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ABSTRACT

In this paper we present a general technique for pro-
tecting computation with systematic-separate codes. These
codes use parity symbols to check the result of computation.
We use a group-theoretic approach and model computation
as operations in an algebraic group. We show that in order
for a code to commute with computation, it must define a
homomorphism between the original group and the group
of parity symbols. We then apply a quotient group isomor-
phism and reduce the problem of finding coding schemes to
that of finding normal subgroups. In many instances, our
method can be shown to identify all possible systematic-
separate codes. For a given code, we present conditions
on errors such that they may be detected and corrected.
We briefly discuss the extension of our technique to other
algebraic systems and conclude with two examples.

1. INTRODUCTION

Fault-tolerance is needed in many signal processing ap-
plications to ensure continuous operation and check the
integrity of results. Traditionally, the problem of fault-
tolerance has been solved by using modular redundancy.
This is a general technique which can be applied to any
system. However, it is computationally expensive and does
not provide a high level of fault protection.

A more efficient method of protecting computation is
to encode operands using an arithmetic code. This is an
error-correcting code which commutes with arithmetic op-
erations, i.e., its error detecting and correcting properties
are preserved during computation. Arithmetic codes offer
performance and redundancy advantages similar to exist-
ing error-correcting codes used to protect communication
channels. Initial research in this area focused on protecting
integer computation, and several useful codes resulted [1].

Recently, arithmetic codes have been extended to pro-
tect higher-level operations by encoding entire sequences
of real or complex data. This field has been called
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Algorithm-Based Fault-Tolerance (ABFT) because redun-
dancy is added to protect an entire algorithm, rather than
individual arithmetic operations. The majority of ABFT
schemes rely on linear error-correcting codes to protect lin-
ear operations. Examples of such operations include linear
transformations [2], matrix operations [3], and A/D conver-
sion [4]. Linear codes have also been used to protect con-
volution [5, 6]. Application of ABFT to other arithmetic
operations has been limited by the absence of suitable cod-
ing schemes.

In this paper, we present a general method of devel-
oping systematic-separate arithmetic codes for protecting
group operations. We use a group-theoretic approach sim-
ilar to [7, 8] but generalize to encompass a wider range of
operations. First, we present the basic structure of these
codes and give a procedure for finding all possible codes.
Next, we discuss the extension of our technique to other
algebraic systems. Then, we present examples. A more
detailed discussion of our technique is given in [9].

2. FRAMEWORK

In this section, we present a framework for analyzing
fault-tolerant systems. We rely heavily upon the concepts
and theorems of group theory, stating common results with-
out proof. We refer the reader to [10] for appropriate math-
ematical background material.

A group G = [G; 0,00] is an algebraic system that con-
sists of a set of elements, G, a binary operation called the
group product, 0, and an identity element, 0g. Groups
model a broad range of computation, including many use-
ful signal processing operations, as well as ordinary integer
and real number arithmetic.

The operation which we intend to protect is the group
product v = a0b of two elements a,b € G. We add fault-
tolerance by adding redundant information which we ex-
ploit to detect and correct errors. In this paper we focus
on a specific form of redundancy which yields systematic-
separate codes (S3C). These codes are characterized by the
use of parity symbols to check the result of computation [1].

The basic structure of a system computing v = a[lb
which is protected by an SSC is shown in Figure 1. We
use this as a starting point in our analysis. Although we
do not derive this structure here, it can be deduced from
first principles by making only a few basic assumptions. An
SSC contains the following basic steps:
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Figure 1: General form of a group operation protected
by a systematic-separate arithmetic code.

1. Compute parity symbols t, = 6(a) and t, = 8(b)
from the operands, where t, and t, are members of
T =[T; O,00] a group of parity symbols, and 6 is a
mapping from G to T.

2. Compute the product of parity symbols, t, = t, Ots.
3. Compute the syndrome

S(v,tu) = 8(v) "1 O, (1)

and use it to detect and correct errors. If S(v,t,) =
0o, we declare that no errors have occurred. Other-
wise, if S(v,t,) # 0o, we declare that some error has
occurred.

It can be shown that the syndrome is a condensation of
all information relevant to error detection and correction.
Furthermore, in order to be able to correct all errors, each
error must have a unique syndrome.

We begin by ignoring errors and determining conditions
on § such that S(v,¢,) = 0o in an error-free system. Sub-
stituting into (1) and letting S(v,t,) = 0o, we find that 8
must satisfy

6(a01b) = 8(a)O8(b) 2)

for all a,b € G. This equation is recognized as the defining
property of an algebraic homomorphism. A homomorphism
6 is a mapping from one algebraic system, G, to another,
T, which preserves structure [10].

We now make an important simplifying assumption
about . We assume that § maps G onto T. This as-
sumption is made for three reasons. First, requiring 6 to
be onto ensures that 7" will have the same number as, or
fewer elements than, G. Hence, the complexity of the parity
operation O will most likely be the same, or less than the
complexity of the original product 0. Second, all elements
of T will be used, yielding a greater level of fault-tolerance

for a given parity channel complexity. Third, the struc-
ture of G will be heavily reflected in T, and we can use a
well-known isomorphism involving quotient groups of G to
identify possible groups 7' and homomorphisms 6.

The isomorphism is as follows. Let G be a group and
let N be a normal subgroup of G. Denote by G/N the
quotient group of G by N. The elements of G/N are cosets
(sets of elements). The product in G/N is the product
of subsets. Given G/N, we can always define a mapping
¥ from G onto G/N by ¥(g9) = NOg. ¢ maps g to the
coset containing g. If we apply ¥ to the product a1, we
find that ¢ (a0b) = ¢ (a) Oy (b). Hence, ¥ is a homomor-
phism from G onto G/N. Letting T = [’f, 6,60] =G/N
and é(g) = N0y, we have a procedure for finding possi-
ble groups T" and homomorphisms §. By selecting different
normal subgroups N, we obtain different possible parity
groups 7' and mappings f.

It can be shown that this procedure is guaranteed to
find, up to isomorphisms, all possible groups T and map-
pings § which satisfy the assumed structure. Although we
have not explicitly found all possible parity groups and ho-
momorphisms, we have isomorphic copies of them, which
have equivalent error detecting and correcting properties.

Note that when we implement a system which uses this
isomorphism, we will never perform computation in the
actual quotient group 7 by manipulating cosets. Rather,
by forming the quotient group, we will recognize that G /N
is isomorphic to a simpler group 7' which we obtain by
renaming the elements of G/N. This simpler group will be
used for parity computations.

The problem of finding groups 7' and homomorphisms 8
has been reduced to that of finding normal subgroups. For
an arbitrary group, finding all normal subgroups is still a
difficult problem. However, for many groups that compute
useful arithmetic operations, finding normal subgroups is a
trivial task. In these instances, we are able to determine
all systematic-separate coding schemes.

We now include the possibility of errors occurring in our
system, and for a given T and 6, show which types of er-
rors may be detected and corrected. We use a product
error model and denote by v and 7 the errors in [J and
O, respectively. The faulty results of the main and parity
channels are assumed to be given by

v = a0Ob0O~
ty ta Ot OT. 3)

(We would obtain slightly different results if we assume that
errors appear on the left hand side of the products.) De-
note by £, the set of all possible errors vy and define &, in a
similar manner. These sets depend on the hardware archi-
tecture and specific computational steps used to compute
the products.

In order to be detectable, all faulty results must yield
nonzero syndromes. Substituting (3) into (1), we find that
under errors ¥ and 7 the syndrome equals

S(v,ty) = 8(y) ' O = S(v, 7). (4)

Thus the syndrome is a function of the error only. All er-
rors in the sets £ and £, can be detected if and only if
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S(y,7)# 0o for all v € &,,7 € &. To be correctable,
errors must be detectable and each error v € &, must
have a unique syndrome. Mathematically, this translates
to S (vi,7i) # S (v, ) forall v; # v; € &, and 7, 75 € &;.

If the errors are correctable, then a simple, but not
necessarily efficient, fault correction procedure could use
the syndrome as an index into a lookup table A. Let
A(S(y,7)) = 47'. Since each error has a unique syn-
drome, this function is well-defined. Then, to correct the
error and obtain the error-free result 9, apply A (S (v, 7))
to the result of the product in O,

b =00A(S(x,7)). (5)

It can be shown that this does indeed correct the error.
Note that we do not correct the error 7 in O since we are
only interested in the result of the product in (0. The steps
needed to perform error detection and correction are also
illustrated in Figure 1.

Error correction via lookup tables is efficient only when
the set of possible errors £, is small. In practice, systems
exist in which &, is large or even infinite. In these instances,
other techniques must be used. The usual approach taken
is to exploit the structure of £, and to invert (4) over the
set £.

If G is an Abelian (commutative) group, then a series of
operations may be protected by performing error detection
and correction only once at the end, rather than after each
group product. Consider the result of N operations in an
Abelian group G, and assume that errors occur during the
it and ji& products in the main and parity channels, re-
spectively. Then v = ¢, 0 --- Ogip1 Ovy0gi420- - Ogn4r
and &, = 15, O --- Oty;,, O7Otg;,, O Otgy,, . Since
G is commutative, T' will be also. We can rearrange the
products as follows: v = (¢10---Ogy) Ogny+1 Oy and
ty = (15, O - Otgy) Otgy,, O7. This is equivalent to the
original error model (3) and previous results still hold. The
syndrome test is still applicable, and requirements for error
detectability and correctability are unchanged. This yields
more efficient systems since the overhead for fault-tolerance
is distributed over several operations.

Now assume that errors are restricted to the system com-
puting 0. (This is reasonable if the computational com-
plexity of 0 is much greater than that of O.) Then the
syndrome of a faulty result equals s = 6(vy)™'. Let Ky =
{9 € G|6(g) =00}. This is known as the kernel of the
mapping # and is similar to the nullspace of a linear trans-
formation. It can be shown that Ky = N, where N is the
normal subgroup used to define §. Then all errors v € &,
are detectable if and only if £& N Ky = @&. This makes
intuitive sense since, if ¥ € Ky, then s = §(y)™! = 00, and
hence v is undetectable.

To determine a suitable coding scheme for a given oper-
ation, the following iterative procedure would be used:

1. Pick a normal subgroup N; of G.

2. Determine the resulting parity group 7; and mapping
6; using the guotient group isomorphism. Then deter-
mine an isomorphic simpler group 7T; and the corre-
sponding mapping 8; from G to T;.

3. Determine a system for computing O, and the sets of
errors £y and £ from the hardware architecture.

4. Check if the errors £, and £, can be detected and cor-
rected by 8;. If they can, then we have found a suitable
code. Otherwise, pick another normal subgroup and
repeat from step 2.

Although this is an iterative procedure, it can still be quite
fruitful. Also, normal subgroups usually have a standard
form, so types of detectable and correctable errors can be
determined easily.

3. Other Algebraic Systems

The concepts of homomorphism and quotient group oc-
cur in a wide variety of algebraic systems and can be used
to define systematic-separate codes in a similar manner.
We briefly state the extension of our framework to several
other algebraic systems.

Aring R =[R; 0, ®,0g] is a set R with two operations
O and ® which satisfy certain basic axioms [10]. Under
0, the elements of R form a group. A mapping 8 from R
to another ring T = [T; O, ®,00] is a homomorphism if

8(a0b) = 6(a)O8(b)
6(a®b) = 6(a)®I(2) for all a,b € R. (6)

If we assume that errors are additive, such that (] models
the effects of system faults, then our results from groups
carry over completely. The only difference is that ideals
rather than normal subgroups are used to define quotient
rings. An SSC thus defined is capable of protecting both
ring operations.

Afield F =[F;0, ®,0g] is a ring with the added prop-
erty that nonzero elements form a group under ®. The re-
sults for rings still apply and we can determine systematic-
separate codes by finding ideals. However, a field contains
only trivial ideals, and the only SSC which may be defined
is isomorphic to duplicating the original computation in the
parity channel (equivalent to double modular redundancy).
Lower complexity codes are impossible.

We have also been able to extend our technique to vec-
tor spaces, modules, and certain monoids. The basic re-
sults are the same and we are again guaranteed to find all
systematic-separate coding schemes.

4. Examples

We now give two examples of our technique, one for
a group, and another for a ring. Let G be the group
of integers under addition. Normal subgroups of G are
of the form N = {0, +M,4+2M,...} where M is an inte-
ger. The quotient group 7' = G/N contains M unique
cosets which we denote 4o, 13, .. . tam—_1. ik is of the form
{k,k+ M,k+2M,.. .}. Adding two elements in G/N we
find that 7, 01, = f(,'“)M where (z),, denotes the remain-
der of £ modulo M. Examining T, we see that it is iso-
morphic to the group T of integers {0,1,..., M — 1} under
modulo M addition. This isomorphism is accomplished by
mapping the coset ; to the integer . The mapping from
G to T is given by t; = §(g) = (g),,, and the parity op-
eration t:Ot;, = (1; +;),,. Thus, we have shown that the
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only SSC capable of protecting integer addition is isomor-
phic to a residue checksum modulo an integer M.

If we assume that the parity channel is robust, then it
is easy to determine which errors may be detected. For a
given N, the kernel Ky = N. Thus, any error in the set
{0,£M,42M, ...} is undetectable. To be correctable, each
error must have a unique syndrome. Since 7" is a finite
group containing M — 1 nonzero elements, we can never
correct more than M — 1 different errors.

We now know the form of the SSC and which types of
errors may be detected and corrected. To finish the de-
sign, we must choose a specific modulus M which protects
against the set of errors produced by hardware failures. If
we expect errors to randomly corrupt digits of the result,
then M must be chosen co-prime to the base of the number
system used.

The second example which we give is the linear con-
volution ¢[n] = a[n] x b[n] where a[r] and b[n] are both
P-point sequences which are nonzero only in the inter-
val 0 < n < P — 1. Assume that the samples are
members of a field F, and denote by F[z] the set of all
polynomials in an indeterminate z with coefficients in F.
The convolution can be performed in the polynomial ring
R = [F[z];4, x, 0] where + and x denote ordinary polyno-
mial addition and multiplication. Let a(z) = Z:;O] a[n]z
and b(z) = Z:;Ol b[r]z". Then c¢(z) = a(z) x b(z) where
c(z) = EZZ;Q c[n]z™. Thus, if we can protect this ring
multiplication, we can protect the convolution.

We can protect polynomial multiplication with an SSC.
The ideals of R are sets of polynomials of the form

N ={g(z)M(z) | g(2) € R} (7)
where M(z) € R. We omit the derivation and proceed to
the final result. For a given M(z), the ring of parity sym-
bols is isomorphic to F[z]/M(z), the ring of polynomials
modulo M(z). Addition and multiplication in Flz]/M(z)
are ordinary polynomial addition and multiplication mod-
ulo M(z). The parity symbols ta(z) and #s(z) are com-
puted as follows:

ta(z) =(a(2))pzy  and  ty(z) = (b(2)) py,y  (9)
where (a(x))M(I) denotes the remainder when a(z) is di-
vided by M(z). The parity computation is

te(2) = (a(z) X b(2)) pr(,) - (9)
Since the ideals of R are all of the form shown in (7), all
systematic-separate codes for convolution are isomorphic
to the one presented here. It is also possible to protect this
operation with multiple parity channels, each utilizing a co-
prime modulus My (z). This is included in our framework
since it is isomorphic to a single channel modulo M(z) =
11, Mi(z).

To finish the design of the fault-tolerant convolution
system, we must choose the polynomial M(z) to protect
against the expected set of errors. We can apply exist-
ing error coding techniques by noting that (8) is the stan-
dard method of encoding a systematic cyclic linear error-
correcting code. Furthermore, fast algorithms for detecting
and correcting errors exist [11].

n

5. Conclusion

In this paper, we presented a new and mathematically
rigorous method of developing fault-tolerant systems which
is based on group theory. We modeled computation as op-
erations in an algebraic group, and were able to use the-
oretical results in group theory to identify possible codes.
We feel that this work is significant because it is a precise
method of modeling computation and adding redundancy.
The main contribution of our technique is revealing the
form which redundant information must take in systematic-
separate codes. In many instances, we are able to identify
all codes of this type, or even disprove the existence of any
such codes. We hope that our approach will stimulate fur-
ther research into more efficient fault-tolerant systems.
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