M/2)-1) x((M /2)-2) . . x. ((0 2) ) R(M/2)

The left matrix is lower triangular with all diagonal elements x (0). Since x (0)*0 by assumption,

this matrix is invertible. Thus, a unique solution exists for x(n), n=M/2,(M/2)+,...M-1. For

M odd, the [M/2J unknowns, x((M +1)2),x(((M+1)/2)+1),...,x(M-1), are solved for

through a set of equations similar to (2.12). Thus, for P- rM/21, the usiqeess of xn) fl-

lows regardless of whether M is even or odd.

The one remaining case is when M is odd and P = LM/2 J. In this case, our theorem asserts

that a unique solution for x(n) does not exist. To show this, consider the sequence x(n) to be

such that x(n)=-x(M-1-n) for n =0,1,...P -1, and x (P )0. Then, the sequences x(n) and

y (n)=-x(M - 1-n) have the same samples for n =0,1,...P -1 and y (P)= -x (P). On the other

hand, it is easily seen that Y(t) = JX () . This completes the proof of Theorem 2.3.
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CHAPTER THREE: SIGNAL REPRESENTATION WITH

SHORT-TIME SPECTRAL MAGNITUDE

In this chapter, we address the problem of uniquely representing a signal by its short-time

spectral magnitude. We assume that the analysis window of the short time spectrum is a known

finite-length sequence. This permits us to use the extrapolation theorems of chapter 2 for

developing conditions which ensure unique correspondence between a signal and its short-time

spectral magnitude. These conditions place restrictions on the finite-length analysis window as

well as the signal being represented. The need for such conditions is discussed in section 3.1. In

section 3.2 we present various conditions for unique signal representation with the short-time

spectral magnitude. Most of these conditions concern the representation of one -sided signals.

That is, signals which are always zero either before (right-sided) or after (left-sided) some point

on the time axis. These conditions do not represent all the possible situations in which a signal is

uniquely specified by its short-time spectral magnitude. However, the conditions we develop are

broad enough to be of significant practical interest, as illustrated in later chapters. This chapter

closes with section 3.3 which shows how the uniqueness conditions can be easily extended to the

short-time spectral magnitude of multidimensional signals.

3.1 Uniqueness Problems

For a signal x(n) and a positive integer L, the short-time spectral magnitude is given by

S(nL ,a)= | x X (m )w (nL-m)e -Jw 12 (3.1)

where the subscript w in S, (nL ,w) refers to the analysis window, w (n). In the sliding window

intprpretation [5], Sw (nL ,w) for each n is viewed as representing the spectral magnitude of the

short-time section f(m)=x(m)w(nL-m). When L=1, the short-time spectral magnitude is

said to have maximum analysis window overlap. On the other hand, if L >1, the short-time spec-

IU--LI- *U.I^·I-C I I Il--·lCI- C·-
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tral magnitude has partial analysis window overlap. In this section, we discuss some situations

where x(n) is not uniquely represented by S, (nL ,w). This helps us select the conditions

developed in the next two sections for ensuring unique specification of x (n ) with SW (nL ,).

At least one condition is easily shown to be necessary on x (n) for unique correspondence

with the short-time spectral magnitude, Sw (nL ,o). In expression (3.1) for Sw (nL ,O), when x (n)

is replaced by -x(n), the minus sign is absorbed by the absolute value operation. Thus, x(n)

and -x (n) have the same short-time spectral magnitude. This ambiguity may be resolved, for

example, by knowing the sign of some non-zero sample of x (n).

In the case of a finite-length analysis window, a gap of zero samples between two non-zero

portions of x(n) can also lead to ambiguity in signal representation with S(nL,wo). Suppose

x(n) is the sum of two signals, xl(n) and x 2(n), occupying different regions of the n-axis ( See

Figure 3.1 ). Suppose that the gap of zeros between xl(n) and x 2(n) is large enough so that

there is no analysis window position for which the corresponding short-time section includes

non-zero contribution from xl(n) as well as x 2(n). Clearly, in such a situation, the short-time

spectral magnitude of x(n) is the sum of the short-time spectral magnitudes of xl(n) and x 2(n).

However, we previously saw that a signal and its negative have the same short-time spectral

magnitude. It follows that x(n) has the same short-time spectral magnitude as the signals

obtained from the differences xl(n) - x 2(n) and x 2(n) - xl(n) ( See Figure 3.1 ). We con-

clude that if there is a large enough gap of zero samples, there will be sign ambiguities on either

side of the gap. Consequently, all the uniqueness conditions developed in this chapter include a

restriction on the length of zero gaps between non-zero portions of the signal.

In section 3.2 we will see that S, (nL ,) with L =1 uniquely specifies a one-sided signal

x (n) under conditions whose only restriction on x (n) is a limit on the size of any zero gaps. The

known analysis window is restricted to have no zero samples within its finite length. This condi-

tion is satisfied by commonly used rectangular, triangular, Hamming and Harming windows.
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Xl(n) N-1 x 2 (n)

-X l(n ) -x 2(n )

xl(n) -x,(n)

- - - I1

-xl(n) x 2 (n)

Four Sequences with same S, (n ,o)
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With such analysis windows, we will now see that for L > 1 in Sw (nL ,w), the zero gap restric-

tion on x (n) is not sufficient to guarantee signal specification even up to a sign ambiguity. To

show this, we construct a class of sequences that have no zero samples between any two nonzero

samples; these sequences have the property that they are not specified even up to a sign factor by

Sw (nL ,w) with L >1 and w (n) a rectangular window whose length is a multiple of L.

For M >1 construct M sequences xi (n), i=1,2,...,M where each xi (n) has finite length L

and falls in the region I<n L. Furthermore, constrain the z-transform X i (z) of each x i (n) to

have Q of its zeros from an arbitrarily specified set al,a2,...,aQ, none of which lie on the unit

circle and Q <L. Thus, for each i, Xi (z) can be factored as

Xi(z) = (1-ajzz )]i(z) (3.2)
ji=l.

Now, let

x(n)=xl(n)+x2 (n-L)+ +xM(n-(M -1)L) (3.3)

Then, the z-transform of x (n) is

X(z)=X 1(z)+Z -X 2(z)+ -( -)X ( )

[fiA(1-ajz -)][ -'Z j+1(z)] (3.4)
j=1 j=o

which also contains the zeros aj for j=1,2,...,Q .

Now consider an analysis window wl(n) defined for some integer r>l by

I 0--n <rL
wj1(n) = lo otherwise

Observe that Yk (n)=x (n)w l(kL -n) for any fixed k is given by

Yk (n )-x ( -(j- 1)L )xj + l(n -jL )+... +xp (n -(p -1)L ) (3.5)

for some consecutive integers ,j +1, · · · p determined from the set {1,2,...,M}. Clearly, the z-

transform Yk (z) of each Yk (n) has a ,a 2,. ..,aQ among its zeros. Thus, if one or more of the ai 's

is reflected about the unit circle to 1/ai then IX(w) as well as Ik () for each k remains the

same [1]. Thus, there are 2Q distinct sequences with the same Y(w) =S,,(nL ,w). Of course,
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from those 2Q sequences another 2Q sequences with the same S, (nL w) are obtained by forming

the negative of the first 2 sequences. Thus, there are 2Q +1 distinct sequences with the same

S, (nL ,). Recall the maximum attainable Q is L -1. Also note that each xi(n) can be chosen

to guarantee x (n ) is non-zero over its finite length. Thus, with L >1, a class of sequences with

no zeros between nonzero samples have more than just a sign ambiguity in their representation

with S(nL ,w). For example, even with L =2 their exist finite-length sequences with no zero

samples over their duration such that there is an ambiguity of 22 = 4 in the representation with

S, (nL ,w).

We have established that for unique specification of x(n) by Sw(nL,o) with L > 1, we

require additional information on x (n) besides the one-sided and zero gap restrictions. In section

3.2.2, knowledge of the L initial samples of x (n ) is found to be sufficient for this purpose. This

condition arises naturally from the extrapolation approach used in deriving the various results in

the remainder of this chapter.

3.2 Uniqueness Conditions

In this section, we present various conditions and their derivations for uniquely representing

a signal with its short-time spectral magnitude. The analysis window of the short-time spectrum

is assumed to be a known finite-length sequence. The uniqueness conditions presented are

sufficient but not necessary to guarantee unique correspondence between a signal and its short-

time spectral magnitude These conditions are divided in this section into two main categories,

according to whether or not maximum analysis window overlap is used in the computation of the

short-time spectrum.
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3.2.1 Maximum Analysis Window Overlap

The short-time spectral magnitude S, (nL ,w), defined in (3.1), may be viewed for each n

as the spectral magnitude of the short-time section fn, (m) = x (n )w (nL -m). When n is incre-

mented by one, the time-reversed analysis window w (nL -m ) shifts L sample positions. Since

(3.1) is defined for positive integer values of L, it is clear that with L =1, adjacent analysis win-

dow positions have maximum overlap. In this case, we denote the short-time spectral magnitude

by Sw (n ,w).

We are interested in developing conditions that guarantee unique signal representation with

Sw (n ,o) when the analysis window is a known finite-length sequence. For this purpose,

Theorem 2.1 on single sample extrapolation of finite-length sequnces is extremely useful. For

easy reference, we restate this theorem from chapter 2.

Theorem 2.1

Let x (n) be a sequence that is zero outside the interval 0 - n - N. Suppose x (0) is nonzero.

Then, 2N or more samples of X (w) over one period of 2 and the sample x(0) uniquely

specify the sample x (N).

Although the theorem is stated for x (n ) in the interval 0 n - N, it also holds for x (n ) in

any other interval on the n-axis. This is accomplished by a change of reference on the n-axis such

that the first non-zero sample of x (n ) falls at the origin of the new coordinate system.

We now state our first set of conditions for uniquely specifying a signal x (n) with Sw (n ,).

In this case we restrict the signal x(n) to be one-sided. That is, x(n)=O for n<n' or n>n' for

some integer n'. Of course, the analysis window must have at least one non-zero sample so that

S,, (n ,) is not zero for all signals. Furthermore, we restrict w (n) to be non-zero over its finite

-
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length, N w . This simplifies the type of restriction imposed on x (n) for avoiding the zero gap

ambiguities discussed in section 3.1.

Conditions 3.1: For Representing x (n) Uniquely With S w (n ,w)

To show that S (n ,w) uniquely specifies the signal x (n ) under Conditions 3.1, let us con-

sider the case when the analysis window w (n ) is restricted to the interval 0 n <Nw. We do not

lose any generality with this assumption because it can be easily accounted for by a change of

reference on the n-axis. Under Conditions 3.1, we now show a procedure for recovering x (n)

from Sw (n ,w). The derivation is completed by showing that x (n ) is the only sequence that could

have been obtained from S, (n ,w) under Conditions 3.1.

We will consider only the case with x (n ) right-sided. The case with x (n) left-sided can be

proved analogously. Let n' be the smallest value of n such that x (n') is non-zero. Then, with

L =1 in (3.1) and w (n ) as assumed above, it follows that S,, (n ,) is zero for all n < n'. Furth-

ermore,

Sw (n' , ) = w2 (O) x2(n ' ) for all (3.6)

We then have

w (0)

w(n): a) Known sequence of finite length N,

b) No zeros within length N w

x(n): a) One-sided

b) At most N w -2 consecutive zero samples between any two non-zero samples

c) Sign of first non-zero sample known

(3.7)
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The sign ambiguity in this equation can be resolved since Conditions 3.1 specify the sign of the

first non-zero sample, x (n' ). Having determined x (n' ), the next step is to use Theorem 2. 1 for

obtaining x (n' +1). The short-time section f +l(m) = x (m)w (n' +1--m) has zero samples out-

side the interval n' c m s n' +1 and all its samples are known except at m =n' +1 where it

equals x (n' +1) w (0). The spectral magnitude Sw (n' +1,w) of this section is known. Thus, apply-

ing Theorem 2.1 with N=2, x(n' +1)w(0) can be extrapolated. Since, w(n) was assumed known

and non-zero over 0 c n- N, we divide x(n' +1)w(0) by w(O) to obtain x(n' +1). We now

continue such a procedure to determine each unknown sample of x(n) after the samples preced-

ing it have been determined. However, Theorem 3.1 requires that at least one of the N, -1

preceding samples be non-zero. This recursive procedure for determining x (n ) for n >n' can be

easily expressed in closed form. For each n, let r (m) denote the autocorrelation function

corresponding to Sw (n ,w). The autocorrelation function is given by

r(m ) = ~ x(k)w(n-k) x(k-m)w(n-(k-m)) (3.8)

Solving this equation for x (n), we obtain

R-1

rn (m) - z w(n -k)w(n-( k -nm))x(k) x(k-m)
x(n) =-(N-1) (3.9)

w ()w (m )x (n-m)

This is a valid equation only for values of m for which w (m )x (n -m ) is non-zero. Since w (m)

is non-zero only for 0 m < N w, we require that x(n-m) be non-zero for some m in

0 < m < N w . This leads to the requirement that x (n) have no more than N w -2 zero samples

between any two non-zero samples. This is consistent with our observation in section 3.1 that

there should not be a zero gap separating two non-zero portions of the signal such that no

analysis window position has contributions from both the non-zero portions. Since Conditions

3.1 include this requirement, it follows that the signal x (n ) can be obtained from Sw (n ,) using

the procedure we have just outlined.

Suppose there is another signal x' (n) satisfying Conditions 3.1 and for which the sign of

-
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the first non-zero sample is the same as the sign of the first non-zero sample of x (n). Since

Sw (n ,) has its first non-zero value at n =n', it follows that x' (n') must be the first non-zero

value of x' (n). We can then use the same reconstruction procedure for obtaining x' (n) from

S,(n ,o) as we used for obtaining x(n) from S,(n,o). However, that procedure only yielded

one answer. It follows that x(n)=x' (n). We conclude that x(n) is uniquely represented by

Sw (na ) under Conditions 3.1.

From section 3.1, we know that -x(n) has the same Sw(nL,m) as x(n). It follows that

under Conditions 3.1, -x (n) can be uniquely obtained from S, (n ,w). However, the only differ-

ence in obtaining x (n) and -x ( ) using the procedure outlined above is that different signs are

selected for x (n' ) in (3.7). It follows that without the a-priori sign knowledge in Conditions 3.1,

x(n) could have been obtained up to a sign ambiguity from S, (n ,w).

The following set of conditions deal with the sign ambiguity in the representation with

S, (n ,w) by restricting the class of signals under consideration to be non-negative. In this case,

the sign ambiguities due to any zero gaps also disappear.

Conditions 3.2: For Representing x (n) Uniquely With Sw (n ,w)

w(n): a) Known sequence of finite length and at least

one nonzero sample

x(n): a) One sided

b) Non-negative

This set of conditions as well as Conditions 3.1 restrict x (n ) to be one sided. Lets consider

extending the class of signals we can uniquely specify with the short-time spectral magnitude.
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To start the recursion of (3.9), knowledge of N W-1 consecutive samples of x(n) is suffi-

cient, provided one of those known samples is non-zero. Therefore, the requirement that x(n)

be one sided is not necessary. Furthermore, although the recursion was derived for increasing n,

a similar procedure can be derived for decreasing n. Using these observations, the following con-

ditions for unique signal representation with S, (n ,w) can be derived that apply to a wider class

of signals than Conditions 3.1.

Conditions 3.3: For Representing x (n ) Uniquely With Sw (n ,A)

w(n): a) Known sequence of finite length NW

b) No zeros within length Nw

x(n): a) NW -1 consecutive samples known, at least one of which is nonzero

b) At most Nw -2 consecutive zero samples between any two nonzero samples

3.2.2 Partial Analysis Window Overlap

We will now develop a set of conditions that are sufficient for uniquely specifying a signal

with its short-time spectral magnitude which is computed with partial analysis window overlap (

i.e. L >1 in S, (nL ,) ). The signal x(n) is restricted to be one-sided. Furthermore, the analysis

window w (n) is assumed to be a known sequence with no zero samples over its finite length. As

shown in section 3.1, even if we do not allow any zero samples within finite-length x(n ), there

are signals which are not specified even up to a sign ambiguity by Sw (nL ,o) with L >1. In the

conditions below, we counter those ambiguities with knowledge of L consecutive samples of the

signal, starting from the first non-zero sample.
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Conditions 3.4: For Representing x (n) Uniquely With SW (nL ,o)

In the above conditions x denotes the smallest integer greater or equal to x. The derivation of

these conditions relies heavily on Theorem 2.3 of chapter 2, restated below for easy reference.

Theorem 2.3

Let x (n) be a sequence that is zero outside the interval 0 n N. Suppose x (0) is non-zero.

Then, 2N or more samples of IX (X) in an interval of 2ir and the P samples of x (n ) in the in-

terval 0 n < P uniquely specify the entire sequence x(n) if and only if P - [M/2 ( where

M =N +1 and [al is the smallest integer greater or equal to a).

As indicated in chapter 2, this extrapolation theorem holds regardless of the position of

x(n) on the n axis. Let n' be the smallest n for which x(A)*0. Without loss of generality,

assume l<n'-<L (See Figure 3.2a). Let xL(n) denote a sequence which equals x(n) for

n' n < n' +L and is zero otherwise. Thus, xL(n) represents the L known initial samples

required by Conditions 3.4. Without loss of generality we assume that w (n) occupies the region

0sn <N,. Since xL (n) is known, it follows that x (n) under the analysis window w (L -n) is

L: a)1<L:S N12

w(n): a) Finite length N w >2

b) No zeros within length Nw

x(n): a) One-Sided

b) At most N, -2L consecutive zeros between any two nonzero samples

c) L consecutive samples known, starting from the first non-zero sample

. . ~ "~ `- -
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known. The first objective is to recover any unknown samples of x(n) over the duration of

w (2L-n).

In order to recover the unknown samples of x(n) under w (2L -n), consider the sequence

y 2 (n)=x(n)w(2L-n) illustrated in Figure 3.2b. Since PL and L5 [Nw/2j], knowledge of

XL (n) assures that at least L samples of y 2(n) beginning at n =n' are known. Furthermore, the

length of y2(n) is 2L -n' +1 and Lo r(2L -n' +1)/21. Therefore, applying Theorem 2.3, the

unknown samples of y2(n) are uniquely determined by S,(nL,o) and the initial conditions

XL (n ). Since w (n) is nonzero over its duration, the unknown values of x (n ) under w (2L -n ) are

obtained by division.

We have now determined x (n) up to n =2L. We will next show that if x (n) is known up to

n=(k'-1)L, then x(n) is uniquely determined up to n=k'L under Conditions 3.4. By

induction,x (n) is then uniquely determined for all n n'.

Consider the short-time segment Yk (n )=x(n)w(k'L -n) for a particular k =k'. Suppose

further that x(n) is known up to the last sample of w((k' -1)L -n), that is, up to n=(k' -1)L .

Then beginning at n =k'L -N w +1 (See Figure 3.3), N, -L consecutive samples of yk (n) are

known. The next objective is to recover the last L samples from the first N W-L samples of

Yk' (n). Clearly, the ability to do so depends on the value of L.

Suppose L> [Nw,/2. Then N-L<[Nw/21. Consequently, from Theorem 2.3, the unk-

nown L samples of Yk' (n) are not uniquely specified by Sw (k'L ,t).

Suppose 1<Ls [N,/2]. Furthermore, suppose that the initial value Yk'(k'L -Nw +1) is

non-zero. The N,-L values of Yk' (n) starting from n =k'L-NW +1 ae known. Since

N -L - [/21 and S (k'L ,t) is known, Yk' (n) is completely determined by using Theorem 2.3.

Now consider the cases when the first non-zero value of Yk' (n) occurs beyond n =k'L -N w +1. In

particular, suppose that there are at most J consecutive zeros in Yk, (n) starting at n =k'L -N w + 1



- 35 -

w (2L -n)

T------r----0---t

n' L 2L

* Known value

o Unknown value

1

Sequences for Proof of Conditions 3.4

w(L -n)

x(n)

y2(n)

�11_111

f-·-·-·-·-·-·-·-·-·-r

Fig. 3.2

i



- 36 -

(a)

w (k'L -n)

w ((k' -1)L -n)

x(n) r is
/

(k -2)L
(b)

Yk' (n)

4 I4

T
(k -1)L

fi LLI___
kL

N-L

(c)
Y, (n)

/ J I I L
-N+1) N

-Nii

* Known value

o Unknown value

Sequences for Proof of Conditions 3.4

--- · ·-- r

yk, (k'L -N +1)
L

yk' (k'L

j - .., II l - - ..-
! III

S - -· !"-- - - -

r�-·-·-·-·-C�-·-l

{

f1

Fig. 3.3



- 37-

(See Figure 3.3c). Lets find the largest J for which the L unknown samples of Yk' (n) can be

determined. Theorem 2.3 requires at least L known samples preceeding the L unknown samples.

Thus, the maximum allowable value of J is N W- [L +L ] =N, -2L. This is consistent with Condi-

tions 3.4.

We have shown that x(n) can be uniquely determined from S,(nL ,w) under Conditions

3.4. Suppose another signal x' (n) also had the short-time spectrum S, (nL ,w) and satisfied Con-

ditions 3.4 with the same initial L known samples as x(n). Applying the procedure outlined

above, we obtain x' (n). However , the procedure is identical to the one used for obtaining

x (n). Since the procedure gives a unique answer, it follows that x' (n )=x (n ). Thus, under Con-

ditions 3.4, a signal is uniquely represented by its short-time spectral magnitude.

3.3 Multidimensional Extension

This section extends signal representation with short-time spectral magnitude to multidi-

mensional discrete-time signals. Since the extension is conceptually straightforward but notatioa-

ally cumbersome, it will be presented here only for the short-time spectral magnitude with max-

imum analysis window overlap and for two-dimensional signals with finite support. For a two

dimensional signal x (n ,m ), the short-time spectral magnitude is given by

---- -1- _ I I _ _1 -_ ~ _
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S.(n,nm;Wv)=l z X(mlM2)(n m lm - m)C-i_2 leb-iumel
m1=- m2 -%

where w (n ,m ) is the two dimensional analysis window.

Let x (n ,m)]N represent the dass of two-dimensional signals whose finite regions of sup-

port contain no blocks of zeros larger than (N-2) x (N-2). This is a generalization of the one-

dimensional condition of finite length with no gaps of more than N-2 zeros within the length.

Then, the following conditions are sufficient for reconstruction up to a sign ambiguity.

The derivation of these conditions is analogous to the ones used for one dimensional sig-

nals. In particular, a sequential reconstruction procedures can be easily designed in a manner

similar to the sequential extrapolation procedures based on the theorems in chapter 2. One such

procedure for obtaining x (n ,m) proceeds along successive columns (rows). Suppose, in particu-

lar, that x (n ,m ) has been computed up to the (k-lth) column and (r-l)th row (See Figure 3.4a).

Then the next value can be determined from the autocorrelation of the region shown in the box

along with all the known samples within the box in a manner analogous to that for one-

dimensional signals. An alternative method of computation proceeds along successive lines of

the form m = -n +n' for some constant n'. This approach is illustrated in Figure 3.4b.

w(n,m): a) Non-zero over its NxN rectangular support

x(n,m): a) Belongs to [x(n ,m )IN

b) Sign of one non-zero sample known

I - --
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CHAPTER FOUR: SIGNAL RECONSTRUCTION FROM

SHORT-TIME SPECTRAL MAGNITUDE

We have established a number of conditions under which a signal is uniquely represented

by its short-time spectral magnitude. However, for such a signal representation to be practical,

we need techniques that reconstruct a signal from its short-time spectral magnitude. In this

chapter, we develop such techniques, particularly for rconstructing finite-length signals because

of their importance in practical applications. In chapter 3, we introduced one such technique

while developing conditions for unique signal correspondence with the short-time spectral magni-

tude. That technique belongs to a more general class of techniques described in section 4.1

which reconstruct the short-time sections of a signal in an order determined by their positions on

the time axis. We call this the sequential extrapolation approach.

The main characteristic of sequential extrapolation techniques is that they extrapolate each

short-time section using only its own spectral magnitude. A number of theorems were presented

in chapter 2 for such extrapolation and used in the reconstruction procedure of chapter 3. How-

ever, in those cases only a portion of the known information was used to perform the extrapola-

tion. In sections 4.2 and 4.3, we consider techniques which use more of the known information.

In particular, we develop techniques which require the extrapolated short-time section to match

the entire known information using various error criteria. This is particularly useful when the

known information is not exact. For example, we will see in section 4.4 that reconstruction tech-

niques of this chapter are less sensitive to round-off errors when compared to the extrapolation

procedures of chapter 2. Furthermore, in later chapters, we will see that these techniques give

better signal reconstructions when the short-time spectral magnitude is purposely modified for

accomplishing signal processing tasks such as noise reduction and time-scale modification of

speech.

The final section of this chapter presents an alternative reconstruction approach that is

referred to as simultaneous extrapolation. Rather than matching the known information for each
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short-time section individually, the idea is to choose all the unknown samples in a way that

minimizes an error criterion defined over the entire short-time spectral magnitude. However, the

resulting algorithms require the simultaneous solution of as many equations as there are samples

to be reconstructed. This becomes computationally prohibitive even for average length signals in

various applications. For reducing this computational complexity, one may consider extrapolat-

ing several short-time sections simultaneously, but extrapolating each such group in sequential

order. Such techniques have not been implemented in this thesis. However, they are expected to

perform even better than the sequential techniques of this chapter when applied to the time-scale

modification and noise reduction applications of chapters 6 and 7.

4.1 The Sequential Extrapolation Approach

The short-time spectral magnitude of a signal x (n) for a positive integer L and an analysis

window w (n) is given by

S,(nL,w) = | x(m)w(nL-)eJnJ 2 (4.1)

We assume that w (n) is a known sequence with no zero samples over its finite-length, NW.

Furthermore, these nonzero samples are in the region 0 - n < N. The signal x(n) finite-

length with no more than N W-2L - consecutive zeros separating any two nonzero samples for

L >1. If L =1, at most N w -2 consecutive zeros are allowed between two nonzero samples of

x(n). It is also assumed that the first nonzero sample of x(n) falls at n =O. Finally,we assume

that the L samples of x (n ) for 0 - n < L are known. These assumptions are necessary for all

the algorithms described in this chapter.

The sequential extrapolation approach to signal reconstruction from short-time spectral

magnitude is illustrated in Figure 4.1. The L known samples of x (n) completely determine the

short-time section corresponding to S (nL ,w) for n =1. The short-time section corresponding to

S, (nL ,co) for n =2 can then be extrapolated from its spectral magnitude and its known samples

_�
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x (n) : Finite Length with x (0) the first

nonzero sample

w (n) : Ncn-zero over O0n <Nw

Initialization
x (n) known for On <L
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Use known samples of x (n )

along with SW (kL ,) to

erminine x (n) for

(k -1)L n <k

Increment k by 1
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Test for N - S

conscitive zeros

Fig. 2... Sequential Extrapolation Approach
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in the region of overlap with the previously determined short-time section. This process continues

as the complete extrapolation of each new short-time section makes possible the extrapolation of

the next overlapping short-time section. The reconstruction stops when a short-time section is

encountered for which the known samples are not sufficient to complete the extrapolation. For

the conditions outlined at the beginning of this section we know from chapter 3, that the recon-

struction stops only after all the non-zero short-time sections have been extrapolated. Further-

more, since the analysis window is non-zero over the length of each short-time section, dividing

the short-time sections by the analysis window yields the required samples of the signal x (n).

The techniques used by the proofs of the various theorems in chapter 2 can be used for

accomplishing the extrapolation step of the sequential extrapolation approach. For example, in

section 3.1 of chapter 3 we used techniques in the proofs of Theorems 2.1 and 2.3 for the extra-

polation. In this section we apply the technique of the proof of Theorem 2.2 to the extrapolation

step. In that theorem we saw that the last sample of a finite-length signal ( i.e. a sample after

which the signal is always zero) can be extrapolated from the preceding samples and two

appropriately chosen samples of the spectral magnitude. In the proof of that theorem, it was

also shown that the two appropriate samples of the spectral magnitude can be found even if the

spectral magnitude is uniformly sampled in frequency with a rate greater than 27r/(2N -3).

For each n, let the short-time section of x (n) whose last sample falls at n be denoted by

f, (m). If the sample of fn (m) at m =n is replaced by zero, the resulting sequence is denoted by

g.(m) and its spectrum is denoted by G (o). Then, Theorem 2.2 solves for the sample x(n)

through the quadratic equation:

x 2 (n) + b(n,w)x(n) + c(n,w) = 0 (4.2)

where

b (n,) = 2Re[Gn(w)ee(n +N -)] (4.3)

and
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¢ (n ,) = Gn () 2-Sw (n,o) (4.4)

Observe that this technique uses only two frequency samples of S, (n ,w) for each value of

n. With speech waveforms we have found that any arbitrary selection of the two frequency

values generally yields two distinct quadratic equations. In particular, to reduce the computa-

tional load, a good choice is w=O and w=?r. In this case,(assume M even)

IG. (2r/M) I, 0= g,(m) (4.5)

IGn (2r/M )Ir=M/ = (t-1)m g (m) (4.6)

If the analysis window is rectangular, the computational load can be reduced further because

G, (o) can be computed recursively,

Gn (o)=G_l((w)e -j -g.(n -N, +l)e -ji( -N, l)+x(n - )e -j(n-1) (4.7)

We still have to address the problem of synthesizing the entire reconstructed signal from its

short-time sections. We have assumed that the analysis window is non-zero over its length N w. It

follows that we can divide each short-time section by the analysis window to obtain the

corresponding samples of the reconstructed signal. Alternatively, we can select the analysis win-

dow w (n) such that

w(nL-m) = 1.0 for all m (4.8)
A =-x

In such a case, the entire signal can be reconstructed by simply adding all its short-time sections.

4.2 Least-Squares Sequential Extrapolation

In this section we develop a least-squares technique for the short-time extrapolation step of

the sequential signal reconstruction procedure of the previous section ( See Figure 4.1 ). The

major idea here is to use more information from the short-time spectral magnitude than is strictly

necessary to reconstruct the signal. This makes the reconstruction algorithm more robust to

errors in the short-time spectral magnitude as will be seen in section 4.4 and later chapters. The

____��14___�__1� _ I--IC�---·--------X I�--·III1�-- ��-··-
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analysis window of the short-time spectrum and therefore the corresponding short-time sections

of the signal are assumed to be finite-length. From section 4.1, each short-time section is extra-

polated from a set of its known samples and the spectral magnitude of the section.

Let f (n ) be the short-time section being extrapolated. For simplifying notation, we assume

that f (0) is the first non-zero sample of f (n). However, the technique developed here is not

affected by the particular location of the first non-zero sample. Assume that the analysis window

is N w points long and thus f (n) is known to be zero for n NW. In the sequential extrapolation

approach, as outlined in Figure 4.1, the known samples of f (n) are in the range 0 -n < M

where M Nw / 2 for Nw even, and M - (Nw -1) / 2 for N odd. The problem is to extrapo-

late the unknown samples of f (n) in the range M -<n < N. For this we use a least-squares

algorithm that minimizes

E = (r(m)-s(m))2 (4.9)
m=-3

where r (m) is the autocorrelation function obtained by taking the inverse Fourier transform of

the squared spectral magnitude of f (n). The function s (m) represents the inverse Fourier

transform of the squared spectral magnitude of the reconstructed f (n). By Parseval's Theorem

[1], minimizng the above expression is equivalent to minimizing the integral over the squared

difference between the squared spectral magnitude of f (n ) and the squared spectral magnitude

of the reconstructed version of f (n ). Both r (m ) and s (m ) are autocorrelation functions of real

sequences that are at most NW samples long. It follows that r (m ) and s (m ) are even sequences of

maximum duration 2NW -1. Under such conditions, the minimization of (2.12) is equivalent to

minimizing

NV -1
E = (r(m)-s(m))2 (4.10)

To minimize E, we set its derivative with respect to the unknown samples of f (n) to zero. If

there are L unknown samples, this procedure yields a system of L simultaneous cubic equations

in the L unknowns. For example, if f (N w -1) is the only unknown, we get the following cubic
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equation:

N,, -1

2f 3(N -1)-(2r(0)-3t(O))f (N -1)- (r(m)-t(m))f (N, -1-m)=O (4.11)
=1

where t (m ) is the autocorrelation of the sequence obtained from f (n ) by setting f (Nw -1) equal

to zero. Generally, this equation will have two complex conjugate roots and one real root. If the

signal being reconstructed is known to be real, we clearly select the real root.

For situations with more than one unknown sample, the system of simultaneous cubic equa-

tions is difficult to solve. One possible approach to simplify the equations is to neglect some of

the terms in (4.10). If there are L unknowns and we neglect the terms for 0- m < L, we obtain

a set of L simultaneous linear equations in the L unknowns. For example, if L =1 we obtain the

following linear equation for f (N, -1).

(r(m)-t(m))f (N. 1-mn)
f (WN-1) N- -1 (4.12)

1 f (Nw-1-m )
m =

where t (m ) is the autocorrelation of the sequence obtained from f (n ) by setting f (N w -1) equal

to zero.

4.3 Iterative Sequential Extrapolation

In this section we develop an iterative technique for extrapolating a finite-length sequence

from certain of its known samples and the spectral magnitude of the sequence. This procedure

can be used for the extrapolation of each short-time section in the sequential extrapolation tech-

nique ( See Figure 4.1 ) for signal reconstruction from short-time spectral magnitude. As in the

least-squares technique, the main idea here is to develop a reconstruction algorithm that uses

more information than is strictly necessary to reconstruct the signal. In the following section as

well as in later chapters, this algorithm proves to be very robust to errors in the short-time spec-

tral magnitude information.

_-_ ^Il__1_ I 1 __ 
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Following the notation of section 4.2, let f (n) be the short-time section being extrapolated.

For simplifying notation, we assume that f (0) is the first non-zero sample of f (n ). Assuming

the analysis window is NW samples long, f (n) is known to be zero for n > N w . In the sequen-

tial extrapolation approach, as outlined in Figure 4.1, the known samples of f(n) are in the

range 0 sn < M where M z N, / 2 for Nw even and M - (N- 1) / 2 for N odd. In this sec-

tion, we present an iterative technique that goes back and forth between the time and frequency

domains, imposing the known constraints in each domain ( See Figure 4.2 ). The constraints

imposed in the time domain are all the known samples of f (n) outside the region M n < N.

On the other hand, in the frequency domain we impose the known spectral magnitude of f (n).

The goal is to have the technique converge to the correct answer for the unknown samples of

f (n) in the regionM n< N.

The problem of mathematically showing whether or not the iterative procedure outlined in

Figure 4.2 converges to any kind of answer has not been addressed in this thesis. However, we

have empirically observed that the procedure appears to converge to the correct answer in many

cases. In other instances, however, the procedure does appear to converge but not to the samples

we seek. In section 4.4 we will see that for signal reconstuction from short-time spectral magni-

tude, the failiure to converge to the right answer in some of the short-time sections leads to a

reconstructed signal quite different from the original signal. On the other hand, for speech sig-

nals, the reconstruction is quite ccessful in retaining most of the perceptual quality of the origi-

nal signal.

4.4 Reconstruction Examples

This section presents results of xperiments conducted to test the reconstruction algorithms

of this chapter on speech. In particular, we have tested the algorithms on the short-time spectral

magnitude of the speech waveform in Figure 4.3. This waveform corresponds to the sentence

-The bowl dropped from his hand', spoken by a female speaker. The processing was carried out

I
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on a PDP 11/50 with floating point arithmetic. For this processing, the waveform is sampled at

10kHz and the sampling quantization rate is 12 bits.

In the first experiment, the goal is to reconstruct the signal from Sw (n ,) using the sequen-

tial extrapolation approach based on the proof of Theorem 2.1. Specifically, the one unknown

sample in each short-time section is solved for by using just one sample from the autocorrelation

of the same short-time section. This approach was applied with rectangular as well as Hamming

analysis windows of various lengths. Using double precision (64 bits) floating point computa-

tion, the reconstruction was successful to within the 12 bit precision of the original speech signal

of Figure 4.3. For the case of a rectangular window of 32 points, the reconstruction from

S, (n ,) is shown in Figure 4.4. Signal reconstruction was also successfully accomplished for the

cases when the analysis window spacing L was slightly larger than unity. In these cases, we

applied the sequential extrapolation procedure based on the proof of Theorem 2.3 of chapter 2.

However, when the analysis window overlap was greater than 4, this reconstruction algorithm

failed very early in the signal. The failiure appears to occur due to computational errors that

arise because of successive divisions by very small signal values within a short-time section.

For larger analysis window spacing, we next tried signal reconstruction using the linear ver-

sion of the sequential least-squares technique of section 4.2. The analysis window is a 128-point

rectangular window. Using double precision, the computation was quite successful for window

spacings up to L =30. For example, the reconstruction for L =20 is shown in Figure 4.5. How-

ever, as L approaches N/2=64, there are not too many extra autocorrelation coefficients to make

the computation robust. The algorithm therefore fails for values of L much higher than 40.

Finally, we applied the sequential iterative algorithm to reconstruct signals with large

analysis window spacing. As indicated in section 4.3, this algorithm does not reconstruct the sig-

nal exactly. However, for speech applications the signal obtained from the iterative algorithm is

perceptually close to the original signal. For example, Figure 4.6 shows the reconstruction of the

speech in Figure 4.3 using the iterative reconstruction algorithm.
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The analysis window is a rectangular window of 128 points and the window spacing L is 64.

4.5 Simultaneous Extrapolation Approach

The emphasis in this thesis is on the sequential extrapolation algorithms of the previous sec-

tions for signal reconstruction from short-time spectral magnitude. However, other approaches

can be designed for reconstructing a signal from its short-time spectral magnitude. In this section,

we outline an approach which we refer to as simultaneous extrapolation. The main idea in this

approach is to use the spectral magnitudes of several ( possibly all ) short-time sections for deter-

mining their unknown samples simultaneously. This is in contrast to the sequential extrapolation

approach where each short-time section is extrapolated only on the basis of its own spectral mag-

nitude. Of course, we have seen that the spectral magnitude of just the one section is sufficient to

uniquely extrapolate the section under conditions we have been assuming in this chapter. How-

ever, in case of errors or purposeful modifications in the short-time spectral magnitude, we have

seen previously that it is useful to incorporate extra information in the reconstruction procedures.

For example, the least-squares and iterative techniques of the previous section used much more

of the spectral magnitude of each short-time section than the techniques based on the proofs of

the theorems in chapter 2. In the simultaneous extrapolation approach, we also wish to incor-

porate the spectral magnitude information on other short-time sections in the extrapolation of

any particular short-time section.

We will illustrate the simultaneous extrapolation approach by developing it as an extension

to the least-squares technique of section 4.2. The problem is to reconstruct a finite-length signal

x(n) from its short-time spectral magnitude, S(nL,w), under the conditions developed in

chapter three. In section 4.2, we showed that a set of L equations can be developed for L unk-

nowns in each short-time-section using least-squares error criteria. These equations were either

cubic or linear according to the particular error criterion used. Since the short-time sections

overlap with each other, solving for those L samples in each short-time section was shown to be

II� L.I�III-. .- 41�-�-11 1_1_ �-LLIL�--�-·---
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sufficient to reconstruct x (n). However, in section 4.2 we solved the equations separately for

each short-time section. In solving those equations, we used the already determined samples of

the short-time section immediately preceeding in time. Clearly, such a solution neglects the struc-

ture of the short-time spectrum that is contained in the overlap of any paticular short-time sec-

tion with the short-time section that follows it in time. This structure is important to exploit when

there are errors in the short-time spectral magnitude. In fact, the structure of the short-time spec-

trum extends over the entire time duration of the signal because of the overlap between all the

short-time sections. Therefore, in the simultaneous extrapolation approach, we simultaneously

solve several sets of L equations corresponding to a set of overlapping short-time sections. In the

extreme, one may solve for all the sets of equations for the entire signal simultaneously. How-

ever, this would generally be computationally prohibitive.

The simultaneous extrapolation techniques have not been implemented for this thesis. How-

ever, since they exploit more of the structure of the short-time spectrum, they are expected to

perform better than the sequential extrapolation techniques. On the other hand, we will see in

the following chapters that the sequential techniques perform quite reasonably in various speech

processing applications. The sequential techniques generally have the advantage of a simpler

computational structure.
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CHAPTER FIVE: SIGNAL ESTIMATION FROM

MODIFIED SHORT-TIME SPECTRAL MAGNITUDE

In many applications it is desirable to modify the short-time spectral magnitude of a signal.

For example, to smooth a noisy signal, the spectral magnitudes of the short-time sections may be

filtered independently according to their frequency characteristics. As discussed in section 5.1,

the structure of the short-time spectrum is very sensitive to such modifications [3,5]; the modified

function is generally not a valid short-time spectrum. It is of interest to estimate a signal in some

reasonable way from the modified short-time spectral magnitude. For example, we would like

to obtain a smoothed signal estimate from the filtered short-time spectral magnitude of a noisy

signal.

In section 5.2, we consider the issues involved in applying the signal reconstruction algo-

rithms of the previous chapter for signal estimation from modified short-time spectral magnitude.

In section 5.3, we discuss certain artifacts associated with signal estimates from modified short-

time spectral magnitude. Specifically, such estimates may contain abrupt changes at certain loca-

tions corresponding to the boundaries of short-time sections. The discussion includes possible

ways of suppressing these artifacts. In fact, for speech processing it is found that the sequential

iterative algorithm of the previous chapter is quite successful in suppressing the artifacts. Further-

more, even better performance is to be expected from simultaneous extrapolation algorithms.

5.1 Short-time Spectral Structure

An arbitrary function of time and frequency does not necessarily represent the short-time

spectral magnitude of a signal [3,5]. This is because the definition of the short-time spectrum

imposes a structure on its time and frequency variations. To see this structure, let us examine the

definition of the short-time spectrum

Xw (nL,) = x (m)w (nL -m) e -(J
j'

(5.1)
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This expression for X , (nL ,w) can be viewed for a fixed w as the convolution in n of x (n )e -j'n

with w (n). On the other hand, for a fixed n, we can view X, (nL ,o) as a convolution in fre-

quency through the following equivalent definition [5]

xw (nL ,) = fX(r!W (I-w)ej*-@)< dx

where X (w) and W (w) are the Fourier transforms of x (n ) and w (n ) respectively.

Another illustration of the structure in the short-time spectrum is obtained from the

interpretation of X, (nL ,w) as a collection of Fourier transforms obtained as window w(-n)

slides across x (n). In particular, consider the case when the analysis window w (n) is unity over

O0n <N and zero otherwise. Then X, (n'L ,w) for a particular n =n' is the Fourier transform of

the portion of x (n) over n'L -N <n -n'L . Similarly, X, ((n' +1)L ,) is the Fourier transform of

the portion of x(n) over (n' +1)L -N<n -(n' +1)L . Then, the inverse Fourier transforms of

Xw(n'L, o) and X((n' + 1)L ,) are the same over (n' + 1)L-N <n --n'L . Clearly, any two arbi-

trary Fourier transforms are unlikely to have such a property. Similarly, with two arbitrary

Fourier transform magnitudes, it is unlikely that any of the various sequences corresponding to

one Fourier transform magnitude overlaps in the desired way with any of the sequences

corresponding to the other Fourier transform magnitude.

5.2 Signal Estimation Algorithms

As in previous chapters, we define the short-time spectral magnitude of a sequence x (n) by

S.(nLs) = | x(m)w(nL-m) 2

m --

In chapters 3 and 4, we found sufficient conditions and corresponding algorithms for reconstruct-

ing the signal x (n ) from S, (nL ,). In this section, we consider using those reconstruction algo-

rithms for obtaining signal estimates from modified versions of S, (nL ,). We will denote any

modified versions of Sw (nL ,) by Mw (nL ,o).
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From section 5. 1, we know that M, (nL ,w) is generally not a valid short-time spectral mag-

nitude. Consequently, any algorithm that relies critically on the validity of the short-time spectral

magnitude performs poorly. This is the case, for example, in the sequential extrapolation algo-

rithms that use the extrapolation techniques in the proofs of theorems 2.1 and 2.3 of chapter

two. In those algorithms, only a part of the autocorrelation of each short-time section is used for

extrapolation of the unknown samples. This ensures that the extrapolated samples of each

short-time section are consistent with just a portion of that section's autocorrelation. When the

spectral magnitude is unmodified, the remaining portion of the section's autocorrelation is also

consistent with the extrapolation. However, if the spectral magnitude of the short-time section is

modified, there is no guarantee that the extrapolated samples will be consistent with the unused

portion of the autocorrelation. It is therefore desirable in such cases to use algorithms that extra-

polate each short-time section in a way that ensures as much consistency as possible with the

given autocorrelation. The least-squares and iterative extrapolation algorithms of the previous

chapter were designed for this purpose. Therefore, we will use the same techniques for signal

estimation from modified short-time spectral magnitude.

Another difficulty encountered in applying the techniques of chapter 4 for signal estimation

from Mw (nL ,) is that those techniques require a-priori knowledge of some initial samples of

the signal estimate. Our approach is to use a reasonable guess for those initial samples. For

example, the initial samples of the unprocessed signal, if known, may be used. The techniques of

chapter 4 were designed in order to be not too sensitive to modifications in the known informa-

tion such as the initial samples. We find this to be the case in speech applications such as those

discussed in chapters 6 and 7. The effect of errors in the initial signal samples as well as errors in

the short-time structure of M, (nL ,w) is discussed in the next section.
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5.3 Short-Time Boundary Artifacts

As discussed in section 5.1, processing the short-time spectral magnitude results in a func-

tion that in general does not correspond to the short-time spectral magnitude of any signal.

Furthermore, the algorithms of chapter 4 for signal reconstruction from the magnitude of the

short-time spectrum require a-priori knowledge of a certain number of initial signal samples.

However, in most applications, such information is impossible to obtain accurately. As a result

of such inaccuracies, certain artifacts arise at the boundaries of short-time sections in signal esti-

mates from the modified short-time spectral magnitude. In particular, we find abrupt changes in

signal value at certain locations corresponding to the boundaries of short-time sections. In this

section, we will study the origin of these artifacts and discuss ways of avoiding them. In fact, in

chapters 6 and 7 we will see that the sequential iterative algorithm of chapter 4 performs quite

well in this regard for speech processing applications.

To investigate the cause for such artifacts, let us consider a discrete-time signal x(n) with

short-time spectrum Xw nL ,). We now replace the short-time spectral phase of X, (nL ,o) by

some other arbitrarily selected phase function. In particular, consider any two overlapping

short-time sections of x (n). When the spectral phases of these sections are replaced by some

other phase functions, the time distribution of the two short-time sections changes. This distribu-

tion may range anywhere between minimum phase energy ( concentrated near smaller values of

n in the short-time section ) to maximum phase energy ( concentrated near larger values of n in

the short-time section ). Consequently, if the new phase functions were selected arbitrarily, there

is no guarantee that at-the boundaries of the short-time sections their time distributions will

match. For example, in Figure 5.1 we show the test waveform of Figure 4.3 with its short-time

spectral phase replaced by zero. The analysis window is a 128-point rectangular window.

Clearly, there are very abrupt transitions within this signal that were not present in the original

signal of Figure 4.3. Furthermore, the abrupt changes occur periodically and they actually

correspond to boundaries of short-time sections.
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We have thus established that given any short-time spectral magnitude, if a phase function

is selected for it arbitrarily, this will give rise to short-time boundary artifacts. It is therefore

important that any algorithm for signal estimation from short-time spectral magnitude should

attempt to select the phase function in a way that minimizes the short-time boundary artifacts.

Clearly, if there is no error in the input to a reconstruction algorithm and if there is no computa-

tional error, the algorithm will select the unique phase function corresponding to the short-time

spectral magnitude. There will therefore be no short-time boundary artifacts.

We have seen that in various short-time spectral processing applications, the processed

short-time spectral magnitude does not correspond to the short-time spectral magnitude of any

signal. Furthermore, the initial samples of the processed signal are usually impossible to deter-

mine exactly. Consequently, the time distribution of the short-time section is generally incorrect.

It is important that any algorithm for signal estimation should choose the remaining short-time

sections in a way that minimizes the short-time boundary artifacts.

In this thesis we have found that the sequential iterative algorithm significantly suppresses

the short-time boundary artifacts for speech applications. However, the algorithm is limited by

its sequential nature. Specifically,the alignment of short-time sections is accomplished by consid-

ering pairs of short-time sections independently and in an order determined by their location on

the time axis. Thus, given the distribution of the one short-time section, the distribution of the

short-time section immediately following it is determined. In aligning the two sections, no infor-

mation on the other short-time sections is incorporated. Thus, the minimization of short-time

boundary artifacts is accomplished only over localized regions of the short-time spectral magni-

tude. It is expected that the performance of sequential algorithms can be improved upon by using

simultaneous extrapolation algorithms.

Although sequential extrapolation algorithms can be designed to significantly suppress the

short-time boundary artifacts, they often do not yield the type of time distribution in the short-

time sections that is consistent with that of the unprocessed signal. For example, when noise
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reduction processing is applied to speech in chapter 7, we find that the detailed shapes within

short-time sections of the processed signal are significantly different from those of the original

undegraded signal. However, the sections do preserve such important attributes as the periodicity

of the voiced sections. In fact, perceptually we find that the processed speech is almost identical

to the original undegraded speech. It is concluded that although the actual short-time spectral

phase is not important for speech perception, it is essential that the phase be chosen so as to

avoid short-time boundary artifacts. Finally, it must be observed that the significant change in

detailed short-time signal shapes seems largely to be a consequence of the sequential character of

the algorithms we have implemented for this thesis. For applications where such change in

detailed shape is not acceptable, it is suggested that simultaneous extrapolation algorithms be

used.
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CHAPTER SIX: TIME-SCALE MODIFICATION

6.1 Introduction

Signal estimation from short-time spectral magnitude is applied in this chapter to the prob-

lem of time-scale modification of speech. Time-scale modification procedures aim at maintaining

the perceptual quality of the original speech while changing the apparent rate of articulation.

This is essentially equivalent to preserving the instantaneous frequency locations while changing

their rate of change in time. Efficient procedures for such processing have a number of impor-

tant applications. Controls for time-scale modification on a tape recorder, for example, would

allow users to pace the playback according to their own convenience. Thus, sections of the

recording can be scanned over rapidly or played slowly depending on the listeners needs. This

gives the recorded medium additional flexibility that previously only printed text could provide.

For the blind, this is a particularly encouraging prospect, since even normal recorded speech

offers a "reading rate" that is typically 2 to 3 times that for Braille [12].

Efficient time-scale modification of speech is also applicable in the areas of signal

coding/decoding and speech recognition systems. In the former case, speech may be time-

compressed at the coding stage to reduce the data rate and then appropriately time-expanded at

the decoding stage. In speech recognition systems, time-scale modification could be used to nor-

malize the duration of utterances before applying recognition algorithms.

A simple time-scaling that replaces x (n ) by x (an) introduces significant degradation for the

above applications. For example, such a scaling is obtained when a recording is played back fas-

ter than the original recording rate. The resulting " Mickey Mouse " effect is amusing but distorts

most of the original perceptual characteristics of the speech. This degradation is caused by

changes in the pitch of voiced sections and by the shifting of vocal tract resonances (formants).

Thus, more sophisticated time-scale modification techniques are required to keep the pitch and

formant locations as invariant as possible.
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Many of the techniques devised in the past for time-scale modification of speech are based

on an approach first used in a technique known as Fairbank's method 13]. This approach and

the various techniques based on it are described in section 6.2. An alternative approach, based

on the Phase Vocoder [14], was used by Portnoff [7] to develop a very successful time-scale

modification technique. This approach, outlined in section 6.3, processes both the magnitude

and the phase of the short-time spectrum. The resulting time-scale modification is generally con-

sidered to be of acceptable quality [7,15] for many applications. However, from a practical

point of view this technique has the major disadvantage of a complicated computational struc-

ture.

The time-scale modification procedure developed in section 6.4 combines the techniques for

signal estimation from short-time spectral magnitude with the basic idea behind Fairbank's

method. The resulting time-scale modifications are found to be comparable to those achieved

with the Phase Vocoder technique developed by Portnoff. However, the technique proposed in

section 6.4 has a much simpler computational structure and can be used to design practical time-

scale modification systems.

6.2 Fairbanks Approach

Fairbanks' approach [13] to time-scale modification mainly consists of discarding or repli-

cating short-time sections of the speech depending upon whether time compression or time

expansion is desired. Provided the short-time sections are short enough, portions of all the

phonemes [2] are preserved but their durations are changed. Furthermore, the pitch and for-

mants in the voiced sections are retained. However, a major difficulty is that the transitions

between the short-time sections is not smooth. These sharp transitions introduce a periodic

degradation at the frame rate, perceptually perceived as a burbling" distortion [12].

Various strategies based on pitch detection have been designed to overcome the smooth

transition problem in Fairbanks approach. These include the pitch-synchronous technique

__ ____
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[16,18] and the pseudo-pitch-synchronous technique [17]. The pitch-synchronous technique

chooses the short-time sections so that they correspond to multiples of the pitch period in voiced

sections. This ensures a smoother transition between adjacent short-time sections. In order to

select such short-time sections it is necessary to first apply pitch marking algorithms. Any errors

in the pitch marking introduces objectionable artifacts in the speech [18]. This is particularly a

problem with noisy speech, since in that case pitch marking algorithms have very poor perfor-

mance. The pseudo-pitch-synchronous technique attempts to avoid this problem by requiring

only a rough estimate of the pitch periods. The algorithm repeats or discards sections of the

speech equal in length to the average pitch period, then smooths together the edges of the

remaining sections. This algorithm has better performance than the pitch-synchronous method,

particularly in the presence of noise.

The desire to obtain a time-scale modification technique that is not dependent on pitch

extraction and voiced/unvoiced decisions prompted the work on Phase Vocoder based techniques

[7,12]. This led to the development of a very successful technique described in the next section.

6.3 Phase Vocoder Approach

An alternative to the Fairbanks time-scale modification approach is to use classical vocoder

techniques. The speech is coded in the vocoder analysis stage with time-dependent parameters.

The idea is to appropriately time-scale those parameters before the resynthesis of the speech sig-

nal. However, most of the classical vocoder techniques require voiced/unvoced decisions and

pitch extraction. Thus, any time-scale modification technique based on such vocoders would

suffer the same kind of pitch detection artifacts as those found in pitch-synchronous refinements

of the Fairbanks approach. One exception to this is the Phase Vocoder [14,2,19,20]. This

vocoder uses the short-time spectrum (both magnitude and phase) for representing the speech

signal. Furthermore, it does not require voiced/unvoiced decisions or any pitch extraction pro-

cedures.

�..-------l·ll�---X-_·-�I --�---- ---- · I
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Portnoff [7,12] has developed a very successful time-scale modification technique based on

the Phase Vocoder. Toward this, he first developed a mathematical representation for the sam-

pled speech signal based on the usual model for speech production. This representation is used

as the basis for a definition of rate-changed speech. Finally, Portnoff showed how the short-time

spectral representation used in the Phase Vocoder provides a mechanism for modifying the

speech time-scale. In the remainder of this section we briefly outline Portnoff's procedure for

obtaining time-scale modified speech from the short-time spectrum.

Let x (n ) be the discrete time signal which is to be time-scale modified by a factor of 13. We

restrict 3 to be a rational number. This is not a practical restriction since any real number can be

approximated by a rational number with arbitrary precision. In the phase vocoder approach

x (n ) is first transformed into its short-time spectrum for M frequency locations chosen appropri-

ately to avoid aliasing [7,12]. In the expression below for the short-time spectrum we assume that

w is evaluated at just those M frequency values.

Xw(n 3,w)= x(m ) w (n 3-m)eWJ
m =-x

If [3 is not an integer, this computation is accomplished through an interpolating procedure [2].

The next step is to estimate the unwrapped phase [1] of X,,(n 3,o). A good description of the

phase estimation process is given in [15]. For time-scale modification, we want the pitch fre-

quency locations to remain the same but their time variation to change by the factor B. Portnoff

showed that this can be accomplished by dividing the unwrapped phase of X, (n P,) by P. After

this division, the phase vocoder approach synthesizes the time-scale modified speech from the

processed short-time spectrum.

A major problem with the phase vocoder approach is its computational complexity. It gen-

erally requires sophisticated indexing and rather large memory space for its implementation. For

example, Portnoff had to introduce significant memory management to implement the technique

on a PDP 11/50. On the other hand, Holtzman [15] has developed an alternative implementation

that significantly reduces the memory requirements but at the expense of greater programming

__
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complexity. The technique presented in the next section is based on iterative signal estimation

from the short-time spectral magnitude. Compared to the phase vocoder approach, that tech-

nique has considerable computational advantages. Furthermore, it appears to have comparable

performance in terms of the quality of the time-scale modified speech.

6.4 Short-Time Spectral Magnitude Approach

This section describes a technique for time-scale modification of speech using signal estima-

tion from modified short-time spectral magnitude. The performance of this technique appears to

be comparable to the quality achieved by Portnoff's technique. On the other hand, as noted

before, this scheme is computationally much simpler and requires very little memory.

The basic idea for the technique in this section is similar to the Fairbanks approach where

various short-time sections are discarded or replicated according to whether compression or

expansion is desired. However, the difference is that in this case the spectral magnitudes of vari-

ous short-time sections are discarded or repeated in the short-time spectral magnitude of the

speech. In the Fairbank approach, the remaining short-time sections are merely concatenated

with each other, possibly taking into account any pitch information that may be available. In

contrast, the strategy here is to consider the set of spectral magnitudes of the remaining short-

time sections as representing a modified short-time spectral magnitude. The techniques of signal

estimation from modified short-time spectral magnitudes are then used to obtain the time-scale

modified signal. As discussed in chapter 5, such signal estimation techniques can be designed

such that they significantly suppress the short-time boundary artifacts in the signal estimate. This

results in the kind of alignment between short-time sections that is attempted by the pitch-

synchronization implementations of the Fairbank's approach. However, in contrast to those

techniques, this approach does not depend on pitch detection or pitch marking algorithms. It

thus tends to be much more robust to noise in the speech.

__ ____�_�
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For the signal estimation component of our approach to time-scale modification, we have

found the sequential iterative technique of chapter 4 to be particularly attractive for speech. It

has the advantage of a simple computational structure along with a high quality performance in

the tests we have conducted. As an example, consider time compression of the test sentence in

this thesis: The bowl dropped from his hand". The entire waveform of the sentence is shown in

Figure 4.3. The short-time spectral magnitude of the waveform is computed with a 128-point

Hamming window and a window spacing L of 32. Every other spectral magnitude is discarded in

order to obtain a 2:1 time compression. The iterative algorithm of chapter 4 then yields the

waveform shown in Figure 6.1. Clearly, the duration of the sentence has been cut by half. Furth-

ermore, the pitch of the various segments is the same as in Figure 4.3 and there are very few

short-time boundary artifacts.

As another example consider time expansion of the test sentence. In this case the short-time

spectral magnitude is computed with a 128 point rectangular window and window spacing L of

32. To obtain the time-scale modified signal estimate, this short-time spectral magnitude is con-

sidered to correspond to a window spacing L of 64. Clearly, this results in a signal that is twice

as long as the original signal. The result obtained using the iterative technique is shown in Figure

6.2. Once again, the pitch of the various segments is preserved and there are very few short-time

boundary artifacts. The quality of the resulting speech is comparable to that obtained with

Portnoff's technique.

Finally, note that different rates of expansion and compression can be obtained than those

used in the examples above. Far example, discarding two out of every three short-time segments

results in time compression by a factor of 3. On the other hand, if one out of every three seg-

ments is discarded, the processed signal is two thirds as long as the original speech. Similarly, a

time expansion by a factor of three can be obtained by:computing the short-time spectral magni-

tude at a time-sampling rate three times higher than the maximum rate -- half the analysis win-

dow length. The result is then processed as if it were sampled at the maximum rate. Clearly,
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many such strategies can be devised for discarding or adding new short-time segments for various

time-scale modification rates.
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CHAPTER SEVEN: NOISE REDUCTION

The problem of noise reduction arises in numerous signal processing contexts. The reduc-

tion of noise in a signal may either be the final goal or an intermediate step. For example,

speech communication between a pilot and an air traffic tower is typically degraded by back-

ground noise. In such a case, the reduction of noise is the final signal processing step for ensuring

clear communication. On the other hand, a radar image may be processed for noise reduction as

only a preliminary step for target detection.In all such cases, the noise reduction is an essential

element of the entire system.

In this chapter, we consider the processing of signal-independent additive noise. Many

problems in speech and image processing fall into this category. Furthermore, problems involv-

ing multiplicative or convolutional noise can be converted into an additive noise problem by a

homomorphic transformation [1,21]. Sometimes, even signal dependent noise may be converted

to signal independent additive noise. For example, pseudo-noise techniques [25] have been used

for such a transformation in the quantization noise associated with PCM signal coding.

In the problem of noise filtering of speech or image data, it is often preferable to use

short-time spectral processing [6,22]. This is primarily because long-time filtering tends to

smooth out local variations that are often important attributes of the signal. In contrast, short-

time spectral processing attempts to preserve such attributes and is therefore generally considered

a better alternative. Section 7.1 discusses in greater detail the advantages of short-time spectral

processing for noise reduction. A number of short-time spectral processing techniques exist for

noise reduction in speech and images. The spectral subtraction technique has been shown [6] to

have good performance and relatively simple implementation. We describe the standard version

of this technique in section 7.2. One characteristic of the standard spectral subtraction technique

and other short-time spectral processing techniques for noise reduction is that the short-time

spectral phase of the noisy signal is left unprocessed.

--- I- I_ __ III ·~^-~V- l-· ~ ·-- ~ -I I
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In section 7.3, we present a modification for the short-time spectral subtraction technique,

in which signal estimation from the processed short-time spectral magnitude is used to obtain a

processed version of the short-time spectral phase. This modification is also applicable to the

other short-time spectral processing techniques mentioned in section 7.1. We find that the perfor-

mance of the modified short-time spectral subtraction technique is comparable to that of san-

dard short-time spectral subtraction. However, unlike the standard technique, the modified tech-

nique does not require the short-time spectral phase of the noisy signal.

Both the standard spectral subtraction technique and its modified version introduced in this

thesis produce certain undesirable artifacts in the processed signal. In section 7.4, possible causes

for those artifacts are discussed and techniques are developed for suppresseing them. These

artifact suppression techniques can be applied to both the standard and modified versions of

short-time spectral subtraction.

7.1 Short-Time Spectral Processing Techniques

To establish a mathematical framework for our discussion, let s (n ) denote the discrete-time

signal we want to estimate from another signal x(n) which is the sum of s (n) and a noise signal

c (n). It is assumed that e (n) is a sample sequence of a stationary stochastic process with known

spectrum P, (w). Although for convenience we use the notation of one dimensional signals, the

entire discussion in this section is also applicable to multidimensional signals [24].

A number of classical techniques exist for filtering stationary stochastic processes [23]. In

particular, a problem that has been widely considered is that of filtering additive stationary noise

from stationary stochastic processes. This has resulted in the well-known non-causal Wiener filter

and numerous other related techniques. It is therefore not surprising that such techniques have

been considered for the noise reduction problem in numerous application areas. The most suc-

cessful applications are those where the desired signal s (n) can be adequately modelled as a sam-

ple sequence of a stationary stochastic process with a known spectrum. However, in areas such as
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speech and image processing such a model is generally inadequate. For example, speech is com-

monly modelled as the output of a time-varying linear system driven by either white noise or

quasi-periodic pulses [2]. Therefore, it is inappropriate to consider the output of such a system as

a stationary process.

The linear system mentioned above for the modelling of speech signals is slowly time-

varying. This has lead investigators to consider short-time sections of speech signals to have sta-

tionary spectral characteristics. This approximation has been used successfully in a variety of

engineering contexts, including noise reduction, speech synthesis, and bandwidth compression.

Unfortunately, there is no comparable model for images. However, the inspection of any typical

image shows many rapidly space-varying characteristics. In fact, much of the information in

images lies in sharp changes such as those at the boundaries of objects. These types of charac-

teristics generally render useless any attempt at modelling images as outputs of stationary stochas-

tic systems. However, except near sharp changes such as those at object boundaries, short-space

( 2-D equivalent of short-time ) modelling of images with stationary processes has been relatively

successful [22,24]. Furthermore, signal processing based on such short-space modelling often

does not appreciably degrade object boundaries and other sharp details.

The short-time spectrum has proved to be particularly convenient for the short-time pro-

cessing of speech and images. The central idea is to process the spectrum of each short-time sec-

tion separately. Since the signals are assumed to be stationary at the short-time level, classical

noise reduction techniques based on spectral filtering can be used. A common characteristic of all

these techniques is that they yield zero-phase filters. Thus, the overall processing affects only the

short-time spectral magnitude.

7.2 Standard Short-Time Spectral Subtraction

A number of short-time spectral processing techniques have been developed over the years

for the reduction of additive noise in speech and image signals [6,24]. The performance of such

---�I- _ -----
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techniques is generally of the same order as that of a technique known as short-time ( or short-

space for images ) spectral subtraction. However, short-time spectral subtraction offers the

advantage of simpler implementation. In this section, we review the short-time spectral subtrac-

tion technique as it is generally implemented. As indicated in the previous section, such an

implementation of short-time spectral processing retains the short-time spectral phase of the noisy

signal. In section 7.3, on the other hand, we will use the theory and techniques of this thesis to

develop a different implementation of short-time spectral subtraction. That implementation has

the property that it estimates a processed short-time spectral phase from the processed short-time

spectral magnitude.

We first review the classical spectral subtraction procedure for processing stationary random

signals without utilizing short-time techniques. Let s (n ) be the stationary random signal we wish

to estimate from another signal x(n) which is the sum of s(n) and uncorrelated noise (n).

Assume that the power spectral density P, (w) of e(n) is known. The power spectral density

P s(w) of s (n) is then estimated from the observations of x(n) and the known P, (w). Specifi-

cally, since x (n) is the sum of s (n ) and the uncorreldated e (n ), it follows that

P1 (o) P= () + P,() (7.1)

A reasonable estimate for P () is obtained by subtracting the known spectrum P () from an

estimate of P.(o). The estimate of P. (w) is usually computed as the magnitude squared of the

Fourier transform of the observed x(n). The subtraction process sometimes gives negative values

in the estimate of Ps (o). The most common approach for such situations is to replace the nega-

tive values by zero [6]. Finally, the square root of the estimate of P s(w) is used as the Fourier

transform magnitude for the estimate of the signal s (n ). This estimate of the Fourier transform

magnitude is then combined with the Fourier transform phase of the noisy signal x (n) to yield

the standard spectral subtraction estimate of the desired signal s (n). It has been shown [6] that

this procedure implicitly performs a type of parametric Wiener filtering.

The implementation of the standard spectral subtraction technique using the short-time

__
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spectrum is relatively straightforward. The basic idea is to consider each short time section as an

observation of a stationary stochastic process and apply the spectral subtraction procedure

separately to each section. Thus, for example, if x(n) is the signal corrupted by additive noise

e (n) and Sw(nL,w) is the short-time spectral magnitude of x(n), the spectral subtraction pro-

cedure yields the following function:

SfSW (AL a) -c P (W) if Sw (nL ,)>P ()
S ( ",) 0 oth=rwu (7.2)

where the parameter a serves as a control for the degree of noise smoothing to be achieved. In

practice, it has been found that values of a between 2 and 3 produce acceptable results [6,24].

The analysis window, w(n), and the sampling interval, L, are chosen so that

w(kL-n) = 1 for ail n (7.3)

This is done to make the mapping to the ime domain easier. In the standard technique,

Sw (nL ,) is combined with the short-time spectral phase of x(n), to give a function D. (nL ,).

To map back to the time domain, we take the inverse Fourier transform of D,, (nL ,o) for each

n. The various time functions thus obtained are simply added to each other in the time domain

to give the spectral subtraction estimate of (n ). However, if (7.2) is not satisied, some addi-

tional processing is necessary before the addition of the final short-time sections in order to avoid

short-time boundary artifacts in the estimate of s(n).

7.3 Magnitude-Only Short-Time Spectral Subtraction

In the previous section, we introduced the standard noise reduction technique for short-time

spectral subtraction. In this section we introduce a different short-time implementation of spec-

tral subtraction that uses results on signal estimation from short-time spectral magnitude. The

principal difference from the standard implementation is that the short-time spectal phase of the

noisy signal is not required by this technique. Instead, a phase function is estimated from the

processed short-time spectral magnitude.

~__ _II_II~- (l p l - - -
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As in the previous section, we consider the processing of a discrete time signal x (n) which

is the sum of a desired signal s (n) and an uncorrelated stationary noise signal e (n) with known

power spectal density P, (w). The initial processing of the short-time spectral magnitude

Sw (nL ,) of x (n ) is identical to that performed in the standard technique of section 7.2. Specifi-

cally, we obtain a modified short-time spectral magnitude given by

(nL S , (nL ,w) - XP,(W) if SW (LW)>aPe (i)
Sw, (/nL..) l= E(c) otherwise

where the parameter serves as a control for the degree of noise smoothing to be achieved. The

next step in the standard technique is to combine (nl. ,) with the short-time spectral phase of

the noisy signal x (n). However, from chapter 5 we know that we can obtain a signal estimate

directly from the modified short-time spectal magnitude S,(nL , ). For the signal estimation

algorithms of the previous chapter we require a-priori knowledge of L consecutive samples of

x (n ), starting from the first non-zero sample. Our approach, as described in chapter 5, is to use

some reasonable estimate for those samples. For example, one approach is to use the

corresponding L samples of the noisy signal (n ). This has produced reasonable results in the

processing of noisy speech.

In our experiments with magnitude-only short-time spectral subtraction, we have applied

the sequential iterative technique of chapter 4 for the signal estimation from processed short-time

spectral magnitude. We selected this particular technique because of its simple implementation

requirements. Furthermore, as indicated in chapter 4, it performs well compared to the other

sequential reconstruction techniques that have been tested in this thesis.

For noise reduction in speech signals, it appears from our experiments that the performance

of magnitude-only short-time spectral subtraction is comparable to that of standard short-time

spectral subtraction. For relatively high signal to noise ratios (above 10dB), both techniques sig-

nificantly reduce the noise without any appreciable degradation in speech quality. Figure 7.1

shows the waveform of the sentence "The bowl dropped from his hand" (See Figure 4.3 for ori-

ginal waveform) in additive white noise, giving a signal to noise ratio of 15 dB. Figure 7.2 shows

I
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the results of processing that waveform with standard as well as magnitude-only spectral subtrac-

tion. In both cases, a 128-point triangular analysis window was used. Clearly, both the processed

waveforms of Figure 7.2 have significantly reduced noise levels.

For signal to noise ratios below 10 dB, both versions of spectral subtraction introduce sig-

nificant processing artifacts in the signal. In the next section, we describe these artifacts, discuss

their causes, and present some techniques for suppressing them.

7.4 Artifacts in Short-Time Spectral Subtraction

When short-time spectral subtraction is applied to signals with low signal to noise ratios

such as below 10 dB, certain processing artifacts are generally observed. In Figure 7.4, we illus-

trate these artifacts in an image that has been processed with standard short-ime spectral sub-

traction. This image was obtained by adding 6 dB of white noise to the image of Figure 7.3 and

then processing it with the two dimensional version of standard short-time spectral subtraction.

Evident in Figure 7.4 are two types of distortion. One is the presence of an apparently harmonic

pattern, particularly in the large high brightness region of the picture. Also noticeable are rip-

pie' blurring effects near high contrast sharp edges such as between the clock and the back-

ground. Although generally not as severe as the distortion represented by the harmonic pattern,

this is also a quality limiting artifact. Similar distortions are also apparent in applying standard

short-time spectral subtraction to speech. In this case, the processing typically results in the pres-

once of objectionable short tone bursts of varying frequency. In our experiments with

magnitude-only spectral subtraction applied to speech, we have also observed the same artifacts.

In this section we will discuss the causes of these artifacts. In the next section, we propose various

techniques for suppressing the artifacts. In particular, the proposed techniques can be incor-

porated into both the standard as well as the magnitude-only versions of short-time spectral sub-

traction.
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Experiments with short-time spectral subtraction on noisy speech as well as image data indi-

cate that the objectionable harmonic pattern artifacts arise primarily because of a few, large

amplitude narrowband peaks of noise energy remaining after spectral subtraction in the spectrum

of each short-time section. Specifically, the spectral magnitudes of short-time sections in the noise

signal e (n) deviate randomly about the assumed power spectrum, Pt (o). Such deviations result

in residues of noise energy remaining after spectral subtraction. For wideband random noise with

a values in (6.1) in the range generally used [6,24], the residues tend to be dominated by a few

narrowband peaks of relatively large amplitude. Of these peaks, the most undesirable are the

ones at frequencies where there is little or no signal energy. These give rise to harmonic varia-

tions in the short-time sections. Since the noise component of the spectrum has independent devi-

ations from short-time section to short-time section, the dominating frequency of the harmonic

patterns also changes randomly from short-time section to short-time section. The resulting

artifact is clearly apparent in the image of Figure 7.4. In the next section, we propose specific

techniques for suppressing this artifact. One of the techniques, referred to as multi-window spec-

tral smoothing also reduces the rippling effect near large discontinuities. This particular artifact is

due to the inherent blurring associated with signal characteristics which change rapidly in relation

to the duration of the analysis window.

7.5 Artifact Suppression Techniques

In the previous section, we observed two particular artifacts associated with short-time spec-

tral subtraction in both its standard and magnitude-only implementations. The most prominent

artifact is the harmonic pattern which is clearly visible in the processed image of Figure 7.4. The

other artifact, more important for images rather than speech, is a rippling effect near large

discontinuities such as those at object boundaries. In this section, we propose three techniques for

the suppression of the harmonic pattern artifact. However, one of the techniques, multi-window

spectral subtraction, also reduces the rippling effect at sharp discontinuities. Throughout the

remainder of this section the term short-time spectral subtraction without any other qualification

-. F~l·II __ Il__ ^- ^ · CI --· I~~- ~ L--
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will refer to both the standard as well as the magnitude only implementations.

Multipass Spectral Subtraction

The implementation of this technique for suppressing artifacts consists of repeated applica-

tion of the entire short-time spectral subtraction procedure. Specifically, on each of the total of K

passes alK is used in (6.1) and a new estimate of s(n) is obtained. Each pass uses the estimate of

s(n) from the previous pass as its input.

The key to this procedure seems to lie in the post-subtraction mapping to the time domain

at the end of each pass. Based on experiments conducted for this thesis, it is conjectured that the

mapping to the time domain causes a spectral magnitude smoothing between overlapping short-

time sections. Thus, as noise energy is being subtracted, a smoothing process is taking place

simultaneously between overlapping sections. Furthermore, as K increases, the spectrum of each

short-time section begins to affect the smoothing of distant spectral magnitudes. The idea of

smoothing between the spectral magnitudes of different short-time sections is more directly

explored in the Neighborhood Smoothing technique described next.

Neighborhood Smoothing

This approach is based on the assumption that the spectral magnitudes of neigboring short-

time sections in the degraded signal have larger deviations with respect to each other than similar

sections in the undegraded signal. Thus, if the spectral magnitudes of neighboring segments of

the noisy signal are averaged, then, in principle, the effect of the noise is reduced. This, in

effect, corresponds to time smoothing of the short-time spectral magnitude. The neighborhood

smoothing can be carried out using either linear smoothing or median smoothing [26] techniques.

Multi-Window Smoothing

This technique capitalizes on the flexibility in the choice of the analysis window. In its most

general form, the idea is to obtain signal estimates using different analysis windows for the

short-time spectrum (but the same amount of spectral subtraction). This is followed by some

kind of spectral smoothing between the different estimates. In particular, it is found that using
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the same window shape but shifted locations for each estimate is very successful. In the experi-

ments conducted for this thesis, short-time spectral magnitudes of the various estimates were

median averaged in the final step, using a rectangular analysis window.

All three techniques listed above significantly reduce the harmonic pattern artifact signifi-

cantly. Furthermore, the multi-window technique is also successful in reducing the rippling

artifacts at sharp discontinuity. The performance of these techniques is illustrated in Figure 7.5.

The image on the left side of the figure is the same image as that shown in Figure 7.4. This

image was processed with standard short-time spectral subtraction without any modifications for

suppression artifact. On the other hand, the other image in Figure 7.5 represents the effect of

short-time spectral subtraction implemented with the multi-pass and multi-winow procedures.

Specifically, multi-window spectral smoothing is carried out in each pass of the multipass imple-

mentation of short-time spectral subtraction. It is apparent from Figure 7.5 that the application

of artifact suppression procedures is quite successful in reducing the harmonic pattern as well as

the rippling effects near high contrast edges. We have also applied these techniques to noise

reduction in speech processing. We find that the objectionable short tone bursts of varying fre-

quency are significantly suppressed.
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CHAPTER EIGHT: CONCLUSIONS

In this thesis, we have shown that discrete-time signal processing can be accomplished using

only the magnitude of the short-time spectrum. In particular, large classes of signals were found

to be uniquely representable with the short-time spectral magnitude under conditions that are

often satisfied in practical applications. Furthermore, several algorithms were derived for recon-

structing a discrete-time signal from samples of its short-time spectral magnitude. These algo-

rithms include some that are designed to yield reasonable signal estimates from a processed

short-time spectral magnitude which does not correspond to the short-time spectral magnitude of

any signal. This is an important result since almost any kind of processing violates the structure

imposed in the definition of the short-time spectral magnitude.

To illustrate the practical usefulness of the results in this thesis, we considered the problems

of noise reduction and time-scale modification of speech. The magnitude-only short-time spec-

tral processing technique we have developed for time-scale modification is considerably simpler

and computationally more efficient than previous short-time spectral processing techniques.

Furthermore, in terms of speech quality, the magnitude-only technique appears comparable to

the other techniques. In the case of noise reduction, standard short-time spectral processing tech-

niques generally affect just the magnitude of the short-time spectrum. Thus,the short-time spec-

tral phase of the noisy signal is retained in the processed signal. It is therefore of interest to

develop techniques that estimate a processed short-time spectral phase. One approach is to esti-

mate the processed phase directly from the processed short-time spectral magnitude. This is easily

accomplished with the techniques developed in this thesis for signal estimation from processed

short-time spectral magnitude. Our initial experiments on such noise reduction in speech signals

have given results that appear comparable to those obtained with traditional short-time spectral

processing techniques. This result is potentially useful in designing systems for combined noise

and bandwidth reduction of speech. Such systems perform bandwidth compression on a noisy

signal, transmit it over a possibly noisy channel, and finally estimate the original undegraded

·___·__ .�____IPI____I·llll(I�ll�---·---^-�- I-I ---
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signal. The results in this thesis may be used to achieve bandwidth compression of the noisy sig-

nal by efficiently coding its short-time spectral magnitude. Time-scale modification may also be

used at this stage. Once the transmitted signal has been received at the other end, magnitude-

only short-time spectral processing may be applied for noise reduction. This is an important

application which deserves more research in the future.

There is a considerable amount of theoretical and applied research that needs to be persued

in light of the results presented in this thesis. The most obvious problem is to use these results in

application areas other than those considered in this thesis.This includes other applications within

speech processing such as vocoder design as well as applications in other areas such as image,

acoustical and geophysical signal processing. In the theoretical realm, it is of interest to further

extend the conditions under which a signal is uniquely specified by its short-time spectral magni-

tude. For example, the uniqueness conditions derived in this thesis for signal representation with

short-time spectral magnitude generally require the knowledge of a few initial samples of the sig-

nal. It is of interest to determine other ways of guaranteeing unique signal specification that

require a different type of information about the signal. It should be observed that the need for

the initial samples condition was established through a counterexample that was based on a spe-

cial class of signals and a rectangular analysis window. The question is whether excluding the rec-

tangular analysis window and that special class of signals can in fact be sufficient to remove the

requirement of a-priori knowledge on the initial samples.

All the algorithms for signal estimation from short-time spectral magnitude that were

implemented in this thesis estimated short-time sections of the signal in a sequential order. How-

ever, it was indicated that improved performance may be obtained by the simultaneous extrapo-

lation of several short-time sections at a time. For example, such algorithms may be less sensitive

to errors in the knowledge of the initial signal samples. The implementation and study of simul-

taneous extrapolation algorithms should therefore be an important part of further research.

---
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