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Abstract

Fractal geometry arises in a truly extraordinary range of natural and man-made phenom-
ena. The 1/f family of fractal random processes, in particular, are appealing candidates
for data modeling in a wide variety of signal processing scenarios involving such phenom-
ena. In contrast to the well-studied family of ARMA processes, 1/f processes are typically
characterized by persistent long-term correlation structure. However, the mathematical in-
tractability of such processes has largely precluded their use in signal processing. We intro-
duce and develop a powerful Karhunen-Loéve-like representation for 1 /f processes in terms
of orthonormal wavelet bases that considerably simplifies their analysis. Wavelet-based rep-
resentations yield highly convenient synthesis and whitening filters for 1/f processes, and
allow a number of fundamental detection and estimation problems involving 1 /f processes
to be readily solved. In particular, we obtain robust and computationally efficient algo-
rithms for parameter and signal estimation with 1/f signals in noisy backgrounds, coherent
detection in 1/f backgrounds, and optimal discrimination between 1/f signals. Results
from a variety of simulations are presented to demonstrate the viability of the algorithms.

In contrast to the statistically self-similar 1/f processes, homogeneous signals are gov-
cerned by deterministic self-similarity. Orthonormal wavelet bases play an equally important
role in the representation of these signals, and, in fact, are used to construct orthonormal
“self-similar” bases. The spectral and fractal characteristics of homogeneous signals make
them appealing candidates for use in a number of applications. As one potential examj ‘e,
we consider the use of homogencous signal scts in a communications-based context. fn
particular, we develop a strategy for embedding information into a homogeneous waveform
on all time-scales. The result is a unigue multirate modulation strategy that is well-suited
for use with noisy channels of simultancously unknown duration and bandwidth. Com-
putationally efficient modulators and demodulators are developed for the scheme, and the
results of a preliminary performance evaluation are presented. Although not yet a fully
developed protocol, “fractal modulation” represents a novel and compelling paradigm for
communication.
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Chapter 1

Introduction

There are a wide range of contexts in which there is a need to be able to synthe-
size, analyze and process fractal signals. Indeed, fractal geometry abounds in nature.
Fractal structure can be found, for example, in natural landscapes, in the distribu-
tion of earthquakes, in ocean waves, in turbulent flow, in the pattern of errors on
communication channels, in the bronchi of the human lung, and even in fluctuations
of the stock market. In many applications, we are interested in modeling the inher-
ent fractal behavior in order that we might perform some form of signal processing.
For example, there are many problems of detection, classification, smoothing, and
prediction that involve fractal signals. Likewise, that fractal behavior is so prevalent
suggests that fractal geometry is somehow optimal or efficient. Consequently, there is
increasing interest in the design of communication, telemetry, and other engineering
systems based on the use of fractal signals.

This thesis is about the development and exploitation of a framework for represent-
ing and characterizing fractal signals. But what is a fractal signal? Most generally,
a fractal signal is a function possessing structure at every scale of detail. However,
the fractals of most interest, and those to which we restrict our attention in this
thesis, are those for which the detail at each scale is simil&r. In this case we say that
the fractal is self-similar or, alternatively, scale-invariant, reflecting the fact that the
signal has no absolute scale of reference. Fractal signals may be classified into one

of two broad categories: those in which the self-similarity is statistical, and those in

11



which it is deterministic. For statistically self-similar signals, the detail at all scales
have the same statistics, while for deterministically self-similar signals the detail at
all scales is identical.

Various representations for self-similar signals can be found in the literature; how-
ever, none have been particularly suitable for engineering applications either for rea-
sons of mathematical intractability or computationally complexity. In this thesis, we
introduce and develop highly efficient representations for some important classes of
fractal signals based on the use of orthonormal wavelet bases. Orthonormal wavelet
bases, having the property that all basis functions are dilations and translations of
some prototype function, are in many respects ideally suited for use with self-similar
signals. In fact, as will become apparent in the ensuing chapters, wavelet-based rep-
resentations are as convenient and natural for self-similar signals as Fourier-based
representations are for stationary and periodic signals. Furthermore, because wave-
let transformations can be implemented in a computationally efficient manner, the
wavelet transform is not only a theoretically important tool, but a practical one as
well.

We specifically consider two families of self-similar signals. The first is the family
of 1/ f processes. These statistically self-similar processes, specifically, are important
candidates for modeling a wide range of natural and man-made phenomena. Due
to their generally nonstationary character, 1/f processes have properties that are
rather distinct from the traditional models used in signal processing. In contrast
to the well-studied family of ARMA processes, for example, 1/f processes typically
exhibit long-term statistical dependence. Yet despite their apparent applicability in
many contexts, 1/f models have not enjoyed widespread use in the signal processing
community. In large part, this has been due to the lack of a sufficiently convenient
mathematical characterization. The introduction of wavelet-based representations
for 1/ f processes in this thesis allows us to address a wide range of signal modeling
and signal processing problems involving 1/f processes in a highly straightforward
manner. In particular, we are able to obtain computationally efficient algorithms both

for classifying, parametrizing, and isolating 1/ f signals. Furthermore, in contrast to
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previous algorithms, those we develop are robust with respect to both measurement
noise and modeling errors.

The second family of self-similar signals we consider are homogeneous signals,
which we characterize in terms of a novel deterministic self-similarity relation. Ho-
mogeneous signals, too, have highly eflicient wavelet-based representations, and are
potentially useful in a wide range of engineering applications. As an example of one
promising direction for applications, we consider the use of homogeneous signal sets
in a communications-based context. Specifically, we develop an approach for embed-
ding information into homogeneous waveforms which we term “fractal modulation.”
Because the resulting waveforms have the property that the information can be re-
covered with either arbitrarily little duration or arbitrarily little bandwidth, we are
able to show that such sigrals are well-suited for transmission over noisy channels
of simultaneously unknown duration and bandwidth. Not only is this a reasonable
model for many physical channels, but also of the receiver constraints inherent in
many point-to-point and broadcast communication scenarios. As a consequence of
its special fractal and spectral properties, fractal modulation is potentially useful in a
range of military and commercial communication contexts. Indeed, the concepts un-
derlying fractal modulation may ultimately lead to novel and important approaches

for both low probability of intercept and shared-spectrum communications.

1.1 Outline of the Thesis

The detailed structure of the thesis is as follows. Chapter 2 is a review of wavelet the-
ory. In addition to establishing notation and summarizing the important results, this
review provides a particular perspective on wavelets and their relationship to signal
processing that is central to the thesis. Orthonormal wavelet basis signal decompo-
sitions are interpreted first in terms of an octave-band filter bank structure that is
familiar to signal processors, and then in terms of a multiresolution signal analysis
from which new insights are obtained. In particular, we show how this interpretation

leads naturally to the computationally efficient discrete-time implementation via the
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discrete wavelet transform.

Chapter 3 reviews the 1/ f-family of statistically self-similar random processes, and
develops some important new models for 1/ f-like behavior in signals. In particular,
early in the chapter, we introduce a novel and useful frequency-based characterization
for 1/ f processes, while in the latter half of the chapter we develop wavelet-based rep-
resentations for 1/f processes. Specifically, we demonstrate that orthonormal wave-
let. basis expansions are Karhunen-Loéve-like expansioas for 1 / f-type processes, i.e.,
when 1/f processes are expanded in terms of orthonormal wavelet bases, the coeffi-
cients of the expansion are effectively uncorrelated. This powerful result is supported
both tieoretically and empirically, and examples involving both simulated and real
data are included.

Exploiting the efficiency of wavelet basis expansions for 1/f processes, Chapter 4
develops solutions to some fundamental problems of detection and estimation involv-
ing 1/ f-type signals. In particular, we develop both maximum likelihood parameter
estimation algorithms and minimum mean-square error signal estimation algorithms
for 1/ f processes embedded in white measurement noise. Additionally, we address the
problem of coherent detection in 1/ f backgrounds, as well as the problem of discrimi-
nating between 1/ f signals with different parameters. In each case, we provide useful
interpretations of the solutions to these problems in terms of wavelet-based synthesis
and whitening filters for 1/f processes. Results from a variety of simulations are
presented.

Chapter 5 introduces and develops our new family of homogeneous signals defined
in terms of a dyadic scale-invariance property. We distinguish between two classes:
energy-dominated and power-dominated, and develop their spectral properties. We
show that orthonormal self-similar bases can be constructed for homogeneous signals
using wavelets. Using these representations, we then derive highly efficient discrete-
time algorithms for synthesizing and analyzing homogeneous signals.

Chapter 6 develops the concept of fractal modulation. In particular, we use the or-
thonormal self-similar basis expansions derived in Chapter 5 to develop an approach

for modulating discrete- or continuous-valued information sequences onto homoge-

14



neous signals. After developing the corresponding optimal receivers, we evaluate the
performance of the resulting scheme in the context of a particular channel model.
Our analysis includes comparisons to more traditional forms of modulation.

Chapter 7 represents a rather preliminary and cursory investigation into the sys-
tem theoretic foundations of the thesis. In particular, after defining scale-invariant
systems, we explore the relationships between such systems, self-similar signals, and
the wavelet transform. We observe that synthesis filters for the self-similar signals
we consider in the thesis are exactly or approximately linear jointly time- and scale-
invariant systems. Furthermore, we demonstrate that while the Laplace and Fourier
representations are natural for linear time-invariant systems, and while the Mellin
representation is natural for linear scale-invariant systems, it is the wavelet transform
that is most natural for linear systems that are jointly time- and scale-invariant. We
show, in fact, that wavelet representations lead to some very efficient and practical
computational structures for characterizing and implementing such systems.

Finally, Chapter 8 summarizes the principal contributions of the thesis and sug-

gests some interesting and potentially important directions for future research.
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Chapter 2

Wavelet Transformations

Wavelet transformations play a central role in the study of self-similar signals and
systems. Indeed, as we shall see, the wavelet trausform constitutes as natural a
tool for the manipulation of self-similar or scale-invariant signals as the Fourier
transform does for translation-invariant signals such as stationary, cyclostationary,
and periodic signals. Furthermore, just as the discovery of fast Fourier transform
(FFT) algorithms dramatically increased the viability the Fourier-based processing
of translation-invariant signals in real systems, the existence of fast discrete wave-
let transform (DWT) algorithms for implementing wavelet transformations means
that wavelet-based representations of self-similar signals are also of great practical
significance.

The theory of wavelet transformations dates back to the work of Grossmann and
Morlet [2], and was motivated by applications in seismic data analysis [3]. Many key
results in the theory of nonorthogonal wavelet expansions are described by Daubechies
in [4]. In this thesis, however, we shall be primarily interested in orthonormal wave-
let bases. The development of such bases, and their interpretation in the context
of multiresolution signal analysis, is generally attributed to Meyer [5] and Mallat
[6]. However, it was Daubechies who introduced the first highly practical families of
orthonormal wavelet bases in her landmark paper [1].

Yet although wavelet theory is rather new, it is important to note at the outset

that many of the ideas underlying wavelets are not new. Indeed, wavelet theory can
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be viewed as a convenient and useful mathematical framework for formalizing and
relating some well-established methodologies from a number of diverse areas within

mathematics, physics, and engineering. Examples include:
- pyramidal image decompositions in computer vision [7],

— multigrid methods in the solution of partial-differential and integral equations

(8],
— spectrogram methods in speech recognition [9],

— progressive transmission algorithms and embedded coding in communications

[10] [11], and

— multirate filtering algorithms in digital audio [12], speech and image coding [13],

voice scrambling [12], and frequency division data multiplexing {14].

In fact, wavelet transformations are closely associated with a number of topics that
have been extensively explored in the signal processing literature in particular, includ-
ing constant-Q filter banks and time-frequency analysis [15], and quadrature mirror
and conjugate quadrature filter banks [12].

This chapter is designed as a self-contained overview of wavelet transformations
in general and of orthonormal wavelet transformations in particular. Although it
presents essentially no new results, it serves three main purposes. First, it establishes
the notational conventions for wavelets we adopt for the thesis. Second, it summarizes
the key results from wavelet theory we shall exploit in the applications in subsequent
chapters of the thesis. However, the third purpose of the chapter is to introduce
wavelet transformations from a signal processing perspective, and it is this objective
which has lead to the rather tutorial style of this chapter. While a number of excellent
introductions to wavelet theory tutorials can be found in the literature—see, e.g., [6]
[4] [16] [17]—we stress that the one presented here emphasizes a, perspective that is

particularly important in light of the applications we consider in this thesis.
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2.1 Wavelet Bases
Most generally, the wavelet transformation of a signal z(t)
2(t) > X

is defined in terms of projections of xz(t) onto a family of functions that are all nor-

malized dilations and translations of a prototype “wavelet” function ¥(t), i.e.,

W{s®)} =Xt = [ sy ur(t)d (2.1)

where

BOY — [oy|-1/2 t—v.
$E(t) = |l ¢( “)

In this notation, ¢ and v are the continuous dilation and translation parameters,
respectively, and take values in the range —oo < p,v < 00, u # 0. A necessary and
sufficient condition for this transformation to be invertible is that 1(t) satisfy the

admissibility condition
[ )Pl ™ do = €y < oo, (2.2)

where ¥(w) is the wavelet’s Fourier transform. Provided (t) has reasonable decay

at infinity, (2.2) is equivalent to the admissibility condition

/ * W) dt = 0. (2.3a)

For any admissible 1(t), the synthesis formula corresponding to the analysis formula

(2.1) is then
o(t) = W {XF} = 51; [ : [ °; XH () p2 dpudv. (2.4)

Under certain circumstances, it is also possible to reconstruct z(t) solely from
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samples of K* on some lattice defined by

-m

b= a
v = nba™

where —0o < m < 00 and —o00 < n < oo are the integer dilation and translation
indices, respectively, and a and b are the corresponding dilation and tr:.nslation in-

”

crements. Tn such cases, the collection of samples is termed a “frame.” A general
theory and some iterative reconstruction algorithms are presented in [4]. However,
it is also possible to construct wavelets and lattices such that the resulting trans-
formation is not only invertible, but orthonormal as well. In general. orthonormal
transformations are extremely convenient analytically, and possess very nice numer-
ical properiies. Consequently, it is this class of wavelet transformations that is of

primary interest in this work, and the theory is summarized in the sequel.

2.2 Orthonormal Wavelet Bases

Our focus in this section is on the particular case of dyadic orthonormal wavelet bases,
corresponding to the case a = 2 and b = ! for which the theory is comparatively better
developed. In Section 2.2.7, however, we construct a simiple family of orthonormal
wavelet bases corresponding to lattices defined by a = (L + 1)/L and b = L where
L > 1 is an integer.

An orthonormal wavelet transformation of a signal z(t)
2(t) —> 2]
can be described in terms of the synthesis/analysis equations

(t) = W' {al} =32 an w(t) (2.5a)

gy = Wale®} = [ s)vp()a (2.5b)
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and has the special property that the orthogonal basis functions are all dilations and

translations of a single function referred to as the basic wavelet ¥(t). In particular,
Y (t) = 2™2 (2™t — n) (2.6)

where m and n are the dilation and translation: indices, respectively.

An important example of a wavelet basis, and one to which we will refer on
numerous occasions throughout the thesis, is that derived from the ideal bandpass
wavelet 1/)~(t) This wavelet is the impulse response of an ideal bandpass filter with

frequency response

- 1 7<|w| <27
U(w) = . (2.7)
0 otherwise

It is straightforward to verify that the dilations and translations of 1(¢) constitute
an orthonormal basis for the space of finite energy functions, L%(R). However, there
are many other examples of orthonormal wavelet bases.

The basic (or “mother”) wavelet, 9(t) typically has a Fourier transform ¥(w) that
satisfies several more general properties. First, because, for a fixed m the {¢™(t)}

constitute an orthonormal set we get the Poisson formula
Y |¥(w—27k) =1
k

whence

|¥(w)] < 1. (2.8a)

Moreover, from (2.3) we have immediately
¥(0) = 0. (2.8b)

Finally, we are generally interested in regular bases, i.e., bases comprised of regular
basis functions. Regularity is a measure of the smoothness of a funcivion. In particular,

afunction f(t) will be said to be Rth-order regular if its Fourier transform F(w) decays
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according to’

F@~O (™), ol oo

We use the term “regular” to denote a function that is at least first-order regular, and
note that an Rth-order regular function has R — 1 regular derivatives. Consequently,

in order for our wavelet basis to be regular we require that
T(w) ~ O (| ™), lw| — oo. (2.8¢)

As implied by (2.8a)-(2.8c), ¥(t) is often the impulse response of an at least
roughly bandpass filter. Consequently, the wavelet transformation can usually be
interpreted either in terms of a generalized constant-Q (specifically, octave-band)
filter bank, or, as we shall see later, in terms of a multiresolution signal analysis.
While we will restrict our attention to this class of wavelet bases, it is important to
remark, however, that wavelets need not correspond to either an octave-band filter
hank or a multiresolution analysis. For example, the following wavelet due to Mallat
18]

1 ifd4n/7 < |w| < 7 or 47 < |w| < 32n/7

¥(w) =
0 otherwise

generates a perfectly valid orthonormal wavelet basis.

1The order notation O (-) used in this thesis is to be understood in the following sense. If
F(w) =0(G(w)), w — 00

then
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2.2.1 An Octave-Band Filter Bank Interpretation

The filter bank interpretation of the wavelet transform arises by viewing the analysis

equation (2.5b) as a filter-and-sample operation, viz.,

.’17:? = {‘T(t) * ¢6n(_t)}|t=2-'"n :

Although the interpretation applies more generally, it is often convenient to visualize
the basis associated with the ideal bandpass wavelet (2.7). In this case, the output of
each filter in the bank is sampled at the corresponding Nyquist rate. More generally,
we say that the filter bank is critically-sampled [15], in that reconstruction is not pos-
sible if any of the sampling rates are reduced regardless of the choice of wavelet. The
critically-sampled fiiter bank corresponding to the wavelet decomposition is depicted
in Fig. 2-1.

For a particular choice of wavelet basis, the magnitude of the frequency response
of the filters in such a filter bank is portrayed in Fig. 2-2. As this figure illustrates,
there can be significant spectral overlap in the magnitude responses while preserving
the orthogonality of the decomposition. In essence, while the frequency response
magnitudes are not supported on disjoint frequency intervals, aliasing is avoided—
i.e., perfect reconstruction and orthogonality are achieved—due to the characteristics
of the phase in the filters. However, it is possible to construct wavelet bases such that
the spectral overlap between channels is much smaller in applications where this is
important.

A filter bank decomposition is closely related to the notion of a local time-
frequency analysis. Provided *he filters are reasonably bandpass in character, the
output of each filter in the bank is an estimate of the frequency content in the signal
localized to the corresponding frequency band. Likewise, provided the filter impulse
responses are localized in time, the sequence of output samples from each filter gives a
picture of the time-evolution of frequency content within the corresponding frequency
band. In the case of the wavelet decomposition, (:1:,’{‘)2 represents an estimate of the

energy of the signal z(t) in the vicinity of ¢ ~ 2=™n, and for a band of frequencies
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m 5 t=2"n m
Yo (1) " Xp=..-1012..

\Ifl (1) 7j t=n/2 ;

- _t- - x _

x(t) — 0 n=..-1012,..
a0 Xit=n
1V, (1) / ~ Xy 1012,

Y

-1 5 t=2n -]
v, (-1) " Xn=.,-1012,..

Figure 2-1: Critically-sampled filter bank interpretation of an orthonormal wavelet
decomposition.
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7 (@)

frequency ®

Figure 2-2: The octave band filters corresponding to an orthonormal wavelet decom-
position. The wavelet basis in this example is one due to Daubechies [1].

in the neighborhood of w ~ 2™x. This is graphically depicted in the time-frequency
plane of Fig. 2-3(a). Note that the octave-band frequency partitioning leads to a
partitioning of the time axis that is finer in the higher (and wider) frequency bands.
We emphasize that the partitioning in this figure is idealized: in accordance with the
Fourier transform uncertainty principle, one cannot have perfect localization in both
time and frequency. Nevertheless, one can construct wavelet bases whose basis func-
tions have their energy concentrated at least roughly according to this partitioning.

In contrast to the wavelet transform, the familiar short-time Fourier transform
(STFT) representation of a signal corresponds to a filter bank in which the filters
are modulated versions of one another and, hence, have equal bandwidth. As a
consequence, the outputs are sampled at identical rates, and the corresponding time-
frequency analysis is one in which there is uniform partitioning of both the time and
frequency axes in the time-frequency plane, as depicted in Fig. 2-3(b).

While the wavelet transform analysis equation (2.5b) can be interpreted in terms
of a filter bank decomposition, the corresponding synthesis equation (2.5a) may be
interpreted, as depicted in Fig. 2-4, as multirate modulation in which for a given m

each sequence of coefficients ™ is modulated onto the corresponding wavelet dilate
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_—,

(a) Wavelet transformation

(b) Short-time Fourier transformation

Figure 2-3: Time-frequency portraits corresponding to two signal analyses.
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m rate m

=012 | Y, (1)

x 1 rate \If 1 (t)
n= ...,'1,0,1,2,... 2 0 x(t.)
0 rate 0

*n=..-1012.. 77 Y, (1)

Figure 2-4: Interpretation of an orthonormal wavelet expansion as a multirate mod-
ulation scheme.
¥5*(t) at rate 2™. For the case of the ideal bandpass wavelet, this corresponds to
modulating each such sequence z7* into the distinct octave frequency band 2™7 <
w < 2mtly,
The filter bank interpretation allows us to readily derive the following useful iden-
tity
2 EE W) =1 (2.9)
m

valid for all orthonormal wavelet bases and any w # 0. Specifically, consider an

arbitrary finite-energy signal z(t) with Fourier transform X (w), which is decomposed
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into an orthonormal wavelet basis via the filter bank of Fig. 2-1, then immediately re-
synthesized according to the filter bank of Fig. 2-4. It is a straightforward application
of sampling theory to show that the Fourier transform of the output of this cascade

can be expressed as

X@) 2182 mw)?+ Y X(w — 27k 2™) (27 ™w) T (2w — 2rk).

m k#0 m
Since this must be equal to X(w), the terms on the right must all be zero, while the
factor multiplying X (w) must be unity, yielding the identity (2.9) as desired.

While the filter bank interpretation provides a natural, convenient, and familiar
framework in which to view orthonormal wavelet transformations, it is also possible to
view the transformation in the context of a multiresolution signal analysis framework
[5] [6] [1]. This perspective, which we consider next, provides a nuraber of additional,

rich insights into orthonormal wavelet bases.

2.2.2 Multiresolution Signal Analysis Interpretation

In general, a multiresolution signal analysis is a framework for analyzing signals based
on isolating variations in the signal that occur on different temporal or spatial scales.
This strategy underlies a variety of diverse signal processing algorithms including
pyramidal methods used in the solution of computer vision problems [19] and multi-
grid methods used in the solution of boundary value problems [8]. The basic analysis
algorithm involves approximating the signal at successively coarser scales through
repeated application of a smoothing or averaging operator. At each stage, a differ-
encing operation is used to extract a detail signal capturing the information between
~ consecutive approximations. The matching synthesis algorithm involves a succes-
sive refinement procedure in which, starting from some coarsest scale approximation,
detail signals are accumulated in order to generate successively finer scale signal ap-
proximations.

Specifically, orthonormal wavelet bases can be interpreted in the context of a par-

ticular class of linear multiresolution signal analyses in which signal approximations
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at all resolutions of the form 2™ (for m an integer) are defined. In describing this
class, we begin formally by considering the Hilbert space of square-integrable signals
V = L?(R). A multiresolution signal analysis is then defined as a decomposition of

this signal space V'into a sequence of subspaces
1V—11‘,01‘/11‘,'2’

such that each V, defines signal approximations at a resolution 2™. Associated with
each V,, is a linear operator A,, that defines projections from anywhere in V onto
V. That is, for each signal z(t) € V, the projection A,,z(t) € V,,, defines the closest

signal of resolution 2™ to z(t),

Anz(t) = arg mi{} lz(t) — v(2)].

v(1)EVm

Central to the concept of multiresolution analysis is the notion of being able to
construct successively coarser resolution approximations by repeated application of a
smoothing operator. Mathematically, this characteristic is obtained by imposing the

nesting or causality relation

Vm C Vm+1, (210&)

which specifically ensures that the approximation of a signal at resolution 2™+! con-
tains all the information necessary to approximate the signal at the coarser resolution
2™m:

A {Anp1z(t)} = Anuz(t).

The relations

U Ve =V (2.10b)
A V. = {0) (2.10¢)

ensure that a complete range of approximations is defined by the analysis. In the
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process, these completeness relations define arbitrarily good and arbitrarily poor ap-

proximations that are consistent with any intuitive notion of resolution, i.e.,

lim Ana(t) = ()

lim Apz(t) = 0.

m——00

An additional relation is required to fully define the notion of resolution: signals
in V,, must be characterized by 2™ samples per unit length. Mathematically, this
can be interpreted as requiring that there exist an isometry between each space ot

functions V,,, and the space of square-summable sequences I = 12(Z)
V, &5 g (2.10d)

such that each sequence represents samples of the corresponding signal follov"ing some

potentially rather arbitrary linear processing:
z(t) € Vi = ©mz(t)|,n0-m, € I (2.10e)

where ¢, is a linear operator.
In general, egs. (2.10a) — (2.10e) are adequate to define a multiresolution signal
analysis. However, imposing two additional constraints leads to an analysis with some

nice structure. The first is a translation-invariance constraint, viz.,
) eV, & z(t-2""n) eV, (2.10f)

which ensures that the nature of the approximation of the signal z(t) is the same for
any time interval. It is this condition that shall lead to the translational relationships
among basis functions in the corresponding wavelet expansion. The second is a scale-

invariance constraint
z(t) €V, & z(2t) € Vi (2.10g)
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which ensures that the nature of the approximation at each resolution is the same.
In turn, it is this condition that shall give rise to the dilational relationships among
basis functions in the corresponding wavelet expansion.

It can be shown [18] that every multiresolution analysis of L%(R), i.e., every
collection of subspaces V,, defined in accordance with (2.10a) - (2.10g), is completely
characterized in terms of a scaling function (or “father” wavelet) ¢(t). Consequently,
from the scaling function one can construct an orthonormal basis for each V,,, and,
hence, the approximation operator A,, for each of these subspaces. In particular, for

each m,

. ’¢T1(t)’ ¢8‘(t)a ¢'ln(t)$ ¢§"(t). LR

constitutes an orthonormal basis for V,,, where the basis functions, as a consequence
of the invariance constraints (2.10f) and (2.10g) imposed on the multiresolution anal-

ysis, are all dilations and translations of one another, i.e.,
om(t) = 2™/2p(2™t — n). (2.11)

The corresponding resolution-2™ approximation of a signal z(t) is then obtained
as the projection of z(t) onto V,,,, which, exploiting the convenience of an orthonormal

basis expansion, is expressed as
Amz(t) =D ay ¢7(t) (2.12)
with the coefficients a™ cow:puted according to the individual projections
00
o™ = / z(t) $™ () dt. (2.13)
—00

In general, ¢(t) has a Fourier transform ®(w) that is at least roughly lowpass.
Using an argument similar to that which led to (2.8a), orthonormality of the basis
{¢™(t)}n implies that

|®(w)| < 1. (2.14a)
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Additionally, because this basis for V,, is asymptotically complete in V' (cf. (2.10b))
we have

|2(0)| = 1. (2.14D)

Finally, since we are, again, generally interested in regular bases, we must have
d(w)~0 (|w|’l) , w — 00. (2.14¢)

Collectively, the properties (2.14a) — (2.14c) describe a scaling function that is con-
sistent with the notion that A, is an approximation or smoothing operator. Con-
sequently, we may interpret the projection (2.13) as a lowpass-like filter-and-sample
operation, viz.,

ap = {z(t) * 67 (t)}H=p-mp - (2.15)

Moreover, (2.12) can be interpreted as a modulation of these samples onto a lowpass-
like waveform.

In fact, one example of a multiresolution analysis is generated from the ideal
lowpass scaling function &(t), whose Fourier transform is the frequence response of

an ideal lowpass filter, i.e.,

= 1 |w <
o(w) = . (2.16)
0 |w>n

In this case, the corresponding multiresolution analysis is based upon perfectly ban-
dlimited signal approximations. Specifically, for a signal z(t), 4,,z(t) represents z(t)
bandlimited to w = 2™x. Furthermore, we may interpret (2.15) and (2.12) in the
context of classical sampling theory [20]. In particular, ¢(t) in (2.15) plays the role
of an anti-aliasing filter [21], while (2.12) is the interpolation formula associated with
the sampling theorem.

Of course, there are practical difficulties associated with the implementation of a
multiresolution analysis based upon perfectly bandlimited approximations, foremost

of which is that the sampling and reconstruction filters, i.e., the @J*(t), are unrealiz-
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able. For this reason, this analysis is more of pedagogical than practical interest.

To derive the wavelet basis associated with each multiresolution analysis defined
via (2.10), we now shift our attention from the sequence of increasingly coarse scale
approzimation signals A,,z(t) to the detail signals representing the information lost
at each stage as the resolution is halved. The collection of resolution-limited signal
approximations constitutes a highly redundant representation of the signal. By con-
trast, the collection of detail signals constitutes a much more efficient representation.
Formally, we proceed by decomposing each space V,,,4; into the subspace V,, and it’s

orthogonal complement subspace Oy, i.e., O,, satisfies

O. L V, (2.17a)
On @ Vyp=Vun (2.17b)

where we recognize that it is in this orthogonal complement subspace that the detail
signal resides.
Associated with every multiresolution analysis is a basic wavelet 1(t) which yields

the following orthonormal basis for each Oy,:

7¢Tl(t)$ "p:)n(t)v ¢T(t)» "/)g‘(t)’ e

where 9(t) is as defined in terms of dilations and translations of 1(t) as per (2.6).
In turn, this leads to a convenient description of the projection operator D,, from

anywhere in Vonto O,, as

Dpa(t) = 323 97 (2)

in terms of the individual projections (cf. (2.5b))

ap= [ at)up e

Hence, we have the interpretation that the wavelet coefficients z]" for a fixed m corre-
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spond to the detail signal D,,z(t) at scale 2™, or, more specifically, to the information

in the signal z(t) between the resolution-2™ and resolution-2™*! approximations, i.e.,
Dpa(t) = App12(t) — Amz(t).

At this point, we recognize the wavelet associated with the bandlimited multires-
olution analysis defined via (2.16) to be the ideal bandpass wavelet (2.7); it suffices
to consider a frequency domain perspective. To complete the discussion, we observe
that via (2.17) we can recursively decompose any of the approximation subspaces V),

for some M, into the direct sum of a sequence of orthogonal subspaces, i.e.,

Vu=0y-1® Vi1 =018 (OM-20Vy_2)= --- = @ O, (2.18)

m<M

from which we see that for every z(t)

Auz(t) = 3 Dmz(t) = 3 3 oy ¥(2). (2.19)

m<M m<M n

This leads naturally to the interpretation of Apz(t) as an approximation in which

details on scales smaller than 2¥ are discarded. Letting M — oo in (2.19) yields
2(t) =3 3 zn (),
m n

the synthesis formula (2.5a), and corresponds to the subspace decomposition

This completes our interpretation of an orthonormal wavelet basis as a multiresolution

signal analysis.
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2.2.3 Discrete Wavelet Transform

The discrete wavelet transform (DWT) refers to a discrete-time framework for im-
plementing the orthonormal wavelet transform. The basic notion is that rather
than implementing the analysis directly as a sequence of continuous-time filter-and-
sample operations according to (2.2.1), one can reformulate the analysis into a single
continuous-to-discrete conversion procedure followed by some iterative discrete-time
processing. Likewise, the synthesis can be reformulated from a series of conven-
tional modulations (2.5a) into an iterative discrete-time procedure followed by a single
discrete-to-continuous conversion.

The implementation is based upon the discrete-time filters

hnl = [ 4h(6) 83(t) (2.20a)

ol = [~ elwywi (2.20D)

Typically, h[n] and g[n] have Fourier transforms H(w) and G(w) that have roughly
halfband lowpass and highpass characteristics, respectively. In fact, for the case of
the bandlimited multiresolution signal analysis, h[n] and g[n] are ideal lowpass and

highpass filters, specifically

H(w)

] 1 0<|w| g7/2
0 7/2<|w|] <7

0 0<|w| £7/2
Gw) = el </ .
1 7/2<|w| <7

More generally, as we shall see, the filters h[n] and g[n] form a quadrature mirror
filter (QMF) or conjugate quadrature filter (CQF) pair.

The analysis algorithm is structured as follows. Given a signal z{t) € V from
which we would like to extract z for m < M, we can obtain the approximation

coefficients a+! via the filter-and-sample procedure of (2.15), then recursively apply
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the following filter-downsample algori* :a

ay = Y h[l - 2n]apt! (2.21a)
]

zn = Y g[l - 2n]aft! (2.21b)
{

to extract the transform coefficients z™ corresponding to successively coarser scales
m. A detailed derivation of this algorithm is presented in Appendix A.

The synthesis algorithm is structured in a complementary fashion. In particular,
to reconstruct z(t) to resolution 24+*! from zy for m < M, we can recursively apply

the upsample-filter-merge algorithm
aptt =3 " {h[n - 20 + gln — 2l 2} (2.21¢)
1

to compute the coefficients a™ of successively finer scale approximations until level
m = M is reached, after which Apy,z(f) may be constructed by modulating a
according to (2.12). A detailed derivation of this algorithm is also left to Appendix A.
Fig. 2-5 depicts the discrete-time relationships between approximation and detail
coefficients corresponding to adjacent scales. The complete algorithm for computing
wavelet coefficients based on the discrete wavelet transform is depicted in Fig. 2-6.
The DWT may be computed extremely 'efﬁciently using polyphase forms [17].
Indeed, if the filters h[n] and g[n] have length L, an implementation of the DWT
via an FFT-based algorithm generally has an asymptotic computational complexity
of O(logL) per input sample [22]. However, as discussed in [17] this figure can
be somewhat misleading as there are many subtle issues associated with measuring

complexity of the algorithm.

2.2.4 Finite Data Length and Resolution Effects

In most applications, the data consists of a finite collection of samples

z[n], n=0,1,... ,6N.
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(a) The analysis step: filter-downsample.

—
N
Y
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m+1
a,-..-1012,..

=..,-1,012,.. - 12 >~ gln]

1]

(b) The synthesis g;ép: upsample-filter-merge.

v

Figure 2-5: A single stage of discrete-wavelet transform algorithm.

y
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x(t) —> ¢‘;"(-z) —7; — aMt e aM - a¥ ——

M M-1 M-2
x n x n x n

(a) The analysis algorithm.

H rate M+1
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xn xll xﬂ

(b) The synthesis algorithm

Figure 2-6: An efficient implementation of the orthonormal wavelet transformation
based on the discrete wavelet transform.
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While it is usually assumed that the z[n] correspond to samples of a resolution-limited
approzimation of a continuous-time signal z(t), i.e.,

x[n} = (lnM-*-l = {¢11:{+l * :L‘(t)} —o=(M+1
t=2-( In

for some M, this cannot always be justified. Nevertheless, if the signal x(t) was
processed by an a typical anti-aliasing filter prior to sampling, then it is often a
useful approximation, particularly if the anti-aliasing filter has characteristics similar
to that of the smoothing filter ¢3f*!(t) associated with the approximation operator.

Note that while the discrete-time nature of the data limits access to the finer scales
of detail, the length of the observations limits access to the coarser scales of detail.
Hence, in practice we typically have access to wavelet coefficients over a finite range
of scales for a given signal. Moreover, because the effective width of the wavelet basis
functions halves at each finer scale, we expect roughly a doubling of the number of
available coefficients at each successively finer scale. In a typical scenario, for a data
record of N = Ny 2M samples, we would expect to be able to extract 2] corresponding

to

m = 1,2,... , M
n = 01,..., N2 1-1

via the DWT, where N, is a constant that depends on the particular wavelet basis.
Note that while there are a number of ways io handle the unusual data window-
ing problem inherent in the wavelet decomposition, an assumption that the data is
periodic outside the observation window leads to a computationally convenient im-
plementation, and one we shall use in the context of this thesis. See [23] for some

discussion and alternative approaches for addressing issues of windowing.
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2.2.5 Orthonormal Wavelet Basis Constructions

As we have indicated, for every multiresolution analysis characterized by a scaling
function, there exists an associated wavelet basis. In fact, it is possible to exploit
the structure of the discrete wavelet transform to show how the wavelet (t) may
always be derived directly from the scaling function ¢(t). In this section we describe
how this is accomplished. More generally, we show how one can construct a family
of orthonormal wavelet bases directly from a class of discrete-time filters.

We begin by observing that there are a number of properties that the discrete-
time filters h[n] and g[n] corresponding to a multiresolution signal must satisfy. For
instance, as a consequence of orthogonality constraints between the {y™(¢)} and

{#7(t)}, one can show [18] that h[n] and g[n] must be related by
gln] = (-1)" A1 - n]
which, expressed in the frequency doinain, is
G(w) = e H*(w + 7). (2.22)
Furthermore, orthonormality of the {¢]*(t)} require that h[n] satisfy

|H(0)? = 2 (2.23a)
[Hw)?+ |Hw + )2 = 2. (2.23b)

Filter pairs that satisfy both (2.22) and (2.23) are termed conjugate quadrature or
quadrature mirror filters and have been discussed extensively in the signal processing
literature [12].

Note that (2.22) leads immediately to an algorithm for constructing the wavelet
corresponding to a particular scaling function: one can generate h[n] from ¢(t) via
(2.20a), g[n] from h(n] via (2.22), then () from g[n] and ¢(t) via (A.1b).

However, note that h[n] alone is also sufficient to fully characterize a wavelet basis
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through a multiresolution analysis. Indeed, given h[n], the dilation equation? (A.la)
can be solved for the corresponding scaling function ¢(t). In particular, ¢(t) has

Fourier transform

d(w) = ﬁl [272H(27™w)] (2.24)

which is intuitively reasonable from a recursive decomposition of the corresponding
frequency domain equation, viz., (A.2a).

In fact, the conditions (2.23) on h[n] are necessary but not sufficient for (2.24) to
generate a regular wavelet basis. However, choosing h[n] to satisfy both (2.23) and

to have a Fourier transform H(w) with R zeros at w = 7, i.e.,
H™(0) =0, r=0,1,...,R-1

is sufficient to generate a wavelet basis with Rth-order regularity. Moreover, in this

case, we find, via (A.2a), that the wavelet has R vanishing moments:

/w t"(t) dt = (5)2"(0) = 0, r=01,...,R-1

This vanishing moment property has been exploited in applications involving the
implementation of linear operators [24] as well as in image coding. In the coniext
of this work, we will provide evidence to suggest that this property may also be
important when wavelet bases are used in representations for self-similar signals. It
is important to note, however, that the vanishing moment condition is not necessary
for regularity. For a more detailed discussion of necessary and sufficient conditions,
see, e.g., [25].

A variety of useful wavelet bases have been constructed from filter formulations of
this type. In fact, this approach has been extremely useful in designing orthonormal

wavelets with compact support, i.e., wavelets for which

P(t) =0, lt| >T

ZFor a further discussion of dilation equations, see, e.g., [16].
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for some 0 < T' < oo. This is a consequence of the natural correspondence between
compactly-supported wavelets and the extensively developed theory of finite impulse
response (FIR) digital filters. A more detailed discussion of relationships between

wavelet theory and filter bank theory can be found in [17].

2.2.6 Examples

In this section, we briefly review some standard examples of wavelet bases. Thus
far, we have discussed only one example, the wavelet basis corresponding to the ideal
bandpass wavelet (2.7). This basis has excellent frequency localization properties, but
very poor time-domain localization. Indeed, the corresponding wavelet ¥(t) decays
only like 1/t for large ¢, and the QMF filters h[n] and g[n] decay only like 1/n for
large n. More seriously, this basis is unrealizable.

At the other extreme, consider a Haar-based multiresolution analysis in which the
approximations at resolution 2™ are piecewise constant on intervals of length 2—™.

Here the scaling function is given by

¢(t)={ 1 0<t<1

0 otherwise

and the corresponding wavelet is

1 0<t<1/2
P()=4 -1 1/2<t<1 .

0 otherwise

This analysis is realizable and exhibits excellent time localization but very poor fre-
quency localization due to the abrupt time-domain transitions of the approximations.
Indeed, ¥(w) falls off only like 1/w for w — oo.

More generally, we can consider the family of Battle-Lemarie wavelet bases [18] [1].
These bases may be derived from a multiresolution analysis based upon orthogonalized
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