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The primary means for the analysis and synthesis of linear systems
stems from their defining property, the principlé of superposition. In
this paper a generalization of this principle, which provides a classifi-
cation for a variety of nonlinear systems, is discussed. Systems within
each class are shown to differ only by a linear system. The application
of this approach to problems in nonlinear filtering is proposed.

I. INTRODUCTION

In many cases nonlinear systems can be adequately treated by collect-
ing together those that share common properties; i.e., by classifying non-
linear systems and exploiting the properties common to each class. In
this paper, one such approach to the characterization of a broad class of
nonlinear systems is proposed. This approach suggests a classification of
many nonlinear systems in such a way that each class is defined by a
principle of superposition which is similar to the principle of superposi-
tion for linear systems. Each class has a canonic representation that con-
tains a linear system, and systems within a class differ only in the linear
portion of this representation.

The classification of systems based on this generalized principle of
superposition suggests an approach to nonlinear filtering of signals which
have been nonlinearly combined. In this approach signals to be separated
are considered part of a vector space with vector addition taken to be the
same operation as that under which the signals were combined. The class
of nonlinear filters used then correspond to linear transformations on this
vector space.

The mathematical vehicle that has been used for the development of
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the theory is linear algebra. Much of the formalism required for a thor-
ough treatment is omitted from the present discussion under the assump-
tion that a somewhat heuristic treatment will be more readable than a
formal derivation of results. A more detailed treatment has been given
elsewhere [Oppenheim, (1965)%].

II. GENERALIZED SUPERPOSITION AND HOMOMORPHIC
SYSTEMS

The principle of superposition, as it is stated for linear systems, re-
quires that if T is the system transformation, then for any two inputs
z1(t) and z,(¢) and any scalar ¢,

Tlxa(t) + ()] = Tla(D)] + Tlwa(2)] (1)
and
Tlezs(8)] = cTlm(t)]. (2)

From this definition it is clear that a system with transformation ¢ given
by

V()] = O, (3)
is nonlinear. However,
Yz (8)22(1)] = Y22 () Wla(2)] (4)
and
Y ()] = Wlz(O" (5)

The transformation of Eq. (3) can be said to satisfy a principle of
superposition in the sense that its response to a produect of inputs is the
product of the individual responses. This suggests, then, a generalization
of the principle of superposition, as is stated for linear systems, which
will encompass at least some nonlinear systems. To state this prineiple
formally, let us consider a system with transformation ¢, and let {z(¢)}
denote the set of possible inputs and {y(Z)} denote the set of possible
outputs. Let

() O x(t)

denote the combination of any two inputs under an operation O (e.g.
addition, multiplication, convolution, ete.) and let 1(¢) O y2(¢) denote
the combination of any two outputs under an operation [I. Similarly,
lIet ¢ * z(t) denote the combination of an input z(¢) with a scalar ¢ and
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¢ : y(t) denote the combination of an output y(¢) with a scalar ¢. Then
the system can be said to satisfy a generalized principle of superposition
if

olrr(t) O wa(D)] = #len(D)] T Bloa(t)] (6)
and
olc * 2()] = ¢ : ol (t)] (7)

When the operations O and [ correspond to addition and the opera-
tions * and : correspond to multiplication, the system ¢ will, of course,
be a linear system.

If the set of system inputs is such that it can be represented as a vector
space with vector addition corresponding to the combination of two in-
puts under the operation O and scalar multiplication corresponding to
the combination of the inputs with scalars under the operation *, then
the system transformation can be represented by a linear transformation
between vector spaces. We should also require, of course, that the set of
outputs be representable by a vector space, with the operations [J and
: corresponding to vector addition and scaler multiplication, respectively.
However, this is guaranteed if the inputs constitute a vector space and
the system transformation has the properties specified by Eq. (6) and
(7).

Examples of simple system transformations, that are representable as
linear transformations between vector spaces for vector addition taken
as multiplication in both the input and output vector spaces, are

1. ¢x(®)] = =(@®)]" (power-law devices)
2. ¢lz(t)] = signlz(t)] (infinite clipper)
3. ¢lx()] = | z(¥) | (full-wave rectifier)

Although in each of these simple cases the systems are memoryless, it will
be apparent, when the canonic representation of these systems is dis-
cussed, that this is not a general restriction.

The generalization stated in Eq. (6) and (7) does not require the
additional constraint that the set of inputs constitute a vector space,
and indeed we can imagine choices for the operations O and [J which
do not satisfy the algebraic postulates of vector addition. In this paper,
however, only those cases for which these postulates are satisfied, will
be discussed. This permits a direct application of the theorems of linear
algebra to the characterization of these systems. Such systems, which
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can be represented as linear transformations between vector spaces, will
be referred to as homomorphic systems, a term suggested by the algebraic
definition of a homomorphic (i.e., linear) mapping between vector
spaces. The operation O will be referred to as the input operation of the
system, and the operation 3 will be referred to as the output operation.
A homomorphic system with input operation O, output operation [J,
and system transformation ¢ will be represented as shown in Fig. 1.
(Strictly speaking, the input and output operations do not specify
completely the interpretation of scalar multiplication for the input and
output vector spaces. The operations * and : however, are inferred by
the operations O and [ for scalars that are rational, and in many cases
are suggested in general.)

To investigate the generality of the class of homomorphic systems, let
us consider a system with a transformation ¢. Let the inputs {z(¢)} to this
system constitute a vector space with O as vector addition and * as
scalar multiplication. Then

1. there is, at most, one choice for the operations 0 and : , so that
the system is homomorphic with O and * as the input opera-
tions.

2. if ¢ is invertible, so that there is a one to one correspondence be-

~tween inputs and outputs, there is at least one choice for the
operations [J and : , so that the system is homomorphic with O
and ¢ as the input operations; i.e., all invertible systems are
homomorphic.

The first statement follows in a straightforward way from Egs. (6)
and (7). Specifically, let 41 and y» represent any two system outputs and
let 2, and x» represent any inputs which produce these outputs so that
o(z1) = y1 and ¢(x3) = yo. Then Eq. (6) requires that 3 O y, be the
output produced by input z; O 2 . Since we assume that the system is
well defined, ¢ [ y. is unique. Similarly, from Eq. (7), ¢ : ; is unique.

The second statement follows by demonstrating that the input opera-

fo) (]

— )

Fiac. 1. Representation of a homomorphic system with input operation O,
output operation [ and system transformation ¢.
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tions and the invertibility of the system induce an appropriate set of out-
put operations. Let us define ;, O y; and ¢ : y; as

30y = 9l (W) O ¢7'(w)] - ®

and

¢ty =olc*d ()] (9

The output operations given by Egs. (8) and (9) satisfy Egs. (6) and
(7). Furthermore, from statement 1 we are guaranteed that the output
operations given by Egs. (8) and (9) are the only choice for these opera-
tions. This is not to suggest, of course, that we shall always want to
determine the output operations for a specified system by applying Eqgs.
(8) and (9), but we are at least assured that, however these operations
are determined, they will always be the same.

III. “REPR'ESENTATION OF HOMOMORPHIC SYSTEMS

In considering any class of homomorphic systems defined by specified
input and output vector spaces, the question naturally arises as to how
to exploit the principle of superposition which is the defining property
for the class. Since the systems correspond to algebraically linear trans-
formations between vector spaces, their representation is no different
than that used for linear systems. Specifically, the systems may be rep-
resented by the mapping of the basis vectors from the input space to
the output space. An alternative point of view is that both the input
space and the output space are isomorphic with spaces of the same di-
mensions for which vector addition corresponds to the sum of functions,
and scalar multiplication to the product of the scalars and the functions.
The system transformation is then represented by a linear transforma-
tion between these new vector spaces. To -state this formally, it is
convenient to restrict the input and output vector spaces to be separable
Hilbert spaces. In essence, this requires that their dimension be count-
able, that an inner product can be defined on the space, and that the
space possesses an orthonormal basis. Let the set of functions {£} be a
separable Hilbert space of the same dimension as the input vector space
with addition and scalar multiplication given by

51O£2=€1+€2
and

¢cx{ = cl.
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The vector spaces {z} and {£} are isomorphic and, consequently, we can
find an invertibile homomorphic system which we ‘denote :as g, for
which {z} is the set of inputs and {¢} is the set of outputs. Thus ag is
invertible and has input operation O and output operation 4. In a
similar manner, there exists an invertible homomorphic system, denoted
by Ba having input operatlon O and output operamon +

Since ag and Bg are both invertible, the system ¢ can then be rep-
resented as shown in Fig. 2. The system enclosed by dashed lines is a
linear system, that is, it is a homomorphic system with addition as both
the input and output operations. If L4 denotes this linear transformation,
then Fig. 2 can be redrawn as shown in Fig. 8. This cascade will be
referred to as the canonic form for homomorphic systems. It is important
to note that the system ag is determined only by the set of inputs and
the input operations, and that the system 85 (or 85') is determined only
by the set of outputs and the output operations. If we consider classify-
ing homomorphic systems by their input and output spaces (including a
specification of the input and output operations), then the systems aq
and B are characteristic of a class. Consequently, homomorphic systems
within a class differ only in the linear portion of the cancnic representa-
tion for that class. The system of Fig. 3 is homomorphic with input opera-
tion O and output operation [J for any choice for the ]jnear system Ly .
Consequently, when the characteristic systems ao and 8 for a class are
known, the class of homomorphic systems can be genérated by varying
the linear system L, . It can also be shown that if 'and only if the input
and output operations for a class are memoryless (such as addition and

reesT Tt T
! |
o +I+ oo 0 o +:+ o
ag(+) f—ag () $ () =By () =~ B () e
! |
] |
[ !
e -

F16. 2. Equivalent representation of homomd;-phic systems

1 (V=
{x(f)}————ao(') {/( ) Lg(+) tr '}, B_D'(-)__.{y(r)}

‘F16. 3. Canonic representation of homomorphic systems
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multiplication in contrast with convolution), then the characteristic
systems for that class can be chosen to be memoryless. In these cases
then, all of the system memory is concentrated in the linear portion of
the canonic representation.

1IV. GENERALIZED LINEAR FILTERING

The linear filtering problem, as it is often stated, is concerned with the
use of a linear system for the recovery of a signal after it has been added
to noise. From a vector-space point of view, the linear filtering problem
can be considered as that of determining a linear transformation on a
vector space such that the length or norm of the error vector is minimum.
The norm associated with the vector space specifies the error eriterion to
be used.

From the previous discussion it should be clear that a generalization
can be carried out for the filtering of signal and noise that have been
nonadditively combined, provided that the rule of combination satisfies
the algebraic postulates of veetor addition. For example, if we wish to
recover a signal s(t) after it has been combined with noise n(t) such that
the received signal is s(¢) O n(f), we may associate s(¢) and n(¢)with
vectors in a vector space and the operation O with vector addition. The
class of linear transformations on this vector space would then be
associated with the class of homomorphie systems having the operation
O as both the input operation and the output operation. Hence, in
generalizing the linear filtering problem to homomorphic filtering, the
class of filters from which the optimum is to be selected will be that class
of homomorphic systems having input and output operations that are
identical to the rule under which the signals that are to be separated
have been combined. With this restriction on the class of filters, it
follows that the determination of the optimum filter reduces to the
determination of an optimum linear filter. Specifically, let z; and z, de-
note two signals that have been combined under the operation O. Then
the canonic form for the class of homomorphic filters which will be used
to recover z; or z is depicted in Fig. 4, where an and its inverse are
characteristic of the class. Consequently, the choice of system from this
class rests only on the choice of the linear system L. But, since ag is
homomorphic, the input to the linear system is

{ = Olo[x]_] + C!o[ﬂ:z] = [1 + fz .

If we wish to use the homomorphic system to recover z; for example,
then the desired output of the over-all system is z;, . Consequently, the
desired output from the linear system is 4 . Thus, we wish to select the
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[e] + + + + - o
x () o x,(1) ay(-) L(-) @y ()]

Fic. 4. Canonic representation of homomorphic filters

linear system L, so that with input £ 4 £, the output is closest in some
sense to the desired output y; . This, of course, is just the statement of
the linear-filtering problem, with the exception that we have not yet
specified an error criterion under which to carry out the optimization.
Since the linear system is all that needs to be determined to obtain the
homomorphic filter, it seems reasonable to suppose that we may just
determine the linear system using an error criterion normally used for
linear filtering problems; e.g., mean-square or integral-square error. The
formalism for showing this has been described elsewhere [Oppenheim,
(1965)"]. In brief, what is required is to show that a norm can be selected
for the vector space associated with the system outputs, such that the
norm of the error vector is minimum, if and only if the norm of the error
vector associated with the vector space of outputs of the linear system
is minimum. But, if two vector spaces are isomorphic, then a norm in
one can induce a norm in the other. In other words, if y represents any
output of a homomorphic system, then one can choose as a norm on the
output space

Lyl =1 Baw) |-

With this choice as the norm on the set of outputs, the error measure-
ment will be numerically equal before and after the transformation
85 The conclusion is that mean-square or integral-square error at the
output of the linear system is a meaningful error measurement for the
over-all system.

The notion of generalized linear filtering has found immediate applica-
tion for the filtering of multiplied signals and the filtering of convolved
signals. In this case the characteristic system ay has as its output the
logarithm of the input. Since signals in a vector space under multiplica-
tion can, in general, be positive, negative, or complex (but not zero), the
output of the logarithmie transformation will, in general, be complex.

In the filtering of convolved signals [Oppenheim, (1966)] the char-
acteristic system Ay is defined by the property that

Agls(f) ® w(f)] = Aglsi(t)] + Agls(t)],

where ® denotes convolution.
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By taking advantage of the fact that the convolution of & (¢) and 8(1)
has as its Fourier transform the product of the transforms of s(¢) and
sq(t), one realization of the system Ag is obtained by defining it by the
property

FlAg(s(t))] = log [F(s(1))], (15)

where F denotes Fourier transformation.
REecEivep: January 11, 1967
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