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Abstract

Watermarking models a copyright protection mechanism where an original source sequence
or “covertext” is modified before distribution to the public in order to embed some extra infor-
mation. The embedding should be transparent (i.e., the modified data sequence or “stegotext”
should be similar to the covertext) and robust (i.e., the extra information should be recoverable
even if the stegotext is modified further, possibly by a malicious “attacker”).

We compute the coding capacity of the watermarking game for a Gaussian covertext and
squared-error distortions. Both the public version of the game (covertext known to neither
attacker nor decoder) and the private version of the game (covertext unknown to attacker but
known to decoder) are treated. While the capacity of the former cannot, of course, exceed the
capacity of the latter, we show that the two are, in fact, identical. These capacities depend
critically on whether the distortion constraints are required to be met in expectation or with
probability one. In the former case the coding capacity is zero, whereas in the latter it coincides
with the value of related zero-sum dynamic mutual informations games of complete and perfect
information.
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We also compute the capacity when the attacker is restricted to additive attacks. This
capacity turns out to be strictly larger than the watermarking capacity, thus demonstrating
that additive attacks are sub-optimal. In fact, under the additive attack restriction, capacity
turns out to coincide with the capacity of Costa’s model for “writing on dirty paper”, thus
demonstrating that in Costa’s model the i.i.d. Gaussian “noise” is the most malevolent power-
limited “noise”. Additionally, Costa’s observation that in the presence of i.i.d. Gaussian “noise”,
an i.i.d. Gaussian “dirt” process that is non-causally known to the transmitter (but not receiver)
does not reduce capacity, is extended here to general ergodic “dirt” and to stationary (but not
necessarily white) Gaussian “noise”.

Contrary to the average power limited jamming game, where the analysis of a modified
(saddle-point achieving) white Gaussian jammer suffices to prove the converse, the watermarking
game does not have a memoryless saddle-point, and our proof of the converse requires the
analysis of an attacker that depends on the entire stegotext sequence (but not otherwise on
the encoder). This dependence must be carefully controlled to guarantee that the choice of the
attacking strategy will asymptotically not reveal any information about the embedded message.

The proof of the converse exploits only the ergodicity and the second-order properties of the
covertext, thus allowing for the characterization of the memoryless Gaussian covertext as the
covertext that has the highest watermarking capacity among all finite fourth-moment ergodic
covertexts of a given second moment.

1 Introduction

The watermarking game can model a situation where a source sequence (“covertext”) needs to

be copyright-protected before it is distributed to the public. The copyright (“message”) needs

to be embedded in the distributed version (“stegotext”) so that no “attacker” with access to the

stegotext will be able produce a “forgery” that resembles the covertext and yet does not contain the

embedded message. The watermarking process (“encoding”) should, of course, introduce limited

distortion so as to guarantee that the stegotext closely resembles the original covertext.

In the public version of the game we require that any party with access to a valid forgery (i.e.,

a forgery that introduces limited distortion) should be able to decode the message with a small

probability of error. In the private version of the game the decoding is only required of parties with

access to both the forgery and the original covertext.

The different messages may correspond to different possible owners of the covertext or to other

relevant data, and it is thus of interest to study the number of distinct messages that can be

embedded in the text, if each message is to be reliably decoded from any valid forgery. The highest

exponential rate at which this number can grow in relation to the covertext size is defined as the

coding capacity of the game.

In this paper we focus on memoryless Gaussian sources when the distortions introduced by
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the encoder and by the attacker are measured using Euclidean distances. For such scenarios we

compute the coding capacity of both the private and the public versions of the game.

The precise nature of the distortion constraints imposed on the encoder and the attacker greatly

influences the resulting coding capacities. We focus on average distortion constraints and on almost-

sure distortion constraints. We show that the former constraints typically lead to zero coding

capacities, whereas the latter lead to capacities that are equal to the values of related mutual

information games. These mutual information games also motivate optimal encoding and attacking

strategies.

Some of the sources that need to be watermarked cannot be modeled as memoryless Gaussians.

For such sources we show that the memoryless Gaussian model is optimistic. Thus, we show that

among all finite fourth-moment ergodic1 sources of a given second moment, the memoryless Gaus-

sian covertext is the easiest to watermark (yielding the highest coding capacity). Intuitively, this

follows since the encoder utilizes the uncertainty of the covertext when transmitting the message,

and a Gaussian distribution has the most uncertainty (i.e., highest entropy) among all distributions

of a given second moment. See the discussion before Theorem 2.1 for an example of a covertext

distribution with a coding capacity strictly smaller than a Gaussian covertext distribution with the

same second order statistics. See [1] for an analysis of Gaussian sources with memory.

Knowing the covertext at the decoder cannot hurt, because such information can always be

ignored. Consequently, the coding capacity of the private version of the game cannot be lower

than the coding capacity of the public version. For memoryless Gaussian covertext and Euclidean

distance distortions, however, we show that the two capacities are identical. Thus, while the

decoder’s knowledge of the covertext may help to reduce the complexity of the watermarking

process, it does not increase the watermarking capacity.

To guarantee that no rate above capacity is achievable, the attacker must be familiar with the

details of the encoder (excluding, of course, the realization of the secret key). However, as we shall

see, it need not know the structure of the decoder. Thus, the converse would continue to hold

even if the decoder (but not encoder) were cognizant of the attacking strategy. Combined with the

achievability theorems in which the decoder does not know the attacking strategy, this observation

demonstrates that the ignorance of the decoder of the attack rule is irrelevant to the value of the

game. The fact that the attacker may depend on the encoder, however, is critical.

1We shall use the term “ergodic” to also imply stationarity.
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We also compute the coding capacity for a variant of the watermarking game — “the additive

attack watermarking game” — where the attacker is restricted to be purely additive. This capacity

turns out to be strictly larger than the watermarking capacity, thus demonstrating that additive

attacks are sub-optimal. In fact, under the additive attack restriction, the capacity turns out to

coincide with the capacity of Costa’s model for “writing on dirty paper” [2], thus demonstrating

that in Costa’s model the independent and identically distributed (i.i.d. ) Gaussian “noise” is the

most malevolent power-limited “noise”. We revisit Costa’s result — that in the presence of i.i.d.

Gaussian “noise”, an i.i.d. Gaussian “dirt” process that is non-causally known to the transmitter

(but not receiver) does not reduce capacity — and extend it to general ergodic “dirt” and to

stationary (but not necessarily white) Gaussian “noise”.

We finally consider two related mutual information games whose solutions provide motivation

for both the coding schemes and the converse strategy used in the watermarking game. It should

be noted, however, that the mutual information games in themselves do not suffice to prove the

coding theorems or the converses. For example, the mutual information games do not address

the difference between almost-sure and average distortion constraints — a distinction that greatly

influences capacity.

Watermarking has attracted interest in recent years due to the ease by which data can now be

reproduced and transmitted around the world, for example see [3, 4, 5, 6] and references therein.

The information theoretic model of the watermarking game was introduced by O’Sullivan, Moulin

and Ettinger [7]. They formulated private watermarking as a max-min game over conditional

mutual information, and extended their approach in [8, 9]. For similar models (but with somewhat

different distortion constraints) error exponents were studied in [10, 11] and identification capacities

in [12]. Information rates were investigated in [13] for Gaussian covertexts and for the fixed (and

as we shall see, sub-optimal) independent additive attack strategy. In [14], a coding strategy

was introduced (distortion-compensated quantization index modulation or “DC-QIM”), which was

shown to achieve capacity for several scenarios when the decoder knows the statistics of the attack

channel. The capacity region of a joint watermarking and quantization technique was investigated

in [15].

In almost all these studies the decoder is assumed to be cognizant of the attack strategy, thus

allowing for maximum-likelihood decoding; the notable exception is [11]. This assumption is implicit

in studies where some attack strategy is hypothesized (and not optimized), and is more explicit
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in those studies that optimize over the attack strategy. In the present paper we shall avoid this

assumption. Thus, we shall require that the encoder and decoder be designed so that the desired

level of performance can be met regardless of the actual attacker used. In fact, we shall prove

the coding theorems assuming that the decoder is ignorant of the attack strategy, and prove the

converses under maximum-likelihood decoding conditions. The encoding will always be performed

in ignorance of the attacking strategy.

After concluding this section with some notes on notation, we turn in Section 2 to formalize

the models and to present our main results on their coding capacities. The remainder of the

paper is devoted to proving and discussing these results. In Section 3, we present the solutions to

the mutual information games, which provide motivation for the encoding and attacker strategies

discussed later. In Section 4, we prove the achievability parts of the main theorems on the coding

capacity of the watermarking game. That is, we describe coding strategies and then demonstrate

that for the appropriate rates and any attack strategy, the probability of error tends to zero. In

Section 5, we propose an attack strategy that proves that no ergodic source of finite fourth moment

and of second moment σ2
u can be reliably watermarked — publicly or privately — at all appropriate

rates (i.e., any rate larger than our proposed capacity). In Section 6, we show that no positive rate is

achievable when average distortion constraints are imposed rather than the almost-sure constraints.

Finally, in Section 7, we give some concluding remarks.

1.1 Notation and Definitions

All the alphabets used in this paper are the real line, but for clarity we denote them by separate

letters U , X , and Y for the covertext, stegotext, and forgery, respectively, which we define below.

The n-th Cartesian products of these sets (e.g., U×U×· · ·×U) are written Un, X n, and Yn, respec-

tively. Random variables and random vectors are written in upper case, while their realizations are

written in lower case. The use of bold refers to a vector of length n, for example U = (U1, . . . , Un)

(random) or u = (u1, . . . , un) (deterministic).

We use ‖ · ‖ and 〈·, ·〉 to denote the Euclidean norm and inner product, respectively. That is,

for any µ,ψ ∈ Rn, 〈µ,ψ〉 =
∑n

i=1 µiψi, and ‖µ‖ =
√
〈µ,µ〉. If 〈µ,ψ〉 = 0, then we say that µ and

ψ are orthogonal and write µ ⊥ ψ. We denote by ψ⊥ the linear sub-space of all vectors that are
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orthogonal to ψ. If ψ 6= 0, then µ|ψ denotes the projection of µ onto ψ, i.e.,

µ|ψ =
〈µ,ψ〉
‖ψ‖2

ψ.

Similarly, µ|ψ⊥ denotes the projection of µ onto the subspace orthogonal to ψ, i.e., µ|ψ⊥ = µ−µ|ψ.

We use P to denote a generic probability measure on the appropriate Borel σ-algebra. For

example, PU (·) is the distribution of U on the Borel σ-algebra of subsets of Un. Similarly, PX|U

denotes the conditional distribution of X given U , and fX|U (x|u) denotes the conditional density,

when it exists.

Finally, we shall use the following definitions throughout the paper in order to describe both

capacity expressions and optimal strategies. Let us first define the interval

A(D1, D2, σ
2
u) =

{
A : max

{
D2,

(
σu −

√
D1

)2
}
≤ A ≤

(
σu +

√
D1

)2
}
, (1)

where A(D1, D2, σ
2
u) is empty if D2 ≥ σ2

u +D1 + 2σu

√
D1. Let us also define the mappings

ρ(A;D1, σ
2
u) =

1
2
(A− σ2

u −D1), (2)

b1(A;D1, σ
2
u) = 1 +

ρ(A;D1, σ
2
u)

σ2
u

, (3)

b2(A;D1, σ
2
u) = D1 −

ρ2(A;D1, σ
2
u)

σ2
u

, (4)

c(A;D2) = 1− D2

A
, (5)

α(A;D1, D2, σ
2
u) = 1− b1(A;D1, σ

2
u)D2

D2 + c(A;D2)b2(A;D1, σ2
u)
, (6)

s(A;D1, D2, σ
2
u) =

b2(A;D1, σ
2
u)c(A;D2)

D2
, (7)

and2

C∗(D1, D2, σ
2
u) =

maxA∈A(D1,D2,σ2
u)

1
2 log

(
1 + s(A;D1, D2, σ

2
u)
)

if A(D1, D2, σ
2
u) 6= ∅

0 otherwise
. (8)

2Unless otherwise specified, all logarithms in this paper are base-2 logarithms.
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Figure 1: A diagram of the watermarking game. The dashed line is used in the private version of
the game, but not in the public version.

We shall see that C∗(D1, D2, σ
2
u) is the capacity for the Gaussian watermarking game (where the

precise definitions of capacity and the watermarking game are given below in Section 2.1.1). Note

that a closed-form solution for (8) can be found by setting the derivative with respect to A to zero.

This yields a cubic equation in A that can be solved analytically. Further note that C∗(D1, D2, σ
2
u)

is zero only if D2 ≥ σ2
u +D1 + 2σu

√
D1.

2 Main Results

2.1 The Watermarking Game

2.1.1 The Game

The watermarking game is illustrated in Figure 1 and can be described as follows. Prior to the

use of the watermarking system, a secret key3 (random variable) Θ1 is generated and revealed

to the encoder and decoder. Independently of the secret key Θ1, a source subsequently emits a

blocklength-n covertext sequence U ∈ Un according to the law PU , where {PU} is a collection of

probability laws indexed by the blocklength n. We will be mostly interested in the case where

U is a sequence of independent and identically distributed (i.i.d. ) random variables of law PG
U ,

where PG
U denotes the Gaussian distribution of zero mean and variance σ2

u > 0. Independently of

the covertext U and of the secret key Θ1, a copyright message W is drawn uniformly over the set

Wn = {1, . . . , b2nRc}, where R is the rate of the system.

3We do not limit the amount of randomness provided by the secret key, but it must be independent of the message
and the covertext.
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Using the secret key, the encoder maps the covertext and message to the stegotext X. For every

blocklength n, the encoder thus consists of a measurable function fn that maps realizations of the

covertext u, the message w, and the secret key θ1 into the set X n, i.e.,

fn : (u, w, θ1) 7→ x ∈ X n.

The random vector X is the result of applying the encoder to the covertext U , the message W , and

the secret key Θ1, i.e., X = fn(U ,W,Θ1). The distortion introduced by the encoder is measured

by

d1(u,x) =
1
n

n∑
i=1

d1(ui, xi),

where d1 : U × X → R+ is a given non-negative function. We assume throughout that d1(u, x) =

(x− u)2. We require that the encoder satisfy

d1(U ,X) ≤ D1, a.s., (9)

where D1 > 0 is a given constant called the encoder distortion level, and a.s. stands for “almost

surely”. We will also consider an average distortion constraint on the encoder, i.e.,

E [d1(U ,X)] ≤ D1, (10)

where the expectation is with respect to the covertext, the message, and the secret key; a similar

average distortion constraint was considered in [7, 9]. Still other types of constraints have been con-

sidered, e.g., E [d1(U ,X)|U = u] ≤ D1 for all u [10] and Pr {d1(U ,X) > D1|U = u} ≤ exp(−νn)

for some ν and all u [11]. The latter constraint reduces to (9) for ν = ∞. Unless otherwise stated,

we shall focus on the a.s. distortion constraint (9). We feel that this constraint best represents the

specification that every stegotext produced by the encoder should be within distortion D1 of the

covertext.

Independently of the covertext U , the message W , and the secret key Θ1 the attacker generates

an attack key (random variable) Θ2. For every n > 0, the attacker consists of a measurable function

gn that maps realizations of the stegotext x and the attack key θ2 into the set Yn, i.e.,

gn : (x, θ2) 7→ y ∈ Yn. (11)
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The forgery Y is a random vector that is the result of applying the attacker to the stegotext X and

the attacker’s source of randomness Θ2, i.e., Y = gn(X,Θ2). In other studies of watermarking, e.g.,

[7, 10], the attacker is formalized equivalently as a conditional distribution of the forgery given the

stegotext. Here, we use a deterministic mapping to emphasize that, similarly to the encoder, the

attacker directly produces the forgery from the stegotext, with some randomness used to assist. In

fact, we argue in Section 4.1.2 that any rate achievable against a completely deterministic attacker

is also achievable against a randomized attacker. The distortion introduced by the attacker is

measured by

d2(x,y) =
1
n

n∑
i=1

d2(xi, yi),

where d2 : X × Y → R+ is a given non-negative function. We assume throughout that d2(x, y) =

(y − x)2. The attacker is required to satisfy

d2(X,Y ) ≤ D2, a.s., (12)

where D2 > 0 is a given constant called the attacker distortion level. We will also consider an

average distortion constraint on the attacker, i.e.,

E [d2(X,Y )] ≤ D2, (13)

where expectation is over the covertext U , the message W , the secret key Θ1, and the attack key

Θ2. Again, unless otherwise stated, we shall focus on the a.s. distortion constraint (12).

In the public version of the watermarking game, the decoder attempts to recover the copyright

message based only on realizations of the secret key θ1 and the forgery y. In this version the

decoder is a measurable mapping

φn : (y, θ1) 7→ ŵ ∈ Wn (public version).

In the private version, however, the decoder also has access to the covertext. In this case the

decoder is a measurable mapping

φn : (y,u, θ1) 7→ ŵ ∈ Wn (private version).
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The estimate of the message Ŵ is a random variable that is the result of applying the decoder to

the forgery Y , the covertext U (in the private version), and the same source of randomness used

by the encoder Θ1. That is, Ŵ = φn(Y ,U ,Θ1) in the private version, and Ŵ = φn(Y ,Θ1) in the

public version.

The realizations of the covertext u, message w, and sources of randomness (θ1, θ2) determine

whether the decoder errs in decoding the copyright message, i.e., if the estimate of the message ŵ

differs from the original message w. We write this error indicator function (for the private version)

as

e(u, w, θ1, θ2, fn, gn, φn) =

1 if w 6= φn

(
gn

(
fn(u, w, θ1), θ2

)
,u, θ1

)
0 otherwise

,

where the expression for the public version is the same, except that the decoder mapping φn does

not take the covertext u as an argument. We consider the probability of error averaged over the

covertext, message and both sources of randomness as a functional of the mappings fn, gn, and φn.

This is written as

P̄e(fn, gn, φn) = EU ,W,Θ1,Θ2 [e(U ,W,Θ1,Θ2, fn, gn, φn)] = Pr
(
Ŵ 6= W

)
,

where the subscripts on the right hand side (RHS) of the first equality indicate that the expectation

is taken with respect to the four random variables U , W , Θ1, and Θ2.

We adopt a conservative approach to the watermarking game and assume that once the wa-

termarking system is employed, its details — namely the encoder mapping fn, the distributions

(but not realizations) of the covertext U and of the secret key Θ1, and the decoder mapping φn —

are made public. The attacker can be malevolently designed accordingly. The watermarking game

is thus played so that the encoder and decoder are designed prior to the design of the attacker.

This, for example, precludes the decoder from using the maximum-likelihood decoding rule which

requires knowledge of the law PY |W and thus, indirectly, knowledge of the attack strategy. We

thus say that a rate R is achievable if there exists a sequence {(fn, φn)} of allowable rate-R encoder

and decoder pairs such that for any sequence {gn} of allowable attackers the average probability of

error P̄e(fn, gn, φn) tends to zero as n tends to infinity.
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2.1.2 The Coding Capacity of the Game

The coding capacity of the game is the supremum of all achievable rates. It depends on three

parameters: the encoder distortion level D1, the attacker distortion level D2, and the covertext dis-

tribution {PU}. We thus write the coding capacity as Cpriv(D1, D2, {PU}) and Cpub(D1, D2, {PU})

for the private and public version, respectively.

The following theorem demonstrates that if the covertext has power σ2
u, then the coding capacity

of the private and public watermarking games cannot exceed C∗(D1, D2, σ
2
u). Furthermore, if the

covertext U is an i.i.d. zero-mean Gaussian sequence with power σ2
u, then the coding capacities of

the private and public versions are equal, and they coincide with this upper bound.

We see from this theorem that, as in the “writing on dirty paper” model (see Section 2.1.3

below and [2]), the capacity of the Gaussian watermarking game is unaffected by the presence or

absence of side-information (covertext) at the receiver. See [16] for some comments on the role of

receiver side-information, particularly in card games.

This theorem also shows that, of all ergodic covertexts with a given power, the i.i.d. zero-mean

Gaussian covertext has the largest watermarking capacity. Although the covertext can be thought

of as additive noise in a communication with side information situation (see Section 2.1.3), this

result differs from usual “Gaussian is the worst-case additive noise” idea, see e.g., [17, 18]. The

reason that a Gaussian covertext is the best case (i.e., easiest to watermark) is that the encoder is

able to transmit the watermark using the uncertainty of the covertext, and a Gaussian distribution

has the most uncertainty (i.e., highest entropy) among all distributions of a given second moment.

As an example of this extremal property of the Gaussian distribution, consider an i.i.d. covertext

in which each sample Uk takes on the values ±σu equiprobably, so that E
[
U2

k

]
= σ2

u. If D1 = D2 �

σ2
u, then C∗(D1, D2, σ

2
u) ≈ 1/2 bits/symbol, but a watermarking system could not reliably transmit

at nearly this rate with this covertext. To see this, consider further an attacker that creates the

forgery by quantizing each stegotext sample Xk to the nearest of ±σu. Even in the private version,

the encoder can only send information by changing Uk by at least σu, which can be done for only

a small percentage of the samples since D1 � σ2
u. Indeed, it can be shown (see e.g., [19, 20]) that

the largest achievable rate for this fixed attacker is4 Hb

(
D1/σ

2
u

)
bits/symbol, which is smaller than

1/2 bits/symbol for D1/σ
2
u < 0.11. The capacity for this scenario could be even smaller since we

4We use Hb(·) to denote the binary entropy, i.e., Hb(p) = −p log p− (1− p) log(1− p).
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have only considered a known attacker.

Theorem 2.1. If {PU} defines an ergodic covertext U such that

E
[
U4

k

]
<∞, (14)

and

E
[
U2

k

]
≤ σ2

u, (15)

then

Cpub(D1, D2, {PU}) ≤ Cpriv(D1, D2, {PU}) (16)

≤ C∗(D1, D2, σ
2
u). (17)

Equality is achieved in both (16) and (17) if U is an i.i.d. Gaussian sequence with mean zero and

variance σ2
u, i.e. if PU = (PG

U )n for all n.

In Section 4, we prove the achievability result of this theorem for the public version, assuming

an i.i.d. Gaussian covertext; we also outline the simpler coding strategy for the private version. We

prove the converse result for general covertexts in Section 5. We now briefly describe the optimal

strategies.

The optimal encoder for the public version with a Gaussian covertext uses random binning

[21, 22, 23, 2] and can be described as follows. A value of A ∈ A(D1, D2, σ
2
u) is chosen and a

codebook of 2nR bins is generated with 2nR0 codewords in each bin, where R and R0 depend on A.

Given the covertext u and the message w, the encoder forms the stegotext as x = v+(1−α)u where

v is a codeword from bin w chosen so that n−1〈x − u,u〉 ≈ ρ. Our choice of α and ρ will ensure

that the distortion constraint is met and that the norm of the stegotext is n−1‖x‖2 ≈ A. Given

the forgery, the decoder finds the codeword (out of all 2n(R+R0) codewords) that is closest to the

forgery and estimates the message as the bin containing this codeword. We will show that the target

correlation will be met if R0 is large enough and that the correct message will be recovered if R+R0

is small enough. Combining these bounds will show that all rates R < 1
2 log

(
1 + s(A;D1, D2, σ

2
u)
)

are achievable, which, by (8), will complete the achievability proof.

In order to guarantee that no rates larger than C∗(D1, D2, σ
2
u) are achievable for any covertext

satisfying (14) and (15), we consider an attacker that creates the forgery by attenuating the stego-
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text by c(Â;D2) of (5) and adding independent Gaussian noise of variance c(Â;D2) ·D2, where Â is

a quantization of n−1‖x‖2. This attacker is related to the Gaussian rate distortion forward channel,

which for a variance-A Gaussian random variable and allowable distortion D2 also multiplies by

c(A;D2) and adds noise of variance c(A;D2) · D2. An optimal encoder with an i.i.d. Gaussian

covertext produces a stegotext that is approximately Gaussian, and thus, in this case, the optimal

attacker is essentially performing optimal lossy compression. Note that optimal lossy compression

is not the optimal attack for all covertexts. In fact, it is not even optimal for Gaussian covertexts,

if they exhibit memory [1].

The next theorem, which is proved in Section 6, addresses the case where average distortion

constraints (10), (13) rather than a.s. distortion constraints (9), (12) are in effect. In this case no

positive rates are achievable.

Theorem 2.2. If the covertext U satisfies

lim inf
n→∞

E

[
1
n
‖U‖2

]
<∞,

and if the average distortion constraints (10), (13) are in effect instead of the a.s. distortion con-

straints (9), (12), then no rate is achievable in either version of the game.

This result is reminiscent of results from the theory of Gaussian arbitrarily varying channels

(AVCs) [24] and from the theory of general AVCs with constrained inputs and states [25], where

under average power constraints no positive rates are achievable.

2.1.3 The Watermarking Game and the Jamming Game

By writing the forgery Y in the form

Y = X̃ +U + Ỹ ,

where X̃ = X − U , and Ỹ = Y −X, we can interpret the watermarking game as a non-causal

communication game with side information, see e.g. [26]. To this end we may think of X̃ as a

transmitted signal that is corrupted by an additive noise U , which is non-causally known to the

transmitter, and by an additive jammer signal Ỹ , which may depend non-causally on X̃ +U .

If the transparency measure d1(u, x) is a difference measure, then the transparency constraint
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Figure 2: An alternative diagram of the public version of the watermarking game.

translates to a constraint on X̃. In particular, in our case where d1(u, x) = (x−u)2, the transparency

constraint translates to a power constraint on the transmitted signal X̃. Similarly if d2(x, y) =

(x − y)2 then the jamming signal Ỹ becomes power limited. See figure 2 for a block diagram of

this interpretation of the game.

The Gaussian watermarking game with d1(u, x) = (x − u)2 and d2(x, y) = (y − x)2 is thus

reminiscent of Costa’s “writing on dirty paper” model [2], which corresponds to the case where,

as in the Gaussian watermarking game, the sequence U is memoryless and Gaussian, but where

the attacker ignores X̃ + U and fixes Ỹ to be a sequence of i.i.d. Gaussian random variables,

independent of X̃ +U .

In Costa’s model, if the sequence U is known at the receiver then it can be subtracted from

the received signal, and in this case we can conclude that U has no adverse effect on capacity.

(Additionally, this simple strategy results in the highest capacity in this scenario.) As in the

watermarking game, Costa has shown for his model that the capacity does not decrease when U

is unknown to the decoder. In either case, this capacity is given by 1
2 log(1 + D1

D2
). We extend this

result to non-Gaussian attackers in Section 2.2 and to non-Gaussian covertexts in Section 2.4.

2.2 The Additive Attack Watermarking Game

In this section, we describe a variation of the watermarking game, which we call the additive attack

watermarking game. (When it is necessary to distinguish the two models, we will refer to the original

model of Section 2.1 as the general watermarking game.) The study of this model will show that

it is sub-optimal for the attacker of Figure 2 to produce the jamming sequence Ỹ independently of

the stegotext X. Also, similarly to Costa’s writing on dirty paper result, we will show that if the
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covertext U is i.i.d. Gaussian then the capacities of the private and public versions are the same

and are given by 1
2 log(1 + D1

D2
). This result can be thus viewed as an extension of Costa’s result to

arbitrarily varying noises.

In the additive attack watermarking game the attacker is more restricted than in the general

game. Rather than allowing general attacks of the form (11), we restrict the attacker to mappings

that are of the form

gn(x, θ2) = x+ g̃n(θ2) (18)

for some mapping g̃n. In particular, the jamming sequence Ỹ = g̃n(Θ2) is produced independently

of the stegotext X, and must satisfy the distortion constraint

1
n

∥∥Ỹ ∥∥2 ≤ D2, a.s.. (19)

The capacity of the additive attack watermarking game is defined similarly to the capacity of the

general game and is written as CAA
priv(D1, D2, {PU}) and CAA

pub(D1, D2, {PU}) for the private and

public versions, respectively. Our main result in this section is to describe these capacities.

Theorem 2.3. For any covertext distribution {PU},

CAA
pub(D1, D2, {PU}) ≤ CAA

priv(D1, D2, {PU}) (20)

=
1
2

log
(

1 +
D1

D2

)
. (21)

Equality is achieved in (20) if U is an i.i.d. Gaussian sequence.

As with Theorem 2.1, we prove the achievability and converse parts of this theorem in Sections 4

and 5, respectively. Since any allowable additive attacker is also an allowable general attacker, the

capacity of the additive attack watermarking game provides an upper bound to the capacity of the

general watermarking game. However, comparing Theorems 2.1 and 2.3, we see that for an i.i.d.

Gaussian covertext this bound is loose. Thus, for such covertexts, it is sub-optimal for the attacker

in the general watermarking game to take the form (18).

When the covertext U is i.i.d. Gaussian, then the additive attack watermarking game differs

from Costa’s writing on dirty paper in only two respects. First, the jamming sequence distribution

is arbitrary (subject to (19)) instead of being an i.i.d. Gaussian sequence. Second, the jamming

sequence distribution is unknown to the encoder and decoder. Nevertheless, the two models give the
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same capacity, thus demonstrating that the most malevolent additive attack for the watermarking

game is an i.i.d. Gaussian one.

2.3 Mutual Information Games

In this section, we consider two mutual information games that are motivated by the results on the

capacity of channels with states, when the states are known to both transmitter and receiver and

when they are known to the transmitter only (i.e., private and public versions). The motivation is

discussed in more detail in Section 2.3.1. In Section 2.3.2, we define the games precisely and give

our main result on their value.

2.3.1 Motivation: Capacity with Side Information

Let us consider a communication channel of transition probability that depends on a state u. That

is, given the value of the current state u and the current input x, the output of the channel is a

random variable Y with distribution PY |X,U (·|x, u), where we assume throughout that PY |X,U is

known. Furthermore, given a state sequence u and an input sequence x, the output sequence Y is

generated in a memoryless fashion, so that

P (Y = y|x,u) =
n∏

i=1

PY |X,U (yi|xi, ui). (22)

Let us assume that the state sequence U is generated in an i.i.d. manner according to a known

distribution PU and let us also (temporarily) assume that the alphabets U , X and Y are finite.

As in the watermarking game, we are interested in the capacity of this channel when the encoder

knows u (non-causally) and the decoder does (private) or does not (public) know u. For the private

version, Wolfowitz [27] showed that the capacity is given by

CCSI
priv = max

PX|U
I(X;Y |U) (23)

where the mutual information is defined in the usual manner and is evaluated with respect to

the joint distribution PU,X,Y = PUPX|UPY |X,U . For the public version, Gel’fand and Pinsker [22]
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showed the capacity is given by

CCSI
pub = max

PX,V |U
I(V ;Y )− I(V ;U), (24)

where V is an auxiliary random variable with alphabet |V| ≤ |X |+ |U| − 1, and where the optimal

conditional distribution takes the form

PX,V |U (x, v|u) = PV |U (v|u) · 1x=f(v,u) (25)

for some PV |U and some function f : V × U 7→ X .

In the watermarking game, the above channel model corresponds to a fixed memoryless attacker,

and the capacity of the watermarking game for such an attacker can be found by modifying (23) and

(24) to include a distortion constraint. In the mutual information games we will further generalize

these expressions to include a minimization over possible “attack channels.” We shall see that the

solutions to an instance of these games agree with the capacity of the Gaussian watermarking game

and provide insight into how to approach it. Others [7, 8, 11] have shown that general capacity

expressions for similar watermarking games are given by related mutual information games.

2.3.2 Definitions and Result

For a general covertext distribution PU , conditional law PX|U (“watermarking channel”) and con-

ditional law PY |X (“attack channel”) we can compute the conditional mutual information

IPU PX|U PY |X (X;Y |U) = D(PU ,X,Y ||PUPX|UPY |U ),

where D(·||·) is the Kullback-Leibler distance, defined for any probability measures P and Q as

D(P ||Q) =


∫

log dP
dQdP if P � Q

∞ otherwise
.

Here, dP
dQ is the Radon-Nikodym derivative of P with respect to Q, and P � Q means that P is

absolutely continuous with respect to Q. If P and Q have densities fP and fQ, then D(P ||Q) =

EP [log fP
fQ

]. We can similarly compute other mutual information quantities.
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Like the watermarking game, the mutual information game is a game played between two players

in which the second player (attacker) has full knowledge of the strategy of the first player (encoder).

The main difference between the two games is that the strategies in the mutual information game

are conditional distributions instead of mappings, and the payoff function is mutual information,

which may or may not have an operational significance in terms of achievable rates.

We first describe the private mutual information game, which is based on the capacity of a

channel with state information known at both encoder and decoder (23). For every n, the encoder

chooses a watermarking channel PX|U that satisfies the average distortion constraint (10), and the

attacker then chooses an attack channel PY |X that satisfies the average distortion constraint (13).

The quantity that the encoder wishes to maximize and that the attacker wishes to minimize is

Ipriv(PU , PX|U , PY |X) =
1
n
IPU PX|U PY |X (X;Y |U). (26)

The value of the private mutual information game is thus

CMI
priv(D1, D2, {PU}) = lim inf

n→∞
sup

PX|U∈D1(D1,PU )
inf

PY |X∈D2(D2,PU ,PX|U )
Ipriv(PU , PX|U , PY |X), (27)

where

D1(D1, PU ) =
{
PX|U : EPU PX|U [d1(U ,X)] ≤ D1

}
, (28)

and

D2(D2, PU , PX|U ) =
{
PY |X : EPU PX|U PY |X [d2(X,Y )] ≤ D2

}
. (29)

Note that the choice of PX|U influences the set of distributions from which PY |X can be chosen.

Thus, this is not a standard static zero-sum game; it is better described as a dynamic two-stage

zero-sum game of complete and perfect information. Also note that we take the limit in (27) since

there is no a-priori guarantee that the attacker will use a memoryless strategy.

We next describe the public mutual information game, which is based on the capacity of a

channel with state information known non-causally to the encoder (24). We first define an auxiliary

random vector V that depends on the random vectors U and X. The watermarking channel is
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expanded to include not only the conditional distribution PX|U but also the conditional distribution

PV |U ,X . Given the random vector X, the random vector Y is independent of both U and V , so

that the joint distribution of the random vectors U , X, V and Y is the product of the laws

PU , PX|U , PV |U ,X , and PY |U ,X,V = PY |X . In the public version, the quantity of interest is

n−1(I(V ;Y )− I(V ;U)), which is written more explicitly as

Ipub(PU , PX|U , PV |U ,X , PY |X) =
1
n

(
IPU PX|U PV |U,XPY |X (V ;Y )− IPU PX|U PV |U,X

(V ;U)
)
.

The value of the public mutual information game is thus

CMI
pub(D1, D2, {PU}) = lim inf

n→∞
sup

PX|U∈D1(D1,PU ),
PV |U,X

inf
PY |X∈D2(D2,PU ,PX|U )

Ipub(PU , PX|U , PV |U ,X , PY |X).

(30)

Note that we do not restrict the overall watermarking channel PV ,X|U to haveX be a deterministic

function of V and U as in (25) since the argument in [22] that (25) is optimal assumes finite

alphabets. However, we shall see in Section 3.2 that the optimal strategy takes this form.

In the following theorem, which is proved in Section 3, we show that the upper bound of

Theorem 2.1 on the coding capacity of the watermarking game is also an upper bound on the

values of the mutual information games. Moreover, for i.i.d. Gaussian covertexts, this upper bound

is tight.

Theorem 2.4. For the covertext {PU} and the distortions D1 and D2

CMI
pub(D1, D2, {PU}) ≤ CMI

priv(D1, D2, {PU}) (31)

≤ C∗(D1, D2, σ
2
u), (32)

where σ2
u is defined by

σ2
u = lim inf

n→∞

1
n

n∑
i=1

EPU
[U2

i ]

and is assumed finite. Equality is achieved in both (31) and (32) if the covertext is zero-mean i.i.d.

Gaussian.

Note that for a zero-mean variance-σ2
u i.i.d. Gaussian covertext, Theorem 2.4 differs from the

initial results of Moulin and O’Sullivan [8, 9], but agrees with an updated version [28]. In our
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notation, the results of [8, 9] can be expressed as 1
2 log(1 + s(A;D1, D2, σ

2
u)), where the parameter

A is fixed to σ2
u +D1, rather than, as in (8), being optimized over A ∈ A(D1, D2, σ

2
u). (The value

σ2
u +D1 is not the optimal choice for A ∈ A(D1, D2, σ

2
u).) See Section 3.4 for further discussion on

this difference.

Also note that the mutual information games introduced here are somewhat different from

the classical information theoretic games corresponding to communication in the presence of an

unknown jammer [29] or the lossless encoding of an unknown source [30]. While all these games

can be viewed as two-player zero-sum games (encoder vs. attacker, communicator vs. jammer, and

compressor vs. nature) the watermarking games are dynamic, whereas the latter two games are

static. Thus, in the latter two games the feasible actions of each player do not depend on the actions

of the other player, and under the proper convexity/mixture conditions a saddle-point guarantees

that the value of the game does not depend on who plays first. In contrast, in the watermarking

mutual information games the feasible actions of the attacker depend on the action of the encoder.

The watermarking games are thus two-stage games where in the first stage the first player (encoder)

chooses a watermarking channel, and in doing so determines the set of attack channels from which

the second player (attacker) can choose in the second stage. In the terminology of game theory,

the watermarking mutual information games are dynamic (two-stage) zero-sum games of complete

and perfect information [31]; see Section 3.4 for further game theoretic interpretation.

2.4 Another Extension of Costa [2] (Non-white “noise”, non-Gaussian “dirt”)

In Section 2.2, we showed that Costa’s result on “writing on dirty paper” [2] can be extended

to situations when the unknown noise is power limited but arbitrary. In this section, we use the

capacity with side information results of Section 2.3.1 to extend Costa’s result to more general

channels as follows. Consider a channel whose output Y is given by

Y = x̃+U + Ỹ ,

where the input x̃ is average-power limited to D1; U is any power-limited ergodic process, which is

non-causally known to the encoder but not to the decoder; and Ỹ is a stationary Gaussian process,

which is known to neither encoder nor decoder. Assume that U and Ỹ are independent, and that

their joint law does not depend on the input x̃.
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We next show that the capacity of this channel is the same as the capacity that would result if

U were not only known to the encoder but also to the receiver, namely, the Gaussian water-filling

capacity [17]. Costa’s result then follows by considering the case where both U and Ỹ are i.i.d.

zero-mean Gaussian random processes. Similar extensions have been given recently for U and Ỹ

both Gaussian but not necessarily white [32, 33], and for Ỹ i.i.d. Gaussian and u an arbitrary

sequence [34, 35]. In light of this independently derived latter result, we will only sketch the proof

of this theorem.

Using an interleaving argument, it should be intuitively clear that if the result holds for any

power-limited i.i.d. law on U , then it should also hold for any power-limited ergodic law. Also, by

diagonalizing the problem and reducing it to a set of parallel scalar channels whose noise component

(the component that is known to neither encoder nor decoder) is i.i.d. [18, 36] it should be clear

that it suffices to prove this result for the case where Ỹ is i.i.d. .

Consider then the case where U and Ỹ are i.i.d. sequences of random variables, and where

Uk has an arbitrary distribution (with finite second moment) and Ỹk has a Gaussian distribution

with mean zero and variance D2. We will specify a joint distribution on Uk, the input X̃k, and an

auxiliary random variable Vk such that E
[
X̃2

k

]
≤ D1 and

I(Vk; X̃k + Uk + Ỹk)− I(Vk;Uk) =
1
2

log
(

1 +
D1

D2

)
. (33)

Note that the RHS of (33) coincides with the capacity if U were also known at the decoder.

The desired result follows from the achievability part of (24), which does not depend strongly the

alphabets being finite.

For our joint distribution, let X̃k be a zero-mean Gaussian of variance D1 independent of Uk

and Ỹk. Also, let the auxiliary random variable Vk = αUk + X̃k, where α = D1/(D1 +D2). Notice

that with this choice of Vk,

Vk − α(X̃k + Uk + Ỹk) = X̃k − α(X̃k + Ỹk), (34)

and that with this choice of α the random variables X̃k−α(X̃k + Ỹk) and X̃k + Ỹk are uncorrelated

and hence, being zero-mean jointly Gaussian, also independent. Furthermore, the random variables
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X̃k−α(X̃k+Ỹk) and X̃k+Uk+Ỹk are independent since Uk is independent of (X̃k, Ỹk). Consequently,

h(Vk|X̃k + Uk + Ỹk) = h
(
Vk − α(X̃k + Uk + Ỹk)|X̃k + Uk + Ỹk

)
= h

(
X̃k − α(X̃k + Ỹk)

)
= h

(
X̃k − α(X̃k + Ỹk)|X̃k + Ỹk

)
= h(X̃k|X̃k + Ỹk), (35)

where all of the differential entropies exist since X̃k and Ỹk are independent Gaussians, and the

second and third equalities follow by (34) and the above discussed independence. Also, the inde-

pendence of Uk and X̃k implies that

h(Vk|Uk) = h(αUk + X̃k|Uk) = h(X̃k|Uk) = h(X̃k). (36)

Combining the definition of mutual information for random variables with densities with (35) and

(36) we see that

I(Vk; X̃k + Uk + Ỹk)− I(Vk;Uk) = h(Vk)− h(Vk|X̃k + Uk + Ỹk)− h(Vk) + h(Vk|Uk)

= I(X̃k; X̃k + Ỹk). (37)

The proof is completed by noting that the RHS of (33) equals the RHS of (37).

3 Values of the Mutual Information Games

In this section, we study the mutual information games (27), (30) and prove Theorem 2.4. The

upper bound on the values of the games is based on a family of attack channels that will be described

in Section 3.1. The equality for i.i.d. zero-mean Gaussian covertexts is based on the watermarking

channels that will be described in Section 3.2. In Section 3.3, we give a series of lemmas that

demonstrate that the proposed channels are optimal. In Section 3.4, we provide a game theoretic

interpretation of these results.
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3.1 Optimal Attack Channel

The attack channel that we describe here does not depend on the version of the game. Since the

attacker is assumed to be cognizant of the covertext distribution PU and of the watermarking

channel PX|U , it can compute

An =
1
n
EPU PX|U [‖X‖2]. (38)

It then bases its attack channel on An and on its allowed distortion D2 as follows. If An ≤ D2 then

the attacker can guarantee zero mutual information by setting the forgery Y deterministically to

zero without violating the distortion constraint. We shall thus focus on the case An > D2. For this

case the proposed attack channel is memoryless, and we proceed to describe its marginal. For any

A > D2, let the conditional distribution PA
Y |X have the density5

fA
Y |X(y|x) = N

(
y ; c(A;D2) · x , c(A;D2) ·D2

)
,

where c(·; ·) is defined in (5), and where our notation fA
Y |X(y|x) makes D2 implicit. Equivalently,

under PA
Y |X the random variable Y is distributed as c(A;D2)X + S2, where S2 is a zero-mean

variance-c(A;D2)D2 Gaussian random variable independent of X. The conditional distribution

PA
Y |X is thus equivalent to the Gaussian rate distortion forward channel [17] for a variance-A

Gaussian source and an allowable distortion D2.

For blocklength n and An > D2, the proposed attacker PY |X is

PY |X =
(
PAn

Y |X

)n
,

that is, PY |X has a product form with marginal PAn

Y |X , where An is given in (38). Notice that by

(38) and the structure of the attack channel

E
PU PX|U (P An

Y |X)n

[
1
n
‖Y −X‖2

]
=
(
c(An;D2)− 1

)2
An + c(An;D2)D2 = D2.

Thus the attack channel (PAn

Y |X)n satisfies the distortion constraint. Compare this attack channel

with the attacker (defined in Section 5.2) used in the proof of the converse of the watermarking

game.

5We use N (x; µ, σ2) to denote the density at x of a Gaussian distribution of mean µ and variance σ2.
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3.2 Optimal Watermarking Channel

In this section we focus on i.i.d. zero-mean variance-σ2
u Gaussian covertexts and describe watermark-

ing channels that will demonstrate that for such covertexts (31) and (32) both hold with equality.

The watermarking channels are memoryless, and it thus suffices to describe their marginals. The

proposed watermarking channels depend on the version of the game, on (σ2
u, D1, D2), and on a

parameter A ∈ A(D1, D2, σ
2
u), whose choice is at the watermarker’s discretion. Later, of course, we

shall optimize over this choice.

Private Version: For any A ∈ A(D1, D2, σ
2
u), let the conditional distribution PA

X|U be Gaussian

with mean b1U and variance b2, i.e., have the density

fA
X|U (x|u) = N (x; b1u, b2), (39)

where b1 = b1(A;D1, σ
2
u) and b2 = b2(A;D1, σ

2
u) as in (3) and (4), and where our notation fA

X|U (x|u)

makes D1 and σ2
u implicit. Equivalently, under PA

X|U the random variable X is distributed as

b1U + S1, where S1 is a zero mean Gaussian random variable of variance b2 which is independent

of U . For i.i.d. zero-mean variance-σ2
u Gaussian covertexts we have

EPU (P A
X|U )n

[
1
n
‖X −U‖2

]
= (b1 − 1)2σ2

u + b2 = D1.

Thus for this covertext distribution (and, in fact, for any covertext distribution of power σ2
u), the

watermarking channel (PA
X|U )n satisfies the distortion constraint. Furthermore,

EPU (P A
X|U )n

[
1
n
‖X‖2

]
= A,

which gives an interpretation of the parameter A as the power in the stegotext induced by the

covertext and the watermarking channel. This watermarking channel can be used as a basis for an

achievability scheme for the private Gaussian watermarking game; see Section 4.2.

Public Version: For the public game, the conditional distribution of the random vector V

given the random vectors U and X is also needed. The optimal such distribution turns out to

be deterministic and memoryless. In particular, for A as above, let the distribution PA
V |U,X be

described by

V = (α(A;D1, D2, σ
2
u)− 1)U +X,
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where α(A;D1, D2, σ
2
u) is defined in (68), and let

PA
V |U ,X = (PA

V |U,X)n.

Compare this expanded watermarking channel with the achievability scheme for the public Gaussian

watermarking game given in Section 4.3.

3.3 Analysis

In this section, we state three lemmas, which together prove Theorem 2.4. Lemma 3.1 demonstrates

the intuitive fact that the value of the public version of the mutual information game cannot exceed

the value of the private version. Lemma 3.2 shows that, by using the attack channel proposed in

Section 3.1, the attacker can guarantee that the value of the private mutual information game not

exceed C∗(D1, D2, σ
2
u), where σ2

u is defined in (2.4). Lemma 3.3 shows that by watermarking an

i.i.d. zero-mean variance-σ2
u Gaussian source using the channel proposed in Section 3.2 with the

appropriate choice of A, the encoder can guarantee a value for the public mutual information game

of at least C∗(D1, D2, σ
2
u). The proofs of the following three lemmas are given in Appendices A.1,

A.2 and A.3, respectively.

Lemma 3.1. For any n > 0 and any covertext distribution PU ,

sup
PX|U∈D1(D1,PU )

PV |U,X

inf
PY |X∈D2(D2,PU ,PX|U )

Ipub(PU , PX|U , PV |U ,X , PY |X) ≤

sup
PX|U∈D1(D1,PU )

inf
PY |X∈D2(D2,PU ,PX|U )

Ipriv(PU , PX|U , PY |X).

Since this lemma holds for every n, it implies (31).

Lemma 3.2. For any n > 0, any covertext distribution PU , any watermarking channel PX|U , and

any fixed distortion D2 > An

Ipriv

(
PU , PX|U , (P

An

Y |X)n
)

≤ Ipriv

(
(PG

U )n, (PAn

X|U )n, (PAn

Y |X)n
)

=
1
2

log
(
1 + s(An;D1,n, D2, σ

2
u,n)
)
, (40)
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where

σ2
u,n = EPU

[
n−1‖U‖2

]
; (41)

D1,n = EPU PX|U [n−1‖X −U‖2]; (42)

An = EPU PX|U

[
n−1‖X‖2

]
; (43)

PG
U denotes a zero-mean Gaussian distribution of variance σ2

u,n; PAn

X|U is the watermarking channel

described in Section 3.2 for the parameters σ2
u,n, D1,n and An; and PAn

Y |X is the attack channel

described in Section 3.1 for the parameters D2 and An.

This lemma proves (32). To see this note that, by the definition of σ2
u, for any ε > 0 and any

integer n0 there exists some n > n0 such that

σ2
u,n < σ2

u + ε, (44)

where σ2
u,n is defined in (41). Also, by the distortion constraint (i.e. PX|U ∈ D1(D1, PU )),

D1,n ≤ D1, (45)

where D1,n is defined in (42).

If An defined in (43) is less than D2, then the attack channel that sets the forgery determinis-

tically to zero is allowable and the resulting mutual information is zero. Thus, (32) is satisfied in

this case. We thus focus on the case when An > D2. We also note that

(
σu,n −

√
D1,n

)2
≤ An ≤

(
σu,n +

√
D1,n

)2

by the triangle inequality so that An ∈ A(D1,n, D2, σ
2
u,n). By definition of C∗(·, ·, ·) (8), it follows

that the right hand side (RHS) of (40) is at most C∗(D1,n, D2, σ
2
u,n). This in turn is upper bounded

by C∗(D1, D2, σ
2
u + ε) in view of (44) and (45), because C∗(D1, D2, σ

2
u) is non-decreasing in D1 and

σ2
u.6 Finally, since ε > 0 is arbitrary and C∗(·, ·, ·) is continuous, it follows that the attacker PAn

Y |X

guarantees that CMI
priv(D1, D2, {PU}) is upper bounded by C∗(D1, D2, σ

2
u).

6This follows since s(D1, D2, σ
2
u) is increasing in D1 and σ2

u and since if A∗ optimizes (8) for D1 and σ2
u then

A∗ ∈ A(D1 + ε, D2, σ
2
u + ε) for some ε > 0.
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This lemma also shows that for an i.i.d. Gaussian covertext, if the memoryless attack chan-

nel (PA
Y |X)n is used, then, of all watermarking channels that satisfy E

[
n−1‖X‖2

]
= A, mutual

information is maximized by the memoryless watermarking channel (PA
X|U )n of Section 3.2.

Lemma 3.3. Consider an i.i.d. zero-mean variance-σ2
u Gaussian covertext (denoted (PG

U )n) and

fixed distortions D1 and D2. If the attack channel PY |X satisfies E(P G
U P A

X|U )nPY |X

[
n−1‖Y −X‖

]
≤

D2, then for all A ∈ A(D1, D2, σ
2
u),

Ipub

(
(PG

U )n, (PA
X|U )n, (PA

V |U,X)n, PY |X

)
≥ Ipub

(
(PG

U )n, (PA
X|U )n, (PA

V |U,X)n, (PA
Y |X)n

)
=

1
2

log
(
1 + s(A;D1, D2, σ

2
u)
)
.

Here, PA
X|U and PA

V |U,X are the watermarking channels described in Section 3.2 for the parameters

σ2
u, D1 and A and PA

Y |X is the attack channel described in Section 3.1 for the parameters D2 and

A.

This lemma implies that for a zero-mean variance-σ2
u i.i.d. Gaussian covertext, the value of the

public mutual information game is lower bounded by C∗(D1, D2, σ
2
u). Indeed, the encoder can use

the watermarking channels defined by (PA∗

X|U )n and (PA∗

V |U,X)n where A∗ achieves the maximum in

the definition of C∗. Since for any covertext distribution (and in particular for an i.i.d. Gaussian

covertext) the value of the private version is at least as high as the value of the public version

(Lemma 3.1), it follows from the above that, for an i.i.d. Gaussian covertext, C∗ is also a lower

bound on the value of the private Gaussian mutual information game. This lemma also shows

that when the covertext is zero-mean i.i.d. Gaussian and the memoryless watermarking channels

(PA
X|U )n and (PA

V |U,X)n are used, then to minimize the mutual information the attacker should use

the memoryless attack channel (PA
Y |X)n.

The combination of Lemmas 3.1, 3.2 and 3.3 shows that for a zero-mean i.i.d. Gaussian covertext

of variance σ2
u, the value of both the private and public Gaussian mutual information games is

exactly C∗(D1, D2, σ
2
u).

3.4 Game Theoretic Interpretation

We have seen that, for an i.i.d. Gaussian covertext, memoryless encoders and attackers are optimal.

However, there does not exist one memoryless attacker that is both valid for any memoryless encoder
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and guarantees that the mutual information is less than C∗(D1, D2, σ
2
u). That is, a memoryless

saddlepoint does not exist.

In this section, we more carefully examine the private version of this mutual information game

from a game theoretic perspective. Recall that the encoder is trying to maximize Ipriv and the

attacker is trying to minimize Ipriv. In game theoretic terminology (see e.g., [31]), this is a zero-

sum game with Ipriv as the pay-off to the first player (encoder) and −Ipriv as the pay-off to the

second player (attacker). Specifically, this mutual information game is a dynamic zero-sum game

of complete and perfect information. In particular, the game is not static, and thus we need to

consider an attacker strategy of lists of responses to every possible watermarking channel. We show

that a subgame-perfect Nash equilibrium gives the value of the game, where we use the term “value

of the game” to denote the highest possible guaranteed pay-off to the first player. We also illustrate

the difference between the value of the game given here and the value of a similar game given in

[8, 9].

For a dynamic game, a strategy space for each player is specified by listing a feasible action for

each possible contingency in the game. Since the encoder plays first, his strategy space is simply the

set of feasible watermarking channels, i.e., D1

(
D1, (PG

U )n
)

defined in (28). However, the attacker

plays second and thus his strategy space consists of all mappings of the form

ψ : PX|U 7→ PY |X ∈ D2

(
D2, (PG

U )n, PX|U
)
, ∀PX|U ∈ D1

(
D1, (PG

U )n
)
, (46)

where D2

(
D2, (PG

U )n, PX|U
)

is defined in (29). That is, for every possible strategy PX|U the encoder

might use, the attacker must choose a feasible response ψ(PX|U ).

For this game, an encoder strategy P ∗X|U and an attacker strategy ψ∗(·) form a Nash equilibrium

if

Ipriv

(
(PG

U )n, PX|U , ψ
∗(PX|U )

)
≤ Ipriv

(
(PG

U )n, P ∗X|U , ψ
∗(P ∗X|U )

)
, (47)

for every PX|U ∈ D1(D1, (PG
U )n), and if

Ipriv

(
(PG

U )n, P ∗X|U , ψ
∗(P ∗X|U )

)
≤ Ipriv

(
(PG

U )n, P ∗X|U , ψ(P ∗X|U )
)
, (48)

for every mapping ψ(·) of the form (46). That is, given that the attacker will use ψ∗(·), the encoder

maximizes its pay-off by using P ∗X|U . Conversely, given that the encoder will use P ∗X|U , the attacker
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maximizes its pay-off (minimizes the encoder’s pay-off) by using ψ∗(·).

For this game, an encoder strategy P ∗X|U and an attacker strategy ψ∗(·) form a subgame-perfect

Nash equilibrium if they form a Nash equilibrium and if additionally

Ipriv

(
(PG

U )n, PX|U , ψ
∗(PX|U )

)
≤ Ipriv

(
(PG

U )n, PX|U , PY |X
)

for all PX|U ∈ D1(D1, (PG
U )n) and for all PY |X ∈ D2(D2, (PG

U )n, PX|U ). That is, the attacker must

choose the best response to any possible encoder strategy, and not just the maximized encoder

strategy as in the regular Nash equilibrium. The value of the game is given by evaluating the

mutual information Ipriv at any subgame-perfect Nash equilibrium

Using this terminology we see that Lemma 3.2 and Lemma 3.3 imply that there exists a subgame-

perfect Nash equilibrium of the form
((
PA∗

X|U
)n
, ψ∗(·)

)
where PA

X|U is defined above in Section 3.2,

A∗ achieves the maximum in (8), and ψ∗
(
(PA

X|U )n
)

= (PA
Y |X)n for every A ∈ A(D1, D2, σ

2
u), where

PA
Y |X is defined in Section 3.1. The value of the game is thus C∗(D1, D2, σ

2
u), as we have demon-

strated above.

Using the above concepts, we now discuss the value of this game that was initially given in [8, 9]

and later revised in [28]. For A0 = σ2
u +D1,

Ipriv

(
(PG

U )n, PX|U , (P
A0

Y |X)n
)
≤ Ipriv

(
(PG

U )n, (PA0

X|U )n, (PA0

Y |X)n
)
, (49)

for every PX|U ∈ D1(D1, (PG
U )n), and

Ipriv

(
(PG

U )n, (PA0

X|U )n, (PA0

Y |X)n
)
≤ Ipriv

(
(PG

U )n, (PA0

X|U )n, PY |X

)
, (50)

for every PY |X ∈ D2

(
D2, (PG

U )n, (PA0

X|U )n
)
. Thus, it would seem that if we were to define

ψ0(PX|U ) = (PA0

Y |X)n, ∀PX|U , (51)

then the pair
(
(PA0

X|U )n, ψ0(·)
)

would form a Nash equilibrium according to the definitions (47) and

(48). It is indeed the value for this pair that is given in [8, 9]. Note, however, that (51) is not

a feasible strategy for the attacker since for some watermarking channel PX|U (in particular, for

any PX|U with n−1E
[
‖X‖2

]
> A0), the attacker’s response of (51) is not feasible, i.e., (PA0

Y |X)n /∈

D2(D2, (PG
U )n, PX|U ). This observation is critical since we have found that for some A > A0 (in
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particular, the maximizing A in (8)), the watermarking channel (PA
X|U )n, which has n−1E

[
‖X‖2

]
=

A, guarantees a mutual information that is strictly larger than the value of the game reported in

[8, 9].

4 Achievability for a.s. Constraints

In this section, we prove the watermarking achievability results of Theorem 2.1 (general attack)

and Theorem 2.3 (additive attack). The achievability in the private versions will be discussed in

Section 4.2 only briefly, because, as we will show, these rates are achievable even in the public

versions. The public-version achievability results are based on a coding strategy that is described

in Section 4.3 and analyzed in Section 4.4. We begin in Section 4.1 with some preliminary results

that we will use throughout the section.

4.1 Preliminaries

4.1.1 Spherical caps

We now state some asymptotic properties of the surface area of a spherical cap on a unit n-sphere.

We denote the n-dimensional sphere centered at µ ∈ Rn with radius r ≥ 0 by Sn(µ, r), i.e.,

Sn(µ, r) = {ξ ∈ Rn : ‖ξ − µ‖ = r}.

For any vector µ ∈ Sn(0, 1) and any angle 0 ≤ θ ≤ π, we let C(µ, θ) ⊂ Sn(0, 1) denote the spherical

cap centered at µ with half-angle θ,

C(µ, θ) = {ξ ∈ Sn(0, 1) : 〈µ, ξ〉 > cos θ}. (52)

The surface area of this spherical cap in Rn depends only on the angle θ, and is denoted by Cn(θ).

Note that Cn(π) is the surface area of the unit n-sphere.

If a random vector Ψ is uniformly distributed over the unit n-sphere Sn(0, 1) and if µ is any

vector in Sn(0, 1), then for any 0 ≤ τ ≤ 1,

Pr(〈Ψ,µ〉 > τ) =
Cn(arccos τ)

Cn(π)
. (53)
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Indeed, the vectors ψ ∈ Sn(0, 1) that have the specified inner product with the vector µ are precisely

the elements of the set C(µ, arccos τ); see (52). To analyze a probability of error expression such as

(84), we shall need some asymptotic properties of the ratio on the RHS of (53). In [37], Shannon

derived bounds that asymptotically yield

lim
n→∞

1
n

log
Cn(arccos τ)

Cn(π)
= log

(
sin(arccos τ)

)
= log(1− τ2), (54)

for every 0 < τ < 1. See also [38]. To complete our asymptotic analysis, we shall also need the

following technical lemma.

Lemma 4.1. Let f : R 7→ (0, 1] be such that the limit

−η1 = lim
t→∞

1
t

log f(t)

exists and is negative so that η1 > 0. Then

lim
t→∞

(
1− f(t)

)2tη2
=

1 if η1 > η2

0 if η1 < η2

. (55)

The proof of this lemma is based on the fact that (55) is true for f(t) = 2−tη1 ; the details are

omitted.

4.1.2 Deterministic Attackers are Sufficient

To prove achievability in the watermarking game, we can without loss of generality limit the attacker

to deterministic attacks. That is, it is sufficient to show that the average probability of error

(averaged over the side information, secret key and message) is small for all deterministic attacker

mappings

y = gn(x) (56)

instead of the more general gn(x, θ2). With an attacker of this form, the distortion constraint (12)

can be rewritten as n−1‖gn(X)−X‖2 ≤ D2, almost surely.

Indeed, we can evaluate the average probability of error (averaged over everything including
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the attack key Θ2) by first conditioning on the attack key Θ2. Thus, if the average probability of

error given every attacker mapping of the form (56) is small, then the average probability of error

for any general attacker mapping of the form (11) is also small.

In the additive attack watermarking game, a deterministic attacker takes on a particularly

simple form. Indeed, combining the forms (56) and (18), we see that the attacker can be written

as

gn(x) = x+ ỹ (57)

for some sequence ỹ that satisfies
1
n
‖ỹ‖2 ≤ D2. (58)

In the general watermarking game, a deterministic attack gn(x) can be decomposed into its

projection onto the stegotext x and its projection onto x⊥. That is, we can write

gn(x) = γ1(x)x+ γ2(x), (59)

for some γ1 : Rn 7→ R and some γ2 : Rn 7→ Rn, where 〈γ2(x),x〉 = 0. Defining

γ3(x) = n−1‖γ2(x)‖2, (60)

we can rewrite the attacker’s distortion constraint (12) in terms of γ1(X), X, and γ3(X) as

(
γ1(X)− 1

)2
n−1‖X‖2 + γ3(X) ≤ D2, a.s.. (61)

4.2 Achievability: Private Versions

4.2.1 Additive Attack

For the private version of the watermarking game with an additive attack, all rates less than
1
2 log

(
1 + D1

D2

)
are achievable, regardless of the statistics of the covertext. Indeed, the encoder and

decoder can both subtract off the covertext U , resulting in a channel of output Z = X̃+ Ỹ , where

X̃ is a function of the message and must satisfy n−1‖X̃‖2 ≤ D1, a.s., and where Ỹ is independent

of X̃ and must satisfy n−1‖Ỹ ‖2 ≤ D2, a.s.. The required achievability thus follows from [18].
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4.2.2 General Attack

For the private version of the watermarking game with a general attack, we argue in this section

that all rates less than C∗(D1, D2, σ
2
u) are achievable for an i.i.d. Gaussian covertext. We describe

the coding and decoding strategy that achieves these rates. We will not analyze its performance

in detail, since we do so in Section 4.4 for the more difficult public version; see [19] for a detailed

analysis. For this brief analysis, we assume that the covertext, rather than being i.i.d. Gaussian,

is instead uniformly distributed on the n-sphere Sn(0,
√
nσ2

u). We show in Section 4.4.3 that any

rates achievable for either of these related covertext distributions is also achievable for the other.

The optimal coding strategy is similar to the optimal watermarking channel described in Sec-

tion 3.2 for the private version of the mutual information game. We first choose a parameter A and

compute b1 = b1(A;D1, σ
2
u) and b2 = b2(A;D1, σ

2
u) as in (3) and (4). A codebook is then generated

consisting of 2nR i.i.d. codeword vectors, each uniformly distributed over the n-sphere Sn(0,
√
nb2).

Given the message w and the covertext u, the stegotext is generated as a sum of b1u and the wth

codeword, i.e.,

x = b1u+ cw(u), (62)

where cw(u) is the wth codeword projected onto u⊥ and renormalized to have norm nb2. Compare

(62) and (39) to see the similarity between this strategy and the strategy for the mutual information

game. Note that for every covertext u and corresponding stegotext x produced by this encoding

strategy, n−1‖x− u‖2 = D1 and n−1‖x‖2 = A.

The decoder uses a modified nearest-neighbor decoding rule to find its estimate ŵ of the message.

It projects the forgery y onto u⊥ to create y|u⊥ and produces the message ŵ that, among all

messages w̃, minimizes the Euclidean distance between y|u⊥ and cw̃(u).

For this encoder and decoder, it can be shown that the probability of error tends to zero for

every possible attacker as long as

R <
1
2

log
(
1 + s(A;D1, D2, σ

2
u)
)
,

where s(·; ·, ·, ·) is defined in (7). Since the encoder and decoder are free to choose A, we see from

the definition (8) that all rates less than C∗(D1, D2, σ
2
u) are achievable, which is the desired result.
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4.3 Coding Strategies for Public Versions

The coding strategies for the public versions of both the additive attack and the general water-

marking games are motivated by the works of Marton [21], Gel’fand and Pinsker [22], Heegard and

El Gamal [23], and Costa [2].

For both models, we fix a δ > 0. In Sections 4.3.1 and 4.3.2, we define the set of constants

{αtype, ρtype, R0,type, R1,type, Rtype} for type equal to “add” (for additive attack) or “gen” (for gen-

eral attack). We shall drop the subscripts for these constants in the sequel when we are referring to

both cases. Using these constants we then describe the encoder and decoder used for both models.

Briefly, we create a codebook consisting of 2nR bins with 2nR0 codewords in each bin for a total of

2nR1 codewords (hence R = R1 −R0). Furthermore, the stegotext is formed as the sum of (1− α)

times the covertext and a selected codeword, and ρ describes the target correlation between the

covertext and the difference between the stegotext and the covertext. While the constants have

different values for the two models, in terms of these constants the proposed coding schemes are

identical.

4.3.1 Additive Attack Constants

For the additive attack watermarking game, we define the set of constants as

αadd =
D1

D1 +D2
, (63)

ρadd = 0, (64)

R0,add =
1
2

log
(

1 +
D1σ

2
u

(D1 +D2)2

)
+ δ, (65)

R1,add =
1
2

log
(

1 +
D1

D2
+

D1σ
2
u

D2(D1 +D2)

)
− δ, (66)

and

Radd = R1 −R0 =
1
2

log
(

1 +
D1

D2

)
− 2δ. (67)

4.3.2 General Attack Constants

The choice of the constants for the general watermarking game is inspired by the solution to the

public Gaussian mutual information game; see Theorem 2.4 and its derivation in Section 3. The

encoder and decoder choose a free parameter A ∈ A(D1, D2, σ
2
u), where the interval A(D1, D2, σ

2
u)
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is defined in (1). We assume throughout that the above interval is non-empty, because otherwise

the coding capacity is zero, and there is no need for a coding theorem.

We first let b1 = b1(A;D1, σ
2
u), b2 = b2(A;D1, σ

2
u), and c = c(A;D2) as in (3), (4), and (5). We

define the main set of constants for the general watermarking game as

αgen = α(A;D1, D2, σ
2
u), (68)

ρgen = ρ(A;D1, σ
2
u), (69)

R0,gen =
1
2

log
(

1 +
(αgenσ

2
u + ρgen)2

D1σ2
u − ρ2

gen

)
+ δ, (70)

R1,gen =
1
2

log
(

1 +
Acb2

D2(D2 + cb2)

)
− δ, (71)

and

Rgen = R1,gen −R0,gen =
1
2

log
(
1 + s(A;D1, D2, σ

2
u)
)
− 2δ, (72)

where α(A;D1, D2, σ
2
u), ρ(A;D1, σ

2
u) and s(A;D1, D2, σ

2
u) are defined in (6), (2), and (7), respec-

tively. If A is chosen to maximize (72) as in (8), then Rgen = C∗(D1, D2, σ
2
u)− 2δ.

4.3.3 Encoder and Decoder

The encoder and decoder use their source of common randomness Θ1 to create a codebook of

auxiliary codewords as follows. They generate 2nR1,type = 2n(Rtype+R0,type) i.i.d. random vectors

{V j,k}, where 1 ≤ j ≤ 2nRtype , 1 ≤ k ≤ 2nR0,type , where each random vector V j,k is uniformly

distributed on the n-sphere Sn(0,
√
nσ2

v,type), and where

σ2
v,type = α2

typeσ
2
u + 2αtypeρtype +D1. (73)

Thus, the codebook consists of 2nRtype bins (indexed by j), each containing 2nR0,type auxiliary

codewords.

Given the message w and the covertext u, the encoder looks in bin w and chooses the auxiliary

codeword closest (in Euclidean distance) to the covertext. The output of the encoder x is then

created as a linear combination of the covertext and the chosen auxiliary codeword. This can be

written as follows. Given the message w, the covertext u, and the codebook {vj,k}, let the chosen
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index for message w be

k∗(u, w) = arg max
1≤k≤2nR0,type

〈u,vw,k〉, (74)

which is unique with probability one. Further, let the chosen auxiliary codeword for message w be

vw(u) = vw,k∗(u,w). (75)

The encoder creates its output x as

x = vw(u) + (1− αtype)u. (76)

The decoder finds the auxiliary codeword that, among all the 2nR1,type sequences in the code-

book, is closest to the received sequence y. It then declares the estimate of the message to be the

bin to which this auxiliary codeword belongs. Given the received sequence y and the codebook

{vj,k}, the decoder’s estimate is thus given by

ŵ = arg min
1≤w̃≤2nRtype

(
min

1≤k≤2nR0,type

‖y − vw̃,k‖2

)
(77)

= arg max
1≤w̃≤2nRtype

(
max

1≤k≤2nR0,type

〈y,vw̃,k〉

)
, (78)

where the last equality follows by noting that n−1‖vw̃,k‖2 = σ2
v,type irrespective of w̃ and k. Note

that ŵ of (77) is with probability one unique.

4.4 Analysis for Public Version

We now show that for the sequence of encoders and decoders from the previous section, the prob-

ability of error tends to zero and the distortion constraint is met. We prove these two facts in

Sections 4.4.1 and 4.4.2, respectively, assuming in both sections that the covertext U is uniformly

distributed on the n-sphere Sn
(
0,
√
nσ2

u

)
. We then extend these results to i.i.d. Gaussian cover-

texts in Section 4.4.3.
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4.4.1 Probability of Error

In this section, we derive the conditional probability of error in the above coding strategy. Let us

first define the random variables on which we will condition as

Z =
1
n
〈U ,V W (U)〉, Z1 =

1
n
‖Y ‖2, Z2 =

1
n
〈Ỹ ,V W (U)〉, (79)

where, as in Section 2.1.3,

Ỹ = Y −X, (80)

Let us also define a mapping βtype(z, z1, z2) for both types as

βtype(z, z1, z2) =
σ2

v,type + (1− αtype)z + z2√
z1σ2

v,type

. (81)

By the definition of the decoder (78), it follows that a decoding error occurs if, and only if,

there exists a message w′ 6= W and an index k′ such that

1
n
〈Y ,V w′,k′〉 ≥ 1

n
〈Y ,V W (U)〉

=
1
n
〈X,V W (U)〉+

1
n
〈Ỹ ,V W (U)〉

= σ2
v + (1− α)Z + Z2,

where the first equality follows by the definition of Ỹ (80) and the second equality follows by the

definitions of the encoder (76) and the random variables Z and Z2. Note that we do not need to

consider the case where the decoder makes a mistake in the same bin since this does not result in

an error. Equivalently, an error occurs if, and only if, there exists a message w′ 6= W and an index

k′ such that 〈
Y√
nZ1

,
V w′,k′√
nσ2

v

〉
≥ σ2

v + (1− α)Z + Z2√
Z1σ2

v

(82)

= β(Z,Z1, Z2).

If a random vector S is uniformly distributed on an n-dimensional sphere, and if another

vector T is independent of it and also takes value in that n-sphere, then, by symmetry, the inner
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product 〈S,T 〉 has a distribution that does not depend on the distribution of T . We next use this

observation to analyze the left hand side (LHS) of (82).

The random vector V w′,k′/
√
nσ2

v is uniformly distributed on the unit n-sphere Sn(0, 1) and is

independent of Y , Z, Z1, and Z2. Indeed, the encoder does not examine the auxiliary codewords

in bins other than in the one corresponding to the message W . The random vector Y /
√
nZ1 also

takes value on the unit n-sphere Sn(0, 1), and thus, by the argument above, the distribution of the

LHS of (82) does not depend on the distribution of Y . In particular, for any w′ 6= W ,

Pr

(〈
Y

√
nz1

,
V w′,k′√
nσ2

v

〉
≥ β(z, z1, z2)

∣∣∣Z = z, Z1 = z1, Z2 = z2

)
=
Cn

(
arccosβ(z, z1, z2)

)
Cn(π)

. (83)

Furthermore, the random vectors {V w′,k′ : w′ 6= W, 1 ≤ k′ ≤ 2nR0} are independent of each other.

Thus, the probability of no error is given by the product of the probabilities that each of these

2nR1−2nR0 vectors does not cause an error. Since the probability of error for each individual vector

is given in (83), we can write the conditional probability of error for this coding strategy as

Pr(error|Z = z, Z1 = z1, Z2 = z2) = 1−

(
1−

Cn

(
arccosβ(z, z1, z2)

)
Cn(π)

)2nR1−2nR0

. (84)

The expression Pr(error|Z = z, Z1 = z1, Z2 = z2) is a monotonically non-increasing function of

β(z, z1, z2) and is upper-bounded by 1. Consequently,

Pr(error) ≤ Pr
(
error|β(Z,Z1, Z2) = Υ

)
+ Pr

(
β(Z,Z1, Z2) < Υ

)
, (85)

for any real number Υ. For both games under consideration, we will show that, by choosing

a sufficiently large blocklength n, the RHS of (85) can be made arbitrarily small when Υ =

β∗(R1,type + δ)− ε1. Here

β∗(R1 + δ) =
(
1− 2−2(R1+δ)

)1/2
, (86)

ε1 is a small number to be specified later, and R1,type is either R1,add of (66) or R1,gen of (71)

depending on whether we are considering an additive attack or a general attack.

We now analyze the terms on the RHS of (85) using a series of lemmas. In Lemma 4.2, we show

that the first term on the RHS of (85) can be made arbitrarily small. In Lemma 4.4, we perform

similar analysis for the second term.
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Lemma 4.2. For any ε > 0, there exists some ε1 > 0 and some integer n1 > 0 such that for all

n > n1

1−

1−
Cn

(
arccos

(
β∗(R1,type + δ)− ε1

))
Cn(π)

2nR1,type−2nR0,type

< ε,

where type is either add or gen.

Proof. There exists some ε1 > 0 such that

1
2

log

(
1

1−
(
β∗(R1,type + δ)− ε1

)2
)
> R1,type. (87)

This follows since the LHS of (87) equals R1,type + δ when ε1 = 0 (see (86)) and since in both (66)

and (71) the rate R1,type satisfies 0 < β∗(R1,type + δ) < 1. By the result on the asymptotic area of

spherical caps (54) and by the inequality (87), it follows by Lemma 4.1 that there exists a positive

integer n1 such that for all n > n1

1−
Cn

(
arccos

(
β∗(R1,type + δ)− ε1

))
Cn(π)

2nR1,type

> 1− ε,

and the lemma follows by noting that the LHS cannot decrease when the exponent 2nR1,type is

replaced by 2nR1,type − 2nR0,type .

In order to analyze the second term on the RHS of (85) we need a lemma that describes the

behavior of the random variable Z defined in (79). This lemma will also be used to show that the

encoder meets the distortion constraint with arbitrarily high probability; see Section 4.4.2.

Lemma 4.3. For every δ > 0 used to define the encoder, there exists ε(δ) > 0 such that

lim
n→∞

Pr
(
αtypeσ

2
u + ρtype ≤ Z ≤ αtypeσ

2
u + ρtype + ε(δ)

)
= 1,

and

lim
δ↓0

ε(δ) = 0,

where type is either add or gen.
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Proof. In the proof, we drop the type subscripts unless they are relevant. We first show that

Pr(Z ≥ ασ2
u + ρ) → 1. Let V be uniformly distributed on Sn(0,

√
nσ2

v) independent of U . Then

Pr(Z ≥ ασ2
u + ρ) = 1− Pr

(
max

1≤k≤2nR0

n−1〈U ,V W,k〉 < ασ2
u + ρ

)
= 1−

(
1− Pr

(
n−1〈U ,V 〉 ≥ ασ2

u + ρ
))2nR0

, (88)

where the first equality follows by the definition of Z (79) and of V W,k, and the second equality

follows because {V W,k}2nR0

k=1 are i.i.d. and also independent of U . The RHS of (88) can be further

simplified using

Pr
(

1
n
〈U ,V 〉 ≥ ασ2

u + ρ

)
= Pr

(〈
U√
nσ2

u

,
V√
nσ2

v

〉
≥ ασ2

u + ρ

σuσv

)

=
Cn

(
arccos

(
ασ2

u+ρ
σuσv

))
Cn(π)

, (89)

which follows since both normalized random vectors are uniformly distributed on Sn(0, 1) and they

are independent of each other. By (54) we obtain

lim
n→∞

1
n

log
Cn

(
arccos

(
ασ2

u+ρ
σuσv

))
Cn(π)

=
1
2

log
(

1− (ασ2
u + ρ)2

σ2
uσ

2
v

)
, (90)

where for both types,

1
2

log

(
1− (αtypeσ

2
u + ρtype)2

σ2
uσ

2
v,type

)
= −(R0,type − δ). (91)

To verify the final equality, see the relevant definitions for each type in Sections 4.3.1 and 4.3.2.

Combining Lemma 4.1 with (88), (89), (90) and (91) demonstrates that Pr(Z ≥ ασ2
u + ρ) → 1.

To complete the proof, we find an appropriate choice of ε(δ) such that Pr(Z > ασ2
u+ρ+ε(δ)) →

0. We choose ε(δ) > 0 such that

1
2

log

(
1−

(
ασ2

u + ρ+ ε(δ)
σuσv

)2
)
< −R0. (92)

This can be done because the LHS of (92) equates to −(R0 + δ) when ε(δ) is set to zero (as we
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have seen in (91)), and because log(1− x2) is continuous and decreasing in x, for 0 < x < 1. Using

Lemma 4.1, we see that Pr(Z > ασ2
u + ρ+ ε(δ)) → 0. Finally, we can choose ε(δ) → 0 as δ → 0 by

the continuity of log(1− x2).

We now proceed to show that the second term on the RHS of (85) is vanishing in n when

Υ = β∗(R1,type + δ) − ε1. Here, R1,type is defined in (66) and (71), β∗(·) is defined in (86), and

ε1 > 0 is specified in Lemma 4.2. The combination of this fact with Lemma 4.2 will show that, as

the blocklength n tends to infinity, the probability of decoding error approaches zero. The proof of

this lemma can be found in Appendix A.4.

Lemma 4.4. For any ε > 0 and ε1 > 0, there exists an integer n2 > 0 such that for the sequence

of encoders of Section 4.3.3 and for all deterministic attacks of Section 4.1.2,

Pr
(
βtype(Z,Z1, Z2) < β∗(R1,type + δ)− ε1

)
< ε, for all n > n2

where type is either add or gen.

4.4.2 The Encoding Distortion Constraint

We now show that the encoder’s distortion constraint is met with arbitrarily high probability. We

claim that this is sufficient since the encoder can modify its behavior on an event of vanishing

probability to meet the a.s. distortion constraint without significantly affecting the probability of

error.

Let us first assume that αtype ≥ 0, which is always true for αadd and usually true for αgen. By

Lemma 4.3, it is sufficient to show that Z ≥ ασ2
u +ρ implies n−1‖X−U‖2 ≤ D1, which we proceed

to prove. By the definitions of X and Z (see (76) and (79)),

n−1‖X −U‖2 = σ2
v − 2αZ + α2σ2

u. (93)

Since α is assumed to be positive, the RHS of (93) is decreasing in Z. Consequently, the condition

Z ≥ ασ2
u + ρ implies

n−1‖X −U‖2 ≤ σ2
v − α2σ2

u − 2αρ = D1,

where the equality follows from (73).
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Let us now address the case when α < 0, which can only occur for the encoder designed for a

general attacker. Note that whenever the inequality ασ2
u + ρ ≤ Z ≤ ασ2

u + ρ + ε(δ) holds we also

have n−1‖X−U‖2 ≤ D1−2αε(δ). Thus, if we design our system for some D̃1 < D1 instead of D1 as

the encoder’s distortion constraint, then by choosing δ sufficiently enough and n sufficiently large,

Lemma 4.3 will guarantee that the encoder will meet the D1 distortion constraint with arbitrarily

high probability. The desired achievability result can be demonstrated by letting D̃1 approach D1,

because C∗(D1, D2, σ
2
u) is continuous in D1.

4.4.3 Extension to i.i.d. Gaussian Covertext

We have shown that if the covertext U is uniformly distributed on the n-sphere Sn(0,
√
nσ2

u), then

for the public version, the coding capacity of the general watermarking game is lower bounded by

C∗(D1, D2, σ
2
u) and the coding capacity of the additive attack watermarking game is lower bounded

by 1
2 log(1 + D1

D2
). In this section, we extend these results to zero-mean variance-σ2

u i.i.d. Gaussian

covertexts.

We first transform the i.i.d. Gaussian sequence U into a random vector U ′ which is uniformly

distributed on the n-sphere Sn(0,
√
nσ2

u). To this end we set SU = n−1‖U‖2, which converges to

σ2
u in probability, and let U ′ =

√
σ2

u
SU

U , which is well defined with probability 1, and which is

uniformly distributed on Sn(0,
√
nσ2

u). We will consider all the models simultaneously, but we will

state our assumptions on the rate of each of the models separately:

General watermarking Assume that 0 < R < C∗(D1, D2, σ
2
u). By the definition of C∗ (8),

there exists some A′ ∈ A(D1, D2, σ
2
u) such that R < 1

2 log(1 + s(A′;D1, D2, σ
2
u)). Since

s(A′;D1, D2, σ
2
u) is continuous in D1, there exists some D′

1 < D1 such that R < 1
2 log(1 +

s(A′;D′
1, D2, σ

2
u)).

Additive attack watermarking Assume that 0 < R < 1
2 log(1 + D1

D2
). Then, there exists a

D′
1 < D1 such that R < 1

2 log(1 + D′
1

D2
).

Let X ′ be the output of the encoders as designed for the covertext U ′ and the parameters A′

and D′
1 in Sections 4.3.3. Let φ′ be the corresponding decoder. Consider now an encoder for the
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covertext U which produces the stegotext X according to the rule

x =

x
′ if n−1‖x′ − u‖2 ≤ D1

u otherwise
.

With this choice of x, the distortion between u and x is less than D1 almost surely, so that the

encoding distortion constraint (9) is met.

We next claim that for a sufficiently large blocklength,X = X ′ with arbitrarily high probability.

Indeed, the distortion between the random vectors X ′ and U is given by

1
n
‖X ′ −U‖2 =

1
n
‖X ′ −U ′ +U ′ −U‖2

≤ 1
n
‖X ′ −U ′‖2 +

1
n
‖U ′ −U‖2 +

2
n
‖X ′ −U ′‖ · ‖U ′ −U‖

≤ D′
1 +

1
n
‖U ′ −U‖2 +

√
D′

1

2
n
‖U ′ −U‖,

and 1
n‖U

′ −U‖2 =
(√

SU −
√
σ2

u

)2
approaches, by the weak law of large numbers, zero in proba-

bility. In the above, the first inequality follows from the triangle inequality, and the second because

the encoders of Sections 4.3.3 satisfy the encoder distortion constraint n−1‖X ′−U ′‖2 ≤ D′
1 almost

surely. Since D′
1 < D1, our claim that

lim
n→∞

Pr(X = X ′) = 1 (94)

is proved.

Let Ŵ be the output of the decoder φ′, and consider now any fixed deterministic attack. The

probability of error can be written as

Pr(Ŵ 6= W ) = Pr(Ŵ 6= W,X = X ′) + Pr(Ŵ 6= W,X 6= X ′)

≤ Pr(Ŵ 6= W,X = X ′) + Pr(X 6= X ′),

where the second term on the RHS of the above converges to zero (uniformly over all the de-

terministic attackers) by (94), and the first term approaches zero by the achievability results for

covertexts that are uniformly distributed over the n-sphere. To clarify the final argument consider,

for example, the public watermarking game with an additive attacker as in (57). We would then
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argue that

Pr(Ŵ 6= W,X = X ′) = Pr
(
φ′(Θ1,X + ỹ) 6= W,X = X ′)

= Pr
(
φ′(Θ1,X

′ + ỹ) 6= W,X = X ′)
≤ Pr

(
φ′(Θ1,X

′ + ỹ) 6= W
)
,

which converges to zero by the achievability result on covertexts that are uniformly distributed on

the n-sphere.

4.5 Discussion: Common Randomness

There is a difference between the randomized coding used here and Shannon’s classical random

coding argument (see, for example, [17, Chap. 8.7]). In the latter, codebooks are chosen from an

ensemble according to some probability law, and it is shown that the ensemble-averaged probabil-

ity of error is small, thus demonstrating the existence of at least one codebook from the ensemble

for which the probability of error is small. For the watermarking game, on the other hand, ran-

domization is not a proof technique that shows the existence of a good codebook, but a defining

feature of the encoding. For example, the randomization at the encoder prevents the attacker from

knowing the particular mapping used for each message; the attacker only knows the strategy used

for generating the codewords. See [29] for more on this subject.

Nevertheless, in the private version of the i.i.d. Gaussian watermarking game, common random-

ness is not needed between the encoder and the decoder and deterministic codes suffice. Indeed,

part of the covertext, to which both the encoder and the decoder have access, can be used instead

of the secret key Θ1. For example, the encoder could set x1 = 0, and use the random variable

U1 as the common random experiment. The extra distortion incurred by this policy can be made

arbitrarily small by making n sufficiently large. Since U1 is a real-valued random variable with a

density, it is sufficient to provide the necessary randomization.

5 Converses for a.s. Constraints

In this section, we prove the converse parts of Theorem 2.3 (additive attack) and Theorem 2.1

(general attack). The former is fairly straightforward and is described in Section 5.1. For the
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latter we need to show that if the covertext distribution {PU} is ergodic with finite fourth moment

and E
[
U2

k

]
≤ σ2

u, then the capacity of the private version of the watermarking game is at most

C∗(D1, D2, σ
2
u). For any fixed R > C∗(D1, D2, σ

2
u) and any sequence of rate-R encoders that satisfy

the distortion constraint (9), a sequence of attackers {gn} is proposed in Section 5.2.2 that is shown

in Section 5.2.3 to satisfy the distortion constraint (12) and is shown in Section 5.2.4 to guarantee

that, irrespective of the decoding rule, the probability of error is bounded away from zero. Thus,

even if the sequence of decoders were designed with full knowledge of this sequence of attackers,

no rate above C∗(D1, D2, σ
2
u) would be achievable. Although we argued that deterministic attacks

are sufficient in Section 4.1.2, we prove the converses using a randomized attacks in much the same

way that randomized strategies are used to prove coding theorems. We conclude in Section 5.3

with a discussion of the necessity of the ergodicity assumption.

5.1 Additive Attack

In this section, we describe an additive attacker that demonstrates that no rates greater than
1
2 log

(
1 + D1

D2

)
are achievable in either the public or private versions of the additive-attack water-

marking game. This will prove the converse part of Theorem 2.3.

The attacker first chooses a δ > 0. The attacker initially generates its additive attack Ỹ as a

sequence of i.i.d. mean-zero, variance (D2 − δ) Gaussian random variables. This sequence satisfies

the distortion constraint (19) with arbitrarily high probability; when it does not, the attacker sets

Ỹ = 0. If for the initial definition of Ỹ , the probability of error is bounded away from zero and is

furthermore greater than the probability of modification, then the final probability of error is also

bounded away from zero. Choosing the blocklength n large enough (depending on δ), the above

necessary condition is satisfied by the law of large numbers. With the initial definition of Ỹ , Costa

[2] showed that no rates larger than 1
2 log

(
1 + D1

D2−δ

)
are achievable for the public version (and

hence for the private version). Since rates that are not achievable for the initial definition of Ỹ are

also not achievable for the final definition and since the attacker can choose δ arbitrarily small, no

rates larger than 1
2 log

(
1 + D1

D2

)
are achievable.
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5.2 General Attack

5.2.1 Intuitive Definition of Attacker

We seek to provide some motivation for the proposed attack strategy by first describing two simple

attacks that fail to give the desired converse. We then combine aspects of these simple strategies

to form the attack strategy that we will use to prove the converse.

The upcoming discussion will utilize the correspondence between the encoder and attacker

(mappings) (fn, gn) and the watermarking and attack channels (conditional laws) (PX|U , PY |X)

that they induce for given fixed laws on W , {PU}, Θ1, and Θ2. One way to prove the converse is

to show using a Fano-type inequality that in order for the probability of error to tend to zero, a

mutual information term similar to Ipriv of (26) — evaluated with respect to the induced channels

— must be greater than the watermarking rate. Thus, one would expect that the optimal attack

channels of Section 3.1 for the mutual information games could be used to design good attacker

mappings for the watermarking game.

The first simple attack strategy corresponds to the optimal attack channel (PA
Y |X)n of Sec-

tion 3.1, where A is the average power in the stegotext based on the encoder, i.e., A = E
[
n−1‖X‖2

]
.

Since the encoder must satisfy the distortion constraint (9) (and thus the corresponding water-

marking channel PX|U must be in D1(D1, PU )), the results of Section 3.3 show that this attacker

guarantees that the mutual information is at most C∗(D1, D2, σ
2
u). The problem with this attack

strategy is that since it is based on the average power in the stegotext, there is no guarantee that

the attacker’s distortion constraint (12) will be met with probability one.

The second simple attack strategy corresponds to the optimal attack channel (P a
Y |X)n, where

a is the power in the realization (sample-path) of the stegotext, i.e., a = n−1‖x‖2. The results of

Section 3.3 again give the appropriate upper bound on the mutual information conditioned on the

value of a. Furthermore, if a distortion level D̃2 slightly smaller than the actual distortion level D2

is used to design this attacker, then the distortion constraint will be met with high probability. The

problem with this attack strategy is that the decoder can fairly accurately determine the value of

a from the forgery. Thus, the encoder and decoder could potentially use the power of the stegotext

to send extra information, so that the total rate might be higher than C∗(D1, D2, σ
2
u).

The attack strategy that we use to prove the converse combines aspects of the two simple

strategies described above. To form this attacker, we partition the possible values of a = n−1‖x‖2
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into a finite number of intervals, A1, . . . ,Am, and compute the average power in the stegotext

conditioned on each interval, i.e., ak = E
[
n−1‖X‖2

∣∣n−1‖X‖2 ∈ Ak

]
. We then use the optimal

attack channel (P ak

Y |X)n whenever the actual power of the stegotext lies in the interval Ak. Unlike

the first simple strategy, the distortion constraint can be guaranteed by making the intervals small

enough. Unlike the second simple strategy, the encoder and decoder cannot use the power of the

stegotext to transmit extra information because the number of intervals is finite and does not grow

with the blocklength n. These arguments will be made more precise in the upcoming sections.

5.2.2 Precise Definition of Attacker

Let R be a fixed rate which is strictly larger than C∗(D1, D2, σ
2
u). For any rate-R sequence of

encoders and decoders, the attacker described below will guarantee some non-vanishing probability

of error.

By the continuity of C∗(D1, D2, σ
2
u) in D2, it follows that there exists some 0 < δ̃ < D2 such

that R > C∗(D1, D2 − δ̃, σ2
u). Let

D̃2 = D2 − δ̃, (95)

for some such δ̃. The attacker partitions the interval
(
D̃2, (2σu +

√
D1)2

)
sufficiently finely into m

sub-intervals A1, . . . ,Am, so that for each sub-interval Ak,

D̃2

(
1 +

D̃2

A

(
A′

A
− 1
))

< D̃2 +
δ̃

2
, ∀A,A′ ∈ Ak. (96)

Such a partition exists because this interval is finite, it does not include zero (D̃2 > 0), and because

the constant δ̃ is positive.

We define the mapping k from Rn to {0, . . . ,m} as

k(x) =

l if n−1‖x‖2 ∈ Al

0 if no such l exists
. (97)

This mapping will determine how the stegotext x will be attacked. Notice that it takes on a finite

number of values. We also define the random variable K = k(X). Using his knowledge of the
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distribution of the covertext and the encoder mapping, the attacker computes

ak = E

[
1
n
‖X‖2

∣∣∣K = k

]
, ∀ 0 ≤ k ≤ m. (98)

Note that ak ∈ Ak for k 6= 0 since Ak is an interval (and hence convex) and since the event K = k

corresponds to the event n−1‖X‖2 ∈ Ak. The attacker also computes

µk = E

[
1
n
‖U‖2

∣∣∣K = k

]
, ∀ 0 ≤ k ≤ m. (99)

Using only the source of randomness Θ2, the attacker generates a random vector V as a sequence

of i.i.d. zero-mean variance-D̃2 Gaussian random variables. Recall that we assume that the random

variable Θ2 and the random vector X are independent, and thus the random vectors V and X are

also independent.

Let us now consider an attacker g∗n in which the forgery is computed as

g∗n(x, θ2) =

c(ak(x); D̃2)x+ c1/2(ak(x); D̃2)v(θ2) if k(x) > 0(√
nD2 −

√
nD̃2

)
v(θ2)/‖v(θ2)‖ otherwise

, (100)

where c(A;D2) is defined in (5). Conditionally on X = x satisfying k(x) ≥ 1, the random vector

Y = g∗n(x,Θ2) under this attacker is thus distributed as c(ak(x); D̃2)x + c1/2(ak(x); D̃2)V . Note

that if K = k > 0, the resulting conditional distribution PY |X is the same as the optimal attack

channel of the mutual information game corresponding to ak and D̃2; see Section 3.1.

Finally, our proposed attacker uses g∗n if the distortion constraint is met and sets y = x if the

distortion constraint is not met. That is,

gn(x, θ2) =

g
∗
n(x, θ2) if n−1‖g∗n(x, θ2)− x‖2 ≤ D2

x otherwise
. (101)

The attacker gn thus satisfies the distortion constraint with probability one.
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5.2.3 Analysis of Distortion

The attackers {g∗n} do not, in general, satisfy the distortion constraint (12). But in this section we

show that, as the blocklength tends to infinity, the probability that the distortion they introduce

exceeds D2 tends to zero, i.e., that

lim
n→∞

Pr
(
gn(X,Θ2) = g∗n(X,Θ2)

)
= 1. (102)

Using this property, we will be able to complete the converse in the next section.

We now turn to the proof of (102). In order to summarize the distortion introduced by the

attacker, we define the following random variables,

∆1(k) = c(ak; D̃2)
(
n−1‖V ‖2 − D̃2

)
, k = 1, . . . ,m, (103)

and

∆2(k) =
(
c(ak; D̃2)− 1

)
c1/2(ak; D̃2)n−1〈X,V 〉, k = 1, . . . ,m. (104)

Note that for any 1 ≤ k ≤ m, the random variables ∆1(k) and ∆2(k) converge to zero in probability,

because V is a sequence of i.i.d. N (0, D̃2) random variables independent of X, and because 0 <

c(ak; D̃2) < 1 for all 1 ≤ k ≤ m. The probability of exceeding the allowed distortion can be written

as

Pr
(

1
n
‖g∗n(X,Θ2)−X‖2 > D2

)
=

m∑
l=0

Pr
(

1
n
‖g∗n(X,Θ2)−X‖2 > D2,K = l

)
.

We shall next show that each of the terms in the above sum converges to zero in probability. We

begin with the first term, namely l = 0. The event K = 0 corresponds to either n−1‖X‖2 ≤ D̃2 or

n−1‖X‖2 > (2σu +
√
D1)2. In the former case,

1
n
‖Y −X‖2 =

1
n

∥∥∥∥(√nD2 −
√
nD̃2

)
V /‖V ‖ −X

∥∥∥∥2

≤
(√

D2 −
√
D̃2

)2

+ 2
(√

D2 −
√
D̃2

)√
D̃2 + D̃2

= D2,
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where the inequality follows by the triangle inequality and since n−1‖X‖2 ≤ D̃2 here. Thus,

Pr
(

1
n
‖g∗n(X,Θ2)−X‖2 > D2,K = 0

)
= Pr

(
n−1‖X‖2 > (2σu +

√
D1)2

)
≤ Pr

(
n−1‖U‖2 > 4σ2

u

)
,

which converges in probability to zero by the ergodicity of the covertext. To study the limiting

behavior of the rest of the terms, fix some 1 ≤ l ≤ m. If k(x) = l then

1
n
‖g∗n(x, θ2)− x‖2 =

1
n

∥∥∥(c(al; D̃2)− 1
)
x+ c1/2(al; D̃2)V

∥∥∥2

= D̃2

(
1 +

D̃2

al

(
n−1‖x‖2

al
− 1
))

+ ∆1(l) + ∆2(l)

≤ D2 −
δ̃

2
+ ∆1(l) + ∆2(l),

where the second equality follows by the definitions of c, ∆1(l), and ∆2(l) (see (5), (103) and (104)),

and the inequality follows by (96) since both n−1‖x‖2 and al are in the set Al. Thus,

Pr
(

1
n
‖g∗n(X,Θ2)−X‖2 > D2, K = l

)
≤ Pr

(
∆1(l) + ∆2(l) ≥ δ̃/2, K = l

)
≤ Pr

(
∆1(l) + ∆2(l) ≥ δ̃/2

)
,

which converges to zero because both ∆1(l) and ∆2(l) converge to zero in probability.

5.2.4 Analysis of Probability of Error

In this section, we show that whenever the watermarking rate R exceeds C∗(D1, D2, σ
2
u), the se-

quence of attackers {g∗n} defined in (100) prevents the probability of error from decaying to zero.

In the previous section, we have shown that for blocklength n large enough gn(X,Θ2) = g∗n(X,Θ2)

with arbitrarily high probability. The combination of these two facts will show that the probability

of error is also prevented from decaying to zero by the sequence of attackers {gn} defined in (101).

To see this, fix any R > C∗(D1, D2, σ
2
u) and fix some encoder sequence {fn} and a corresponding

decoder sequence {φn}. Let D̃2 be chosen as in (95) so that R > C∗(D1, D̃2, σ
2
u) and consider the

attacker (100). Assume that we have managed to prove that the attackers {g∗n} of (100) guarantee

a non-vanishing probability of error. In this case (102) will guarantee that the probability of error
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must also be bounded away from zero in the presence of the attacker gn. Since {gn} do satisfy the

distortion constraint, this will conclude the proof of the converse.

The probability of error analysis for {g∗n} is carried out in a series of lemmas. In Lemma 5.1 we

use a Fano-type inequality to show that an achievable rate cannot exceed some limit of mutual in-

formations. In Lemma 5.2, we upper bound these mutual informations by simpler expectations, and

in Lemma 5.3 we finally show that, in the limit, these expectations do not exceed C∗(D1, D2, σ
2
u).

Lemma 5.1. For any sequence of encoders, attackers, and decoders {(fn, gn, φn)} with correspond-

ing sequence of conditional distributions {(PX|U ,Θ1
, PY |X)}, if P̄e(fn, gn, φn) → 0 as n→∞, then

R ≤ lim inf
n→∞

1
n
IPU PΘ1

PX|U,Θ1
PY |X (X;Y |U ,Θ1). (105)

Proof. Utilizing Fano’s inequality and the data processing theorem,

nR = H(W | U ,Θ1)

= H(W | U ,Θ1,Y ) + I(W ;Y | U ,Θ1)

≤ 1 + nRP̄e(fn, gn, φn) + I(X;Y | U ,Θ1),

where the first equality follows since W is independent of (U ,Θ1) and uniformly distributed over

{1, . . . , 2nR}, and the inequality follows by the data processing theorem and by Fano’s inequality.

Dividing by n and taking the lim inf, yields the desired result.

The mutual information term in the RHS of (105) is a little cumbersome to manipulate, and we

next exploit the fact that K takes on at most m+1 possible values to prove that n−1I(X;Y |U ,Θ1)

has the same limiting behavior as n−1I(X;Y |K,U ,Θ1), i.e., that

lim
n→∞

1
n

(
I(X;Y |U ,Θ1)− I(X;Y |K,U ,Θ1)

)
= 0. (106)

To prove (106) write

I(X;Y |K,U ,Θ1) = h(Y |K,U ,Θ1)− h(Y |X,K,U ,Θ1)

= h(Y |K,U ,Θ1)− h(Y |X,U ,Θ1)

= I(X;Y |U ,Θ1)− I(K;Y |U ,Θ1),
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where all differential entropies exist for the attacker g∗n, and the second equality follows since K is

a function of X (97). Thus, the mutual information on the RHS of (105) can be written as

I(X;Y |U ,Θ1) = I(X;Y |K,U ,Θ1) + I(K;Y |U ,Θ1). (107)

Since K takes on at most m+ 1 different values, it follows that

0 ≤ I(K;Y |U ,Θ1) ≤ H(K) ≤ log(m+ 1),

and thus, since m is fixed and does not grow with the blocklength,

lim
n→∞

1
n
I(K;Y |U ,Θ1) = 0. (108)

Equation (106) now follows from (108) and (107). It now follows from Lemma 5.1 and from (106)

that in order to prove that the rate R is not achievable, it suffices to show that

R > lim inf
n→∞

1
n
I(X;Y |K,U ,Θ1). (109)

We upper bound the RHS of (109) in the following Lemma, which is proved in Appendix A.5.

Lemma 5.2. For any encoder with corresponding watermarking channel PX|U satisfying (9), if

the attacker g∗n of (100) with corresponding attack channel P ∗Y |X is used, then

1
n
IPU PΘ1

PX|U,Θ1
P ∗

Y |X
(X;Y |K,U ,Θ1) ≤ EK

[
C∗(D1, D̃2, µK)

]
. (110)

To proceed with the proof of the converse we would now like to upper bound the RHS of

(110). Since the function C∗(D1, D2, σ
2
u) is not necessarily concave in σ2

u, we cannot use Jensen’s

inequality. However, C∗(D1, D2, σ
2
u) is increasing in σ2

u and is upper bounded by 1/2 log(1+D1/D2)

for all σ2
u. Thus, we will complete the proof by showing in the following lemma that if µk is larger

than σ2
u, albeit by a small constant, then Pr(K = k) must be vanishing. The proof of this lemma

can be found in Appendix A.6.

Lemma 5.3. For any ergodic covertext distribution PU with E
[
U4

k

]
<∞ and E

[
U2

k

]
≤ σ2

u, there

exists mappings δ(ε, n) and n0(ε) such that both the properties P1 and P2 stated below hold:
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P1. For every ε > 0, limn→∞ δ(ε, n) = 0.

P2. For every ε > 0, n > n0(ε), and event E of non-zero probability, if E
[
n−1‖U‖2|E

]
> σ2

u + 5ε,

then Pr(E) < δ(ε, n).

With the aid of Lemma 5.3 we can now upper bound the RHS of (110). Specifically, we next

show that for any ergodic stegotext {PU} of finite fourth moment and of second moment σ2
u, if

R > C∗(D1, D̃2, σ
2
u) and the attacker g∗n of (100) is used, then

lim sup
n→∞

EK

[
C∗(D1, D̃2, µK)

]
≤ C∗(D1, D̃2, σ

2
u). (111)

To see this, let δ(ε, n) and n0(ε) be the mappings of Lemma 5.3 corresponding to the stegotext

{PU}. For any ε > 0, let us define the set

K∗(ε) = {k : µk > σ2
u + 5ε}.

By the definition of µk (99), it is clear that E
[
n−1‖U‖2|K ∈ K∗(ε)

]
> σ2

u+5ε. Thus, by Lemma 5.3,

Pr(K ∈ K∗(ε)) < δ(ε, n). Since C∗(D1, D2, σ
2
u) is non-decreasing in σ2

u and is upper bounded by
1
2 log(1 + D1

D2
),

EK

[
C∗(D1, D̃2, µK)

]
= Pr (K /∈ K∗(ε))E

[
C∗K
∣∣K /∈ K∗(ε)

]
+ Pr (K ∈ K∗(ε))E

[
C∗K
∣∣K ∈ K∗(ε)

]
≤ C∗(D1, D̃2, σ

2
u + 5ε) + δ(ε, n) · 1

2
log
(

1 +
D1

D̃2

)
,

where C∗K = C∗(D1, D̃2, µK). Since this is true for every sufficiently large n and since δ(ε, n)

approaches zero as n tends to infinity,

lim sup
n→∞

EK

[
C∗(D1, D̃2, µK)

]
≤ C∗(D1, D̃2, σ

2
u + 5ε).

Furthermore, since this is true for every ε > 0 and since C∗(D1, D2, σ
2
u) is continuous in σ2

u, (111)

follows.

We now have all of the necessary ingredients to prove that if the rate R exceeds C∗(D1, D2, σ
2
u),

then the sequence of attackers {g∗n} prevents the probability of error from decaying to zero. Indeed,
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let D̃2 be chosen as in (95) so that R > C∗(D1, D̃2, σ
2
u) and consider the attacker g∗n of (100). Then

R > C∗(D1, D̃2, σ
2
u)

≥ lim sup
n→∞

EK

[
C∗(D1, D̃2, µK)

]
≥ lim sup

n→∞

1
n
I(X;Y |K,U ,Θ1)

= lim sup
n→∞

1
n
I(X;Y |U ,Θ1),

and the probability of error must be bounded away from zero by Lemma 5.1. Here the first

inequality is justified by the choice of D̃2 (95), the second inequality by (111), the third inequality

by (110), and the final equality by (106).

5.3 Discussion: The Ergodicity Assumption

We have proved that the i.i.d. zero-mean Gaussian covertext is easiest to watermark among all

ergodic covertexts of finite fourth moment and of a given second moment. That is, we have shown

that for any covertext satisfying these conditions, no rate above C∗
(
D1, D2, E

[
U2

i

])
is achievable.

An inspection of the proof, however, reveals that full ergodicity is not required, and it suffices

that the covertext law {PU} be stationary and satisfy a second-moment ergodicity assumption, i.e.,

that the variance of SU2,n of (153) approach zero, as n tends to infinity.

This condition can sometimes be further relaxed if the process has an ergodic decomposition

(see e.g. [39]). We illustrate this point with a simple example of a covertext that has two ergodic

modes. Let Z take on the values zero and one equiprobably, and assume that conditional on Z the

covertext {Ui} is i.i.d. zero-mean Gaussian with variance σ2
u,0, if Z = 0, and with variance σ2

u,1,

if Z = 1. Assume that σ2
u,0 < σ2

u,1. The covertext is thus not ergodic, but it is stationary with

E
[
U2

k

]
= (σ2

u,0 + σ2
u,1)/2. Even though the covertext is non-ergodic, it is still true that no rate

above C∗(D1, D2, E
[
U2

i

]
) is achievable. In fact, no rate above C∗(D1, D2, σ

2
u,0) can be achieved, as

an attacker of the form (101) designed for the parameters (D1, D2, σ
2
u,0) demonstrates. This type

of argument naturally extends to any covertext with a finite number of ergodic modes, and in fact,

with the proper modifications, to more general covertexts too.
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6 Converse for Average Constraints

In this section, we prove Theorem 2.2. That is, we show that if the covertext distribution {PU}

satisfies

σ2 = lim inf
n→∞

E

[
1
n
‖U‖2

]
<∞, (112)

and if average distortion constraints rather than almost sure distortion constraints are in effect,

then the capacity of the public and private watermarking games is zero. We shall prove the theorem

by exhibiting an attacker that satisfies the average distortion constraint (but not the a.s. constraint)

and that guarantees that no positive rate is achievable.

For a given covertext {U} and for a given encoder sequence {fn}, let the average power in the

stegotext X = fn(U ,W,Θ1) be given by

ãn =
1
n
E
[
‖X‖2

]
(113)

Note that the encoder average distortion constraint E
[
n−1‖X −U‖2

]
≤ D1 and the triangle

inequality ‖X‖ ≤ ‖X −U‖+ ‖U‖ guarantee that ãn ≤ (
√
D1 +

√
E [‖U‖2] /n)2. Consequently, it

follows by (112) that for any ε > 0 and any integer n0 > 0 there exists some n∗ > n0 such that

ãn∗ ≤ (σ + ε+
√
D1)2. (114)

Let the attack key Θ2 take on the value 0 with probability p, and take on the value 1 with probability

1− p, where

p = min
{

D2

(σ + ε+
√
D1)2

, 1
}
. (115)

For the blocklength n∗ consider now the attacker

g̃n∗(x, θ2) = θ2x (116)

that with probability p produces the all-zero forgery, and with probability (1 − p) does not alter

the stegotext at all. Irrespective of the rate (as long as b2nRc > 1) and of the version of the game,

this attacker guarantees a probability of error of at least p/2. It remains to check that g̃n∗(x, θ2)

satisfies the average distortion constraint. Indeed, the average distortion introduced by g̃n∗ is given
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by

1
n∗
E
[
‖X − g̃n∗(X,Θ2)‖2

]
= p · 1

n∗
E
[
‖X‖2

]
= p · ãn∗

≤ p · (σ + ε+
√
D1)2

≤ D2,

where the first equality follows from (116), the second by (113), the subsequent inequality by (114),

and the last inequality by (115).

7 Conclusions

In Section 2.1.3, we showed that the watermarking game is equivalent to a communication system

where the encoder and the jammer have non-causal access to different side informations. The

covertext U in the watermarking game corresponds to the additive noise sequence that is known

non-causally to the transmitter. It is interesting to note that, in terms of the communication

system, the encoders that achieve capacity use part of their allowed power to enhance the noise.

Indeed, in the private version of the watermarking game, the stegotext X is created by adding

an independent (except for being orthogonal to U) random vector to the covertext U scaled by

b1(A;D1, σ
2
u). Since for the optimal choice of A (i.e., the one that achieves the maximum in (8))

the constant b1 is greater than one, this corresponds to enhancing the covertext; see Section 4.2.

Similarly, in the public version of the game, if Z ≈ ασ2
u+ρ (which is very likely by Lemma 4.3), then

the projection of the stegotext X onto the covertext U is also produced by roughly multiplying by

the constant b1, i.e., X|U ≈ b1U .

We have seen that the watermarking capacity increases with the uncertainty in the covertext in

the following sense. First, for an i.i.d. Gaussian covertext, the capacity of the watermarking game

is increasing in the variance of the covertext. Second, with squared error distortion measures and

a fixed covertext variance, the covertext distribution with the largest watermarking capacity is the

Gaussian distribution, which has the highest entropy among all distributions of a given variance.

Intuitively, if the uncertainty in the covertext is large, then the encoder can hide more information

in the stegotext since the attacker learns little about the covertext from observing the stegotext.

56



If the attacker does not take advantage of its knowledge of the stegotext, then this property is

not as strong. For example, if the attacker adds an arbitrary sequence as in the additive attack

watermarking game or if the attacker adds a Gaussian process as in the extension of writing on

dirty paper, then the amount of uncertainty in the covertext has little bearing on the capacity. In

all cases, the watermarking system’s knowledge of the covertext should be used to its advantage.

It is suboptimal to ignore the encoder’s knowledge of the covertext, as some systems do by forming

the stegotext by adding the covertext and a sequence that depends only on the watermark.

A Proofs of Technical Lemmas

A.1 Proof of Lemma 3.1

We first show following Chen [32] that for arbitrary distributions PU , PX|U , PV |U ,X , and PY |X
the mutual information terms satisfy Ipriv ≥ Ipub. All of the below mutual information terms are
evaluated in terms of these distributions. We will assume that Ipriv is finite, since otherwise the
lemma is trivial. We can write that

Ipriv(PU , PX|U , PY |X) = n−1I(X;Y |U)

≥ n−1I(V ;Y |U) (117)
= n−1

(
I(V ;U ,Y )− I(V ;U)

)
(118)

≥ n−1
(
I(V ;Y )− I(V ;U)

)
= Ipub(PU , PX|U , PV |U ,X , PY |X)

where (117) follows by the data processing inequality (see e.g. [17]) because V and Y are condition-
ally independent given (X,U); and where (118) follows by the chain rule for mutual informations.
We next show that the values of the mutual information games also behave as desired. Fix n and
ε > 0 and let P ∗X|U and P ∗V |U ,X be distributions that are within ε of the supremum in (30). Thus,

sup
PX|U

inf
PY |X

Ipriv(PU , PX|U , PY |X) ≥ inf
PY |X

Ipriv(PU , P ∗X|U , PY |X)

≥ inf
PY |X

Ipub(PU , P ∗X|U , P
∗
V |U ,X , PY |X)

≥ sup
PX|U ,PV |U,X

inf
PY |X

Ipub(PU , PX|U , PV |U ,X , PY |X)− ε,

where the second inequality follows by the preceding paragraph and the final inequality follows by
our choice of P ∗X|U and P ∗V |U ,X . The lemma follows since ε > 0 can be chosen as small as desired.

�
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A.2 Proof of Lemma 3.2

The proof is organized as follows. In Lemma A.1, we show that a Gaussian covertext distribution
and a jointly Gaussian watermarking channel maximize the mutual information term of interest.
Using this result and some basic mutual information manipulations, we then complete the proof.

Lemma A.1. Let PU,X be an arbitrary distribution with covariance matrix KUX , and let P ∗U,X be
a jointly Gaussian distribution of covariance matrix K∗

UX = KUX . Then,

Ipriv(PU , PX|U , P
A
Y |X) ≤ Ipriv(P ∗U , P

∗
X|U , P

A
Y |X),

where PA
Y |X is defined in Section 3.1 and A > D2 is arbitrary.

Proof. Recall that under the attack channel PA
Y |X , the random variables Y and X are related by

Y = cX + S2, where c = c(A;D2) and S2 is mean-zero variance-cD2 Gaussian random variable
independent of X. Thus,

hPUPX|UP A
Y |X

(Y |X) = h(S2) = hP ∗
UP ∗

X|UP A
Y |X

(Y |X), (119)

where these and the below differential entropies exist by the structure of the attack channel under
consideration. Let βU be the linear minimum mean squared-error estimator of Y given U . Note
that β depends on second-order statistics only, so that its value under P ∗U,X is the same as under
PU,X . Thus,

hPUPX|UP A
Y |X

(Y |U) = hPUPX|UP A
Y |X

(Y − βU |U)

≤ hPUPX|UP A
Y |X

(Y − βU)

≤ 1
2

log
(
2πeEPUPX|UP A

Y |X

[
(Y − βU)2

])
=

1
2

log
(
2πeEP ∗

UP ∗
X|UP A

Y |X

[
(Y − βU)2

])
= hP ∗

UP ∗
X|UP A

Y |X
(Y |U), (120)

where the first inequality follows since conditioning reduces entropy, the second inequality follows
since a Gaussian distribution maximizes entropy subject to a second moment constraint, and (120)
follows since under P ∗U , P ∗X|U and PA

Y |X the random variables U and Y are jointly Gaussian and
hence Y − βU is Gaussian and independent of U . Combining (119) and (120) with the definition
of Ipriv (see (26)) completes the proof of Lemma A.1.

To continue with the proof of Lemma 3.2, if under P ∗U and P ∗X|U the random variables U and
X are zero-mean and jointly Gaussian, then

Ipriv(P ∗U , P
∗
X|U , P

A
Y |X) =

1
2

log

(
1 +

c(A;D2) b2
(
E
[
X2
]
;E
[
(X − U)2

]
, E
[
U2
])

D2

)
, (121)

where b2(·; ·, ·) is defined in (4) and A > D2. Note that b2 and hence the whole expression (121)
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is concave in the triple
(
E
[
U2
]
, E
[
(X − U)2

]
, E
[
X2
])

, as can be verified by checking that the
Hessian is non-negative definite. We can now compute that

Ipriv

(
PU , PX|U , (P

An

Y |X)n
)

≤ 1
n

n∑
i=1

Ipriv

(
PUi , PXi|Ui

, PAn

Y |X

)
≤ 1

n

n∑
i=1

1
2

log

(
1 +

c(An;D2) b2
(
E
[
X2

i

]
;E
[
(Xi − Ui)2

]
, E
[
U2

i

])
D2

)

≤ 1
2

log

(
1 +

c(An;D2) b2
(
An;D1,n, σ

2
u,n

)
D2

)
=

1
2

log
(
1 + s(An;D1,n, D2, σ

2
u,n)
)
,

where the first inequality follows by the chain rule and since conditioning reduces entropy, the
second inequality follows by Lemma A.1 and by (121), the third inequality follows by the above
discussed concavity of (121), and the final equality follows by the definition of s(·; ·, ·, ·) (7). We
obtain equality in each of the above inequalities when PU = (PG

U )n and PX|U = (PAn

X|U )n. This
completes the proof of Lemma 3.2. �

A.3 Proof of Lemma 3.3

For every A ∈ A(D1, D2, σ
2
u), consider the one-dimensional optimization based on the watermarking

channel described in Section 3.2

M(D2, A) = inf
PY |X∈D2(D2,P G

U ,P A
X|U )

Ipub

(
PG

U , P
A
X|U , P

A
V |U,X , PY |X

)
. (122)

In Lemma A.2, we derive some properties of M(D2, A), which we subsequently use to show that
M(D2, A) is a lower bound on the LHS of (46). In Lemma A.3, we show that when computing
M(D2, A) we only need to consider attack channels that make the random variables Y and V jointly
Gaussian. We finally use this lemma to compute M(D2, A).

Lemma A.2. For a fixed A, the function M(D2, A) defined in (122) is convex and non-increasing
in D2.

Proof. The function M(D2, A) is non-increasing in D2 since increasing D2 only enlarges the feasible
set D2(D2, P

G
U , P

A
X|U ). To show that M(·, A) is convex in D2, we first note that

Ipub

(
PU , PX|U , PV |U,X , PY |X

)
= I(V ;Y )− I(V ;U)

is convex in PY |X . Indeed, I(V ;U) does not depend on PY |X and I(V ;Y ) is convex in PY |V and
hence also convex in PY |X since7 V −−◦ X −−◦ Y . Given parameters A, Dr, Ds, and ε > 0, let

7The notation V −−◦ X −−◦ Y will mean that the random variables V , X, and Y form a Markov chain.
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watermarking channels P r
Y |X ∈ D2(Dr, P

G
U , P

A
X|U ) and P s

Y |X ∈ D2(Ds, P
G
U , P

A
X|U ) be such that

Ipub

(
PG

U , P
A
X|U , P

A
V |U,X , P

r
Y |X

)
≤M(Dr, A) + ε, (123)

and
Ipub

(
PG

U , P
A
X|U , P

A
V |U,X , P

s
Y |X

)
≤M(Ds, A) + ε. (124)

For any 0 ≤ λ ≤ 1, let P λ
Y |X = λP r

Y |X + λ̄P s
Y |X , where λ̄ = (1− λ). We complete the proof with

M(λDr + λ̄Ds, A) ≤ Ipub

(
PG

U , P
A
X|U , P

A
V |U,X , P

λ
Y |X

)
≤ λIpub

(
PG

U , P
A
X|U , P

A
V |U,X , P

r
Y |X

)
+ λ̄Ipub

(
PG

U , P
A
X|U , P

A
V |U,X , P

s
Y |X

)
≤ λM(Dr, A) + λ̄M(Ds, A) + ε,

where the first inequality follows since EPUP A
X|UP λ

Y |X
[(X −Y )2] ≤ λDr + λ̄Ds, the second inequality

follows by the convexity of Ipub(PU , PX|U , PV |U,X , ·), and the final inequality follows by (123) and
(124). The lemma follows since ε is an arbitrary positive number.

We continue by showing that M(D2, A) is a lower bound on the LHS of (46). Indeed, if

PY |X ∈ D2(D2, (PG
U )n, (PA

X|U )n), (125)

then

Ipub

(
(PG

U )n, (PA
X|U )n, (PA

V |U,X)n, PY |X

)
≥ 1

n

n∑
i=1

Ipub

(
PG

U , P
A
X|U , P

A
V |U,X , PYi|Xi

)
≥ 1

n

n∑
i=1

M
(
EP G

U P A
X|UPYi|Xi

[
(Yi −Xi)2

]
, A
)

≥ M
(
E(P G

U P A
X|U )nPY |X

[
n−1‖Y −X‖2

]
, A
)

≥ M(D2, A),

where the first inequality follows since the watermarking channel is memoryless, by the chain rule,
and by the fact that conditioning reduces entropy; the second inequality follows by the definition
of M(·, ·); and the final two inequalities follow by Lemma A.2 and by (125) so that the expected
distortion is less than D2.

To complete the proof of Lemma 3.3, we show that a minimum in the definition of M(D2, A)
is achieved by the distribution PA

Y |X of Section 3.1. We now show that we only need to consider
conditional distributions PY |X under which V and Y are jointly Gaussian.

Lemma A.3. Let V and Z be jointly Gaussian random variables with covariance matrix KV Z . Let
Y be another (not necessarily Gaussian) random variable related to V via the covariance matrix
KV Y . If KV Y = KV Z , then I(V ;Y ) ≥ I(V ;Z).
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Remark: Similar lemmas have been given in a preliminary version of [40] and in [41], assuming that
V and Y have a joint density.

Proof. It suffices to prove the lemma when all random variables are zero mean. If I(V ;Y ) is infinite
then there is nothing to prove. Thus, we only consider the case where

I(V ;Y ) <∞. (126)

For the fixed covariance matrix K = KV Y = KV Z , let the linear minimum mean squared-error
estimator of V given Y be βY . Note that the constant β is determined uniquely by the correlation
matrix K and thus βZ is also the linear minimum mean squared-error estimator of V given Z. Since
the random variables V and Z are jointly Gaussian, this is also the minimum mean squared-error
estimator, and furthermore V − βZ is independent of Z. If the conditional density fV |Y exists,
then

I(V ;Y ) = h(V )− h(V |Y ) (127)
≥ h(V )− h(V − βY ) (128)

≥ h(V )− 1
2

log 2πeE[(V − βY )2] (129)

= h(V )− 1
2

log 2πeE[(V − βZ)2] (130)

= I(V ;Z) (131)

=
1
2

log
(
E[V 2]E[Z2]
|KV Z |

)
(132)

and the lemma is proved. Here, (127) follows since we have assumed that a conditional density
exists; (128) follows since conditioning reduces entropy; (129) follows since a Gaussian maximizes
differential entropy subject to a second moment constraint; (130) follows since KV Y = KV Z and
hence all second order moments are the same; (131) follows since V − βZ is both Gaussian and
independent of Z; and (132) follows since V and Z are zero-mean jointly Gaussian random variables.

By (126) the conditional density fV |Y exists if Y takes on a countable number of values. This
follows since (126) implies PV,Y � PV PY , i.e., the joint distribution is absolutely continuous with
respect to the product of the marginals. In particular, PV |Y (·|y) � PV for every y such that
PY (y) > 0. Furthermore, V is Gaussian and hence PV � λ, where λ is the Lebesgue measure.
Thus, PV |Y (·|y) � λ for every y such that PY (y) > 0 and hence the conditional density exists.

To conclude the proof of the lemma, we now consider the case where Y does not necessarily
take on a countable number of values and I(V ;Y ) <∞. This case follows using an approximation
argument. For any ∆ > 0, let q∆ : R 7→ {. . . ,−2∆,−∆, 0,∆, 2∆, . . . } be a uniform quantizer with
cell size ∆, i.e., q∆(x) maps x to the closest integer multiple of ∆. Let

Y∆ = q∆(Y ).

By the data processing inequality,
I(V ;Y ) ≥ I(V ;Y∆). (133)
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The random variable Y∆ takes on a countable number of values and by (126) and (133), I(V ;Y∆) <
∞. Thus, the conditional density fV |Y∆

exists and

I(V ;Y∆) ≥ 1
2

log
(
E[V 2]E[Y 2

∆]
|KV Y∆

|

)
. (134)

Since |Y − Y∆| ≤ ∆/2, it follows that E[Y 2
∆] → E[Y 2] and |KV Y∆

| → |KV Y | as ∆ ↓ 0. Since (133)
and (134) hold for all ∆ > 0, the lemma follows by letting ∆ approach zero.

To continue with the evaluation of M(D2, A), we note that since under the distributions PG
U ,

PA
X|U , and PA

V |U,X , the random variable V has a Gaussian distribution, the above lemma allows
us to assume throughout the rest of the proof that the attack channel PY |X makes the random
variables V and Y jointly Gaussian. Recall that the random variables V , X, and Y form a Markov
chain. Thus, if we let Y = c1X + S1, where S1 is Gaussian random variable independent of X
with variance c2 ≥ 0, then we can generate all possible correlation matrices KV Y by varying the
parameters c1 and c2. Since the mutual information I(V ;Y ) only depends on the correlation matrix
KV Y , we can compute the quantity M(D2, A) by only considering such attack channels.

Let P c1,c2
Y |X be the attack channel such that the random variable Y is distributed as c1X + S1,

where S1 is a random variable independent of X which is Gaussian of zero mean and variance c2.
Under this distribution,

EPUP A
X|UP

c1,c2
Y |X

[(X − Y )2] = (1− c1)2A+ c2 (135)

so that the condition P c1,c2
Y |X ∈ D2(D2, P

G
U , P

A
X|U ) is thus equivalent to the requirement:

(1− c1)2A+ c2 ≤ D2. (136)

We next note that for A > D2 (and c2 ≥ 0) any pair (c1, c2) satisfying (136) must also satisfy

c2
c21
≤ D2

c(A;D2)
, (137)

where c(·; ·) is defined in (5). Conversely, for any 0 ≤ κ ≤ D2/c(A;D2) there exists such a pair
(c1, c2) for which c2/c21 = κ. Indeed, by (136) we have

P c1,c2
Y |X ∈ D2(D2, P

G
U , P

A
X|U ) ⇐⇒ c2 ≤ D2 − (1− c1)2A

⇐⇒ c2
c21
≤ D2 − (1− c1)2A

c2
≤ D2

c(A;D2)

where the last inequality is achieved with equality if c1 = c(A;D2). The converse statement follows
by solving c2/c21 = κ subject to (136) holding with equality.
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Thus, if α = α(A;D1, D2, σ
2
u), ρ = ρ(A;D1, σ

2
u) and b1 = b1(A;D1, σ

2
u), then

Ipub

(
PG

U , P
A
X|U , P

A
V |U,X , P

c1,c2
Y |X

)
=

1
2

log

(
α2σ2

u + 2αρ+D1 − (α+ b1 − 1)2σ2
u

α2σ2
u + 2αρ+D1 − ((α− 1)b1σ2

u +A)2/(A+ c2
c21

)

)

≥ 1
2

log
(
1 + s(A;D1, D2, σ

2
u)
)
,

where the equality follows by evaluating Ipub with the given distributions and the inequality follows
by the relevant definitions and by (137). Equality is achieved when c1 = c(A;D2) and c2 =
c(A;D2)D2. The combination of all of the above arguments shows that Lemma 3.3 is valid. �

A.4 Proof of Lemma 4.4

A.4.1 Distribution of Chosen Auxiliary Codeword

In order to prove Lemma 4.4, we shall need the distribution of the chosen auxiliary codeword
V W (U) (defined in (75)), both unconditionally and conditioned on the random vector X and the
random variable Z (defined in (76) and (79), respectively). We present these distributions in the
following two lemmas.

Lemma A.4. The random vector V W (U) is uniformly distributed over the n-sphere Sn(0,
√
nσ2

v,type),
where type is add or gen as appropriate.

Proof. By the symmetry of the encoding process it is apparent that V W (U) is independent of the
message W . Assume then without loss of generality (w.l.g.) that W = 1. Since all the auxiliary
random vectors {V 1,k} in bin 1 take value in the n-sphere Sn(0,

√
nσ2

v), it follows that the chosen
auxiliary codeword must take value in the same n-sphere. Finally, since the joint distribution of
{V 1,k} is invariant under any unitary transformation as is the distribution of U , and since U and
{V 1,k} are independent, it follows that the unconditional distribution of V W (U) is as stated above.
In other words, the fact that V W (U) achieves the maximum inner product with U does not tell
us anything about the direction of V W (U).

Lemma A.5. Given X = x and Z = z, the random vector V W (U) is uniformly distributed over
the set8

V(x, z) =
{
a1x+ v : v ∈ Sn(0,

√
na2)x⊥

}
, (138)

where

a1 =
σ2

v,type + (1− αtype)z
n−1‖x‖2

, a2 =
(1− αtype)2(σ2

uσ
2
v,type − z2)

n−1‖x‖2
, (139)

and type is add or gen as appropriate.

Proof. We drop the subscripts since the proof is the same for both types. Conditional on U = u
and on Z = z, the auxiliary codeword V W (U) is uniformly distributed over the set

V ′(u, z) =
{
v : n−1‖v‖2 = σ2

v and n−1〈v,u〉 = z
}
,

8Recall that we use x⊥ to denote the linear sub-space of vectors that are orthogonal to x.
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as follows by the definition of Z (79) and the distribution of the codebook {V j,k}. Using the
deterministic relation (76) we can now relate the appropriate conditional densities as

fV W (U)|X,Z(v|X = x, Z = z) = fV W (U)|U ,Z

(
v
∣∣∣U =

x− v
1− α

,Z = z

)
.

The proof will be concluded once we demonstrate that, irrespective of z, it holds that v ∈ V(x, z)
if, and only if, v ∈ V ′

(
(x − v)/(1 − α), z

)
. Indeed, if v ∈ V(x, z), then we can calculate that

n−1‖v‖2 = a2
1n

−1‖x‖2 + a2 = σ2
v using the fact that

n−1‖x‖2 = σ2
v + 2(1− α)z + (1− α)2σ2

u. (140)

Furthermore,
1
n

〈
v,
x− v
1− α

〉
=
σ2

v + (1− α)z − σ2
v

1− α
= z,

and thus v ∈ V ′
(
(x− v)/(1− α), z

)
. Conversely, if v ∈ V ′

(
(x− v)/(1− α), z

)
, then

1
n

〈
v,
x− v
1− α

〉
=
n−1〈v,x〉 − σ2

v

1− α
= z,

and hence v|x = a1x. Furthermore,

1
n

∥∥v|x⊥∥∥2 =
1
n
‖v‖2 − 1

n

∥∥v|x∥∥2 = σ2
v −

a2
1‖x‖2

n
= a2,

where we have again used (140), and thus v ∈ V(x, z).

A.4.2 Case I: Additive Attacker

Recall that a deterministic additive attacker described in Section 4.1.2 is specified by a vector ỹ
satisfying (58). Fix some ε3 > 0 (to be chosen later) and choose n2 large enough to ensure

Pr(E1E2E3) ≥ 1− ε, ∀n > n2, (141)

where the events E1, E2, and E3 are defined by

E1 =
{∣∣2n−1〈X, ỹ〉

∣∣ ≤ ε3
}
, E2 =

{∣∣n−1〈V W (U), ỹ〉
∣∣ ≤ ε3

}
, E3 = {Z ≥ ασ2

u}.

Note that whenever ε3 > 0, such an n2 can always be found by the union of events bound, because
the probability of the complement of each of the events is vanishing uniformly in ỹ, for all ỹ
satisfying (58). Indeed, Ec

1 and Ec
2 have vanishing probabilities because both U and V W (U) are

uniformly distributed on n-spheres (see Lemma A.4) and since X = V + (1 − α)U , and Ec
3 has
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vanishing probability by Lemma 4.3. Event E1 guarantees that

Z1 =
1
n
‖X‖2 +

2
n
〈X, ỹ〉+

1
n
‖ỹ‖2

≤ σ2
v + 2(1− α)Z + (1− α)2σ2

u + ε3 +D2, (142)

where the equality follows by the definition of Z1 (79) and the form of the additive attacker given
in Section 4.1.2, and where the inequality follows by (140), (58), and the inequality defining E1.
From the definition of Z2 (79) it follows that E2 guarantees that Z2 ≥ −ε3. Consequently, the
intersection E1E2 guarantees that

β(Z,Z1, Z2) ≥
σ2

v + (1− α)Z − ε3√
σ2

v + 2(1− α)Z + (1− α)2σ2
u + ε3 +D2

. (143)

For any ε3 > 0, the RHS of (143) is monotonically increasing in Z, so that the intersection E1E2E3

implies

β(Z,Z1, Z2) ≥
σ2

v + (1− α)ασ2
u − ε3√

σ2
v + 2(1− α)ασ2

u + (1− α)2σ2
u + ε3 +D2

. (144)

Recalling the definitions in Section 4.3.1 and the definition of β∗(R1 + δ) (86), one can show using
some algebra that for ε3 = 0, the RHS of (144) equals β∗(R1 + δ). Since the RHS of (144) is
continuous in ε3, we can choose some ε3 > 0 small enough (and the resulting n2 large enough) so
that the intersection E1E2E3 will guarantee that

β(Z,Z1, Z2) ≥ β∗(R1 + δ)− ε1.

In the case of an additive attacker, the lemma thus follows from (141).

A.4.3 Case II: General Attacker

In order to prove the desired result for a general attacker, we need the following lemma.

Lemma A.6. As n tends to infinity, the sequence of random variables n−1〈γ2(X),V W (U)〉 ap-
proaches zero in probability uniformly over all the general attackers of Section 4.1.2.

Proof. Conditional on X = x and Z = z, the random vector V W (U) is by Lemma A.5 distributed
like a1x+V , where V is uniformly distributed on Sn(0,

√
na2)x⊥, and a2 defined in (139) depends

on z. Consequently for any 0 < ζ <
√
D2σ2

v ,

Pr
(∣∣n−1 〈γ2(X),V W (U)〉

∣∣ > ζ
∣∣X = x, Z = z

)
= Pr

(∣∣∣〈γ2(x)/
√
nγ3(x),V /

√
na2

〉∣∣∣ > ζ/
√
γ3(x)a2

)
≤ Pr

(∣∣∣〈γ2(x)/
√
nγ3(x),V /

√
na2

〉∣∣∣ > ζ/
√
D2σ2

v

)
=

2Cn−1

(
arccos

(
ζ/
√
D2σ2

v

))
Cn−1(π)

.
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Here, the first equality follows by Lemma A.5 and the fact that γ2(x) ∈ x⊥, the subsequent
inequality follows from γ3(x) ≤ D2 and a2 ≤ σ2

v (see (60) and (139)), and the final equality follows
since V /

√
na2 is uniformly distributed on Sn(0, 1)x⊥ and since γ2(x)/

√
nγ3(x) also takes value

in this set. Since the resulting upper bound, which tends to zero, does not depend on x or z, it
must also hold for the unconditional probability.

We now proceed to prove Lemma 4.4 for a general attacker. Choose n2 large enough to ensure
that

Pr(E4E5) ≥ 1− ε, ∀n > n2,

where

E4 = {Z ≥ ασ2
u + ρ}, E5 =

{
n−1〈γ2(X),V W (U)〉 ≥ −ε1σv

(√
A−

√
D2

)}
.

Such an n2 can be found by the union of events bound since both Ec
4 and Ec

5 have vanishing proba-
bilities by Lemmas 4.3 and A.6, respectively. For the deterministic general attacker of Section 4.1.2,
we can express the random variables Z1 and Z2 of (79) as

Z1 = γ2
1(X)n−1‖X‖2 + γ3(X),

and
Z2 = (γ1(X)− 1)(σ2

v + (1− α)Z) + n−1〈γ2(X),V W (U)〉.

Substituting these expressions in β(Z,Z1, Z2) of (81) yields

β(Z,Z1, Z2) =
σ2

v + (1− α)Z + (γ1(X)− 1)(σ2
v + (1− α)Z) + n−1〈γ2(X),V W (U)〉√

(γ2
1n

−1‖X‖2 + γ3(X))σ2
v

=
σ2

v + (1− α)Z√(
n−1‖X‖2 + γ3(X)/γ2

1(X)
)
σ2

v

+
n−1〈γ2(X),V W (U)〉√

Z1σ2
v

. (145)

We conclude the proof by showing that the intersection E4E5 implies that (145) exceeds β∗(R1 +
δ)− ε1. Using the expression (140) and the definitions of Section 4.3.2, we see that event E4 implies
that n−1‖X‖2 is at least A. When this is true, then the distortion constraint (12) and the triangle
inequality imply that Z1 is at least (

√
A−

√
D2)2. Thus, the intersection E4E5 guarantees that the

second term of (145) is at least −ε1. We now turn to the first term on the RHS of (145), which
using (140) can be rewritten as

σ2
v + (1− α)Z√(

σ2
v + 2(1− α)Z + (1− α)2σ2

u + γ3(X)/γ2
1(X)

)
σ2

v

. (146)

Note that E4 implies n−1‖X‖2 is at least A and that in this case γ3(X)/γ2
1(X) ≤ D2/c (this follows
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using (61) as in the argument after (137)). Thus, (146) can be lower bounded by

σ2
v + (1− α)Z√(

σ2
v + 2(1− α)Z + (1− α)2σ2

u + D2
c

)
σ2

v

.

Since α < 1 (68), the above term is increasing in Z. Substituting Z = ασ2
u +ρ into this term yields

β∗(R1 + δ), as can be verified using the definitions of R1 (71) and β∗(·) (86), which yields

β∗(R1 + δ) =
(
σ2

v + (1− α)(ασ2
u + ρ)

)√ c

Aσ2
v

.

The event E4 thus implies that the first term on the RHS of (145) is at least β∗(R1 + δ). �

A.5 Proof of Lemma 5.2

To simplify the proof of this lemma, we shall use the following notation:

c(k) = c(ak; D̃2), b
(k)
1 = b1(ak;D1, µk), b

(k)
2 = b2(ak;D1, µk), (147)

where the functions c(·; ·), b1(·; ·, ·), and b2(·; ·, ·) are defined in Section 1.1. We shall also need the
following technical claim.

Lemma A.7. If the encoder satisfies the a.s. distortion constraint (9), then

E

[
1
n

∥∥∥g∗n(X,Θ2)− b
(k)
1 c(k)U

∥∥∥2
∣∣∣∣K = k

]
≤ c(k)

(
c(k)b

(k)
2 + D̃2

)
,

for all k ≥ 1 such that Pr(K = k) > 0.

Proof. Recall that the attacker g∗n defined in (100) produces an i.i.d. sequence of N (0, D̃2) random
variables V that is independent of (X,U). Furthermore, since K is a function of X, the random
vector V is also independent of X and U given K. Thus, for all k ≥ 1 with Pr(K = k) > 0,

E

[
n−1

∥∥∥g∗n(X,Θ2)− b
(k)
1 c(k)U

∥∥∥2 ∣∣∣K = k

]
= E

[
n−1

∥∥∥c(k)
(
X − b

(k)
1 U

)
+
√
c(k)V

∥∥∥2 ∣∣∣K = k

]
= (c(k))2E

[
n−1

∥∥∥X − b
(k)
1 U

∥∥∥2 ∣∣∣K = k

]
+ c(k)E

[
n−1 ‖V ‖2

∣∣K = k
]

= (c(k))2E
[
n−1

(
‖X‖2 − b

(k)
1 2〈X,U〉+ (b(k)

1 )2‖U‖2
) ∣∣∣K = k

]
+ c(k)D̃2

= (c(k))2
(
ak − b

(k)
1 E

[
2n−1〈X,U〉|K = k

]
+ (b(k)

1 )2µk

)
+ c(k)D̃2,

where the final equality follows by the definitions of ak and µk (see (98) and (99)). The proof will
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be concluded once we show

n−1E [〈X,U〉 | K = k] ≥ 1
2
(ak + µk −D1), (148)

because
ak − b

(k)
1 (ak + µk −D1) + (b(k)

1 )2µk = b
(k)
2 ,

by (147). We verify (148) by noting that for every k ≥ 1 such that Pr(K = k) > 0,

D1 ≥ E
[
n−1‖X −U‖2

∣∣K = k
]

= E
[
n−1‖X‖2 − 2n−1〈X,U〉+ n−1‖U‖2

∣∣K = k
]

= ak − E
[
2n−1〈X,U〉

∣∣K = k
]
+ µk,

where the inequality follows since n−1‖X −U‖2 ≤ D1 almost-surely so that the expectation given
any event with positive probability must also be at most D1.

We can now write the mutual information term of interest as

I(X;Y |K,U ,Θ1)

=
m∑

k=0

Pr(K = k) · I(X;Y |K = k,U ,Θ1)

=
m∑

k=1

Pr(K = k) ·
(
h(Y |K = k,U ,Θ1)− h(Y |X,K = k,U ,Θ1)

)
, (149)

since by the structure of the attack channel all of the above differential entropies exist for all k ≥ 1,
and since when k = 0 the above mutual information is zero. To continue our proof, we shall next
verify that

I(X;Y |K = k,U ,Θ1) = h(Y |K = k,U ,Θ1)− h(Y |X,K = k,U ,Θ1) (150)

is upper bounded by 1
2 log(1 + s(ak;D1, D̃2, µk)), for all k ≥ 1 satisfying Pr(K = k) > 0. We can

upper bound the first term on the RHS of (150) as

h(Y |K = k,U ,Θ1) = h
(
g∗n(X,Θ2)

∣∣K = k,U ,Θ1

)
= h

(
g∗n(X,Θ2)− c(k)b

(k)
1 U

∣∣K = k,U ,Θ1

)
≤ h

(
g∗n(X,Θ2)− c(k)b

(k)
1 U

∣∣K = k
)

≤ n

2
log
(

2πeE
[

1
n

∥∥∥g∗n(X,Θ2)− c(k)b
(k)
1 U

∥∥∥2 ∣∣∣K = k

])
≤ n

2
log
(
2πe

(
(c(k))2b(k)

2 + c(k)D̃2

))
, (151)

where the first inequality follows since conditioning reduces entropy, the second inequality follows
since a Gaussian has the highest entropy subject to a second moment constraint, and (151) follows
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by Lemma A.7. We can write the second term on the RHS of (150) as

h(Y |X,K = k,U ,Θ1) = h
(√

c(k)V
∣∣K = k

)
=

n

2
log
(
2πec(k)D̃2

)
, (152)

for all k ≥ 1, where (152) follows since V is an i.i.d. sequence of N (0, D̃2) random variables
independent of (X, U,Θ1) and hence independent of K.

Combining (149), (151), and (152) and observing that s(ak;D1, D̃2, µk) = c(k)b
(k)
2 /D̃2, we see

that the LHS of (110) is at most EK

[
1
2 log

(
1 + s(aK ;D1, D̃2, µK)

)]
. To complete the proof, we

note that this expression is upper bounded by the RHS of (110) by the definition of C∗(D1, D2, σ
2
u)

(8); this bound is not necessarily tight since ak does not necessarily achieve the maximum in (8)
for D1, D̃2 and µk. �

A.6 Proof of Lemma 5.3

First, note that the contrapositive (and hence equivalent) statement of property P2 is:

P2a. For every ε > 0, n > n0(ε), and event E , if Pr(E) ≥ δ(ε, n), then E
[
n−1‖U‖2|E

]
≤ σ2

u + 5ε.

Let us define

SU2,n =
1
n

n∑
i=1

U2
i , (153)

and
mU2 = E

[
U2

i

]
.

Since U is stationary, mU2 does not depend on i and E
[
SU2,n

]
= mU2 for all n. Further recall the

assumption that mU2 ≤ σ2
u. We first prove the claim assuming that SU2,n has a density for all n,

and return later to the case when it does not. Fix ε > 0, and choose n0(ε) such that

Var(SU2,n) ≤ ε2/2, ∀n > n0(ε). (154)

This can be done since U is ergodic with finite fourth moment, and hence SU2,n is converging in
mean square to mU2 . Next, choose {sn} such that for all n > n0(ε)

Pr(SU2,n ≥ sn) =
Var(SU2,n)

ε2
, (155)

and
mU2 − ε ≤ sn ≤ mU2 + ε. (156)

Such an sn exists for all appropriate n by the intermediate value theorem of calculus because our
assumption that SU2,n has a density guarantees that Pr(SU2,n ≥ ξ) is continuous in ξ, and because

Pr
(
SU2,n ≥ mU2 + ε

)
≤

Var(SU2,n)
ε2

,
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and

Pr
(
SU2,n ≥ mU2 − ε

)
≥ 1−

Var(SU2,n)
ε2

≥
Var(SU2,n)

ε2
,

which follow from Chebyshev’s inequality and (154).
From (155) it follows that the choice

δ(ε, n) = Pr(SU2,n ≥ sn), (157)

guarantees Property P1, because Var(SU2,n) approaches zero. We now show that with this choice
of δ(ε, n), Property P2a is also satisfied. Let the event E satisfy Pr(E) ≥ δ(ε, n) so that by (157),

Pr(E) ≥ Pr(SU2,n ≥ sn). (158)

Then,

E
[
SU2,n|E

]
=

∫ ∞

0
Pr(SU2,n ≥ t|E) dt

=
1

Pr(E)

(∫ sn

0
Pr(SU2,n ≥ t, E) dt+

∫ ∞

sn

Pr(SU2,n ≥ t, E) dt
)

≤ 1
Pr(E)

(∫ sn

0
Pr(E) dt+

∫ ∞

sn

Pr(SU2,n ≥ t) dt
)

≤ sn +
1

Pr(SU2,n ≥ sn)

∫ ∞

sn

Pr(SU2,n ≥ t) dt,

where the first equality follows since SU2,n is a non-negative random variable and the final inequality
follows by (158). Furthermore, for n > n0(ε),∫ ∞

sn

Pr(SU2,n ≥ t) dt =
∫ sn+2ε

sn

Pr(SU2,n ≥ t) dt+
∫ ∞

sn+2ε
Pr(SU2,n ≥ t) dt

≤ 2εPr(SU2,n ≥ sn) +
∫ ∞

sn+2ε

Var(SU2,n)
(t−mU2)2

dt

= 2εPr(SU2,n ≥ sn) +
Var(SU2,n)

sn + 2ε−mU2

≤ 2εPr(SU2,n ≥ sn) +
Var(SU2,n)

ε
,

where the first inequality follows since Pr(SU2,n ≥ t) is non-increasing in t and by Chebyshev’s
inequality, and the final inequality is valid by (156). Therefore,

E
[
SU2,n|E

]
≤ sn + 2ε+

Var(SU2,n)
εPr(SU2,n ≥ sn)

≤ mU2 + 4ε,
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where the final inequality follows by (155) and (156). This concludes the proof in the case where
SU2,n has a density.

We now return to the case when SU2,n does not necessarily have a density. Fix ε > 0, and
let Zk = U2

k + Ξk, for all k ≥ 1, where Ξ1,Ξ2, . . . is an i.i.d. sequence of exponential random
variables with mean ε independent of U . Since U is ergodic, Z is also ergodic. Furthermore,
SZ,n = n−1

∑n
k=1 Zk has a density, and thus the above results hold for SZ,n. In particular, we can

choose {sn} and n0(ε) such that Pr(SZ,n ≥ sn) → 0 and such that Pr(E) ≥ Pr(SZ,n ≥ sn) and
n > n0(ε) imply that

E [SZ,n|E ] ≤ mZ + 4ε
= mU2 + 5ε.

We complete the proof by noting that SU2,n ≤ SZ,n a.s. and thus E
[
SU2,n|E

]
≤ E [SZ,n|E ] for any

event E with non-zero probability. �
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