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Estimation of Fractal Signals from Noisy
Measurements Using Wavelets
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Abstract—The 1/f family of fractal processes are increas-
ingly appealing candidates for data modeling in a variety of
signal processing applications in light of the fact that such a
wide range of phenomena are inherently well suited to these
models. In contrast to the well-studied family of ARMA pro-
cesses, 1/f processes are characterized by an inherent scale in-
variance and persistent long-term correlation structure. De-
spite their apparent applicability in many scenarios, they have
received relatively little attention in the traditional signal pro-
cessing literature. This has been due, at least in part, to the
mathematical intractability of fractal processes. However,
fractal signal representations in terms of orthonormal wavelet
bases have recently been described that considerably simplify
the analysis of these processes. We exploit the role of the
wavelet transformation as a whitening filter for 1/f processes
to address problems of parameter and signal estimation for
1/f processes embedded in white background noise. Robust,
computationally efficient, and consistent iterative parameter
estimation algorithms are derived based on the method of max-
imum likelihood, and Cramér-Rao bounds are obtained. In-
cluded among these algorithms are optimal fractal dimension
estimators for noisy data. Algorithms for obtaining Bayesian
minimum mean-square error signal estimates are also derived
together with an explicit formula for the resulting error. These
smoothing algorithms find application in signal enhancement
and restoration. The parameter estimation algorithms, in ad-
dition to solving the spectrum estimation problem and to pro-
viding parameters for the smoothing process, are useful in
problems of signal detection and classification. A variety of re-
sults from simulations are presented to demonstrate the viabil-
ity of the algorithms.

[. INTRODUCTION

HE 1 /f family of stochastic processes constitutes an

increasingly important class of fractal signal models
for a variety of signal processing applications due to the
wide variety of data for which they are inherently well
suited [9], [18], [15]. These intrinsically scale-invariant
processes have a number of interesting characteristics,
among which is a much more persistent long-term corre-
lation structure than is present in, for example, the well-
studied family of autoregressive moving average (ARMA)
processes.'
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'Indeed, 1/f processes typically have correlation that decays polyno-
mially in time rather than exponentially, as is the case for ARMA processes
[91.

Traditionally, these processes have been mathemati-
cally awkward to manipulate. This has made the solution
of many of the classical signal processing problems in-
volving these processes rather difficult. In this paper, we
make use of a new representation for 1 /f processes [23],
[25] to develop optimal estimation algorithms for prob-
lems involving 1 /fsignals corrupted by white noise. Spe-
cifically, we treat problems of parameter estimation,
spectrum estimation, and signal estimation for 1/f pro-
cesses in the presence of noise.

Largely inspired by the seminal work on fractional
Brownian motion by Mandelbrot and Van Ness [16], a
considerable body of literature has evolved which ex-
plores these 1/f processes as a study in a self-similarity
and long-range dependence. In addition to pursuing a
complete characterization of all self-similar processes,
there is considerable interest in assessing the implications
of such persistent dependence in probability, statistics,
and stochastic process theory. Taqqu, in [19], has com-
piled a substantial collection of references in this area.

An equally large body of literature is devoted to under-
standing both the physical origins and the ubiquity of such
behavior in real data. Indeed, a tremendous range of
physical phenomena are apparently well modeled as 1 /f
processes [9]. These include a large number of geophys-
ical and economic time series, biological signals, noises
in electronic devices, frequency variation in music, and
burst error on communication channels [14]. More re-
cently, two-dimensional extensions of 1 /f processes have
been considered for modeling of natural terrain and other
textures [15], [18], [11].

While a number of useful models for 1 /f processes has
arisen, none has become universal. In the construction of
Barnes and Allan [1] that was later refined by Mandelbrot
and Van Ness [16], a class of Gaussian 1/f processes is
modeled as filtered white noise, where the filtering is de-
fined through what is essentially a convolution integral.
Another construction described by van der Ziel [21]
models 1 /f processes through a superposition of first-or-
der autoregressive (AR) processes, each of which is char-
acterized by a single time constant. In [9], Keshner gen-
erates 1 /f processes by driving white noise through an
infinite cascade of pole-zero sections. More recently,
Wornell [23], {25] has presented an orthonormal wavelet

*The interesting parallel work described in [4] considers some comple-
mentary estimation problems for a related family of multiresolution pro-
cesses.

1053-587X/92$03.00 © 1992 1EEE



612 IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 40. NO. 3. MARCH 1992

basis expansion for 1 /f processes in terms of a collection
of uncorrelated random variables. In this work we exploit
this latter representation.

To jointly estimate the signal and noise process param-
eters from observations, we apply the method of maxi-
mum likelihood (ML). The parameter estimates, in addi-
tion to providing a solution to the associated spectrum
estimation problem, are frequently of interest in their own
right. Indeed, from the parameter estimates we can di-
rectly compute the fractal dimension of the underlying
signal. Robust estimation of the fractal dimension of 1 /f
processes is important in a number of applications such
as in signal detection and classification. For example, in
image processing, where 2-D extensions of 1 /f processes
are used to model natural terrain and other patterns and
textures [18], [11], fractal dimension can be of use in dis-
tinguishing among various man-made and natural objects.
While several approaches to the fractal dimension esti-
mation problem have been presented in the literature (see
[11], [24], [8], and the reference therein), none has been
able to adequately handle the presence of broad-band noise
in the observation data. In fact, the quality of the esti-
mates generally deteriorates dramatically in the presence
of such noise [11]. Since noise is inherently present in any
real data, this lack of robustness has limited the useful-
ness of these algorithms. In this paper, we obtain, indi-
rectly, ML fractal dimension estimators for Gaussian 1 /f
processes that explicitly account for the presence of ad-
ditive white Gaussian observation noise. The resulting it-
erative algorithms are computationally efficient, robust,
and statistically consistent. Moreover, they retain many
desirable properties in a range of non-Gaussian scenarios.

For the problem of estimating the underlying 1 /f sig-
nal, we use a Bayesian framework to find signal estimates
that minimize the mean-square estimation error. There are
many potential problems involving signal enhancement
and restoration to which these smoothing algorithms can
be applied. Moreover, we note that these algorithms also
make use of the signal and noise parameter estimates. In
fact, it will become apparent in the ensuing development
that the parameter and signal estimation components are
actually quite closely coupled: smoothing is inherently in-
volved in the parameter estimation process and vice versa.

In Sections II-1V, we briefly review 1 /f processes, or-
thonormal wavelet bases, and prior work on wavelet-based
expansions for 1/f processes. Sections V-VII then de-
velop the use of this representation for parameter and sig-
nal estimation of 1/f processes embedded in white back-
ground noise. Finally, Section VIII contains some
concluding remarks.

II. 1/f PROCESSES

The 1/f processes are generally defined [9] as pro-
cesses whose empirical power spectra are of the form
2

5@ =l

ey

hT

over several decades of frequency w, where v is some

“parameter in the range 0 < y < 2 and typically v = 1.

When this definition extends to all frequencies, (1) is no
longer a valid power spectrum in the theory of stationary
processes since such a spectrum is not integrable. Con-
sequently, there have been a number of attempts to ex-
plain such spectra through nonstationary processes and
notions of generalized spectra, e.g., [7], [13], 9], [16],
[23]. For I = y < 2, the infinite-variance problem arises
in the neighborhood of the spectral origin and is termed
the infrared (IR) catastrophe. For many physical phenom-
ena, measurements corresponding to very small frequen-
cies show no low-frequency roll-off. In such cases, the
underlying process is inherently nonstationary and (1) is
interpreted as a generalized spectrum. Such is the case for
Wiener processes (y — 2) with which we sometimes find
it convenient to associate a 1/f* spectrum for f > 0. For
0 < v < 1, the infinite-variance problem arises in the
tails of the spectrum and is termed the ultraviolet (UVv)
catastrophe. It is avoided by reasoning that any physical
process exhibits roll-off at sufficiently high frequencies.
This is similar to the manner in which stationary white
noise (y — 0) is interpreted in a physical setting.
Through a suitable interpretation of (1) as a generalized
spectrum [7], it can be reasoned that if x(z) is a 1 /f pro-
cess with parameters vy and 02, sois a”"x(at — b) for any
a > 0 and any b, where
y -1

H=1"—

2 @

is the self-similarity parameter. In fact, this apparent sta-
tistical self-similarity relation is frequently used to de-
fine scale-invariant processes. Nevertheless, regardless of
the chosen definition, the parameter vy, or some affine
function of +, turns out to be the essential parameter of
interest. Indeed, via Mandelbrot’s work we can express
the so-called ‘‘fractal dimension’’ of sample functions of
1/f processes by

3)

when v > 1. Mandelbrot introduced the notion of fractal
dimension to describe, in a rigorous and quantitative
sense, the roughness of geometrical objects [15]. Subse-
quently, it has become an important tool in the classifi-
cation of fractals. Consistent with this notion of fractal
dimension, as v is increased from O to 2, we find the sam-
ple functions of the corresponding 1 /f processes to be
increasingly smooth in appearance.

It is generally convenient to extend the notion of 1/f
processes to include nearly 1 /f processes that are defined
[23] as having power spectra bounded according to

k, ky
< < ——
< Sw) = B

where k, and k, satisfy 0 < k; < k, < oo but are other-
wise arbitrary. These processes exhibit only a constant
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Fig. 1. The nearly I /f spectrum of a typical dyadic fractal process. The

parameters of the nearly 1 /fspectrum are y = 1 and k,/k, = 1.103 in this
case.

percentage deviation from the nominal 1 /f characteristic,
and, hence, effectively retain the characteristics of scale
invariance and long-term dependence typically associated
with 1 /f phenomena.

There are many classes of such nearly 1/f processes.
Examples include the stochastic processes that are statis-
tically invariant only to changes of scale by factors of two.
We have found it convenient to refer to these as dyadic
fractal processes. Fig. 1 depicts the spectrum of a typical
dyadic fractal process corresponding to y = | and k, /k,
= 1.103. Note that for such processes the ripples super-
imposed on the 1/f spectrum are necessarily octave
spaced.

III. ORTHONORMAL WAVELET BASES

In this section, we review some results from orthonor-
mal wavelet theory that we require for subsequent devel-
opments in the paper. For a more complete discussion of
orthonormal wavelets, see, for example, [12], [6].

An orthonormal wavelet transformation of a signal x(r)

x(t) © xy
is defined through the synthesis/analysis equations

x() = 2 2 xMyra) (52)

X

" S x(O) (1) dt (5b)
and has the special property that all basis functions are
dilations and translations of a single function:

Yr@ = 2"y — n) (6)

where m and n are the dilation and translation indices,
respectively. Since the basic wavelet, ¥ (¢), typically has
an essentially bandpass Fourier transform, the wavelet
transformation can often be interpreted in terms of a gen-
eralized constant-Q or octave-band filter bank.

It is also frequently possible to view the wavelet trans-
formation in the context of a multiresolution analysis

T
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framework [17], [12]. In our discussion, a resolution-lim-
ited approximation of a signal x(¢) in which details on
scales smaller than 2™ are discarded is defined as®

Ayx(t) = m‘<2M § P, o

In turn, for each M, Ay x(¢) has an orthonormal expansion
of the form

Aux(t) = 22 al o @) 8)

with the coefficients a¥ obtained by projection:

a, = S x() (1) dr. )

The basis functions ¢}, (f) also have the property that they
are dilations and translations of a single scaling function
¢ () having an essentially low-pass Fourier transform.
From this perspective, we can view the mapping

D,x(t) = 2 xIy (0 (10)

as the additional information or detail in going from a
resolution-2™ approximation A,,x(f) to a resolution-2"*'
approximation A,, . ;x(¢). Accumulating this information
over all scales m leads to the synthesis formula (5a).

As one example, consider a Haar-based multiresolution
analysis in which the approximations are piecewise con-
stant on intervals of length 2. Here the scaling function
is given by

1 0<tr<1
d)(t):{ (11)

0 otherwise

and the corresponding wavelet is

1 0<t<1/2

v =< —1 12=t<1 (12)

0 otherwise.
This analysis exhibits excellent time localization but very
poor frequency localization due to the abrupt time-domain
transitions of the approximations. At the other extreme,
consider the example of a sinc-based multiresolution anal-

ysis based upon band-limited approximations. In this case,
the Fourier transform of the scaling function is

1 o=
®(w) = (13)
0 J|o|>n
and corresponding wavelet is given by
T < |l <27

1
¥(w) = { (14)

0 otherwise.

In contrast, this analysis exhibits excellent frequency lo-
calization but very poor time localization. More gener-
ally, we can consider the family of Battle-Lemarie mul-

*Note that, in our notation, m increasing corresponds to increasingly
smaller (i.e., finer) scales of detail.
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tiresolution analyses based upon orthogonalized Kth-order
spline functions [12], [6]. In this context, our examples
above correspond to the cases K = 0 and K — oo, re-
spectively.

The development of other families of wavelet-based
multiresolution analyses continues to receive consider-
able attention in the literature. As an example, Daube-
chies has designed a class of compactly supported wavelet
bases [6]. In addition to fulfilling a practical requirement
of having finite extent basis functions, these bases exhibit
good localization in both time and frequency. Moreover,
the basis functions are maximally regular, in the sense of
having the maximum number of vanishing moments. Such
regularity is considered desirable in a number of appli-
cations of wavelet bases (see, e.g., [3]).

The notion of an underlying multiresolution analysis
leads rather conveniently to a discrete-time implementa-
tion of the wavelet-transformation in terms of conjugate
quadrature filters.* In fact, it is from this perspective that
wavelet transformations are associated with a class of
multirate filter banks. Indeed, if we define the conjugate
quadrature filter pair for a particular choice of wavelet
basis by

hin) S ¢5' Wh) di (152)

gln] g Vo' () dr (15b)
the approximation coefficients a;' and detail coefficients
x™ are related through the filter-downsample and upsam-

ple-filter relations

at = S hlk ~ 2nlaj’*! (162)
x" = % glk — 2nlap™! (16b)
amt! = % {hin — 2kla} + gln — 2klx¥'}.  (16¢c)

Hence, if the discrete-time observations of a process cor-
respond to samples a, of a resolution-limited approxi-
mation to the discrete-time process, the analysis/synthesis
equations (16) give a computationally efficient algorithm
for extracting the wavelet coefficients at scales m < 0.
While the discrete-time nature of the observation limits
access to the finer scales of detail, the length of the ob-
servation limits access to the coarser scales of detail.
Hence, in practice we typically have access to wavelet
coefficients over a finite range of scales for a given signal.
Moreover, because the effective width of the wavelet ba-
sis functions hatves at each finer scale, we expect roughly
a doubling of the number of available coefficients at each
successively finer scale consistent with what would be ob-
tained through the discrete implementation (16). This fi-
nite-length, discrete implementation of the wavelet trans-
form is termed the discrete wavelet transformation

*In fact, this has become a convenient domain in which to design wavelet
bases.

(DWT), and has asymptotic complexity O(N log, L) for
data of length N and filters of length L [22]. Further, we
note that while there are a number of ways to handle the
unusual data windowing problem inherent in the decom-
position, an assumption that the data is periodic outside
the observation window leads to a computationally con-
venient implementation.

IV. WAVELET REPRESENTATIONS OF 1/f PROCESSES

In this section, we review the wavelet-based Karhu-
nen-Loeve-like expansions for 1 /f processes described in
[23], which have since been developed further in [25].
The work [23] specifically provides a synthesis result,
i.e., that one can construct a class of nearly 1 /f processes
using wavelet expansions in terms of uncorrelated trans-
form coefficients having the variance progression

amn

var x™ = 22"

where 7y is the exponent of the nearly 1 /f spectrum, and
o2 is a positive constant proportional5 to o2. In fact, the
nearly 1/f processes obtained in this way are precisely
examples of the dyadic fractal processes defined earlier.
Moreover, the spectrum of Fig. 1 corresponds to a dyadic
fractal process obtained by an orthonormal wavelet ex-
pansion using the first-order (i.e., K = 1) Battle-Lemarie
wavelet basis.

It is somewhat remarkable that, at least empirically,
there appears to be a corresponding analysis result, i.e.,
that wavelet expansions appear to be robust, nearly opti-
mal representations for all 1 /f processes, including ex-
actly-1/f processes. Specifically, for a reasonably arbi-
trary choice of wavelet, there is strong empirical evidence
that the wavelet coefficients from these processes not only
obey the variance progression (17), but turn out to be
weakly correlated both along and across scales as well.
Recent work [20], [25] suggests that this result can be
made rigorous. Certainly, the wavelet transform is effec-
tive in removing strong, long-range dependence from the
process. Consequently, in this and related work, we ex-
ploit the wavelet transformation’s apparent role as a whit-
ening filter for 1/f processes.6 Ultimately, this renders
signal processing problems involving 1/f processes con-
siderably more tractable.

V. THE PARAMETER ESTIMATION PROBLEM

In this section, we derive ML parameter estimation al-
gorithms for 1/f processes by exploiting the wavelet rep-
resentation. Although, we specifically consider the case
of Gaussian 1/f processes corrupted by additive station-
ary white Gaussian measurement noise, the resulting es-
timators are, in fact, applicable to a broader class of non-
Gaussian 1 /f processes and measurement noise models.

SThe exact relationship depends on both the choice of wavelet and the
absolute labeling of the scales, but is otherwise unimportant.

°It is interesting to note that infinite-interval whitening filters for 1/f
processes have also been derived recently by Barton and Poor [2] using an
approach based on reproducing kernel Hilbert spaces.
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Let us suppose we have observations r(r) of a zero-
mean Gaussian 1/f process x(r) embedded in zero-mean
additive stationary white Gaussian noise w(¢) that is sta-
tistically independent of x(¢), so

r@®) = x() + wt), —oo <t < oo, (18)

From this continuous-time data, we assume we have ex-
tracted a number of wavelet coefficients 7). In theory, we
may assume these coefficients are obtained by projecting
the wavelet basis functions onto the observed data:

ry = & Y (@Or@) dr. (19)
However, in practice, these coefficients can be obtained
by applying the computationally efficient DWT to the
samples of a segment of data which is both time limited

and resolution limited. Let us assume that the finite set of
available distinct scales O is, in increasing order,

s my) (20a)

and that at each scale m the set of available coefficients
N(m) is’

R(m) = {n,(m), ny(m), -+ -, iy (m}.  (20b)
Hence, the data available to the estimation algorithm is
r={rie®} ={r, meM, neNim}. @21

We remark before proceeding that, based on the dis-
cussion in Section III, for an implementation via the DWT
with N = Ny2* samples of observed data, we have, typ-
ically,

M = {m,, my,

M=1{1,2 - ,M} (22a)
MNim) = {1,2, -+ -, Ne2"""} (22b)

where Nj is=a constant that depends on the length of the
filter A[n]. While many of the results we derive will be
applicable to the more general scenario, we will fre-
quently specialize our results to this case.

Exploiting the wavelet decomposition’s role as a whit-
ening filter for 1 /f processes, and using the fact that the
wy are independent of the x; and are decorrelated for any
wavelet basis, the resulting observation coefficients

m __ m m
n =X, T ow,

r

23)

can be modeled as mutually independent zero-mean,
Gaussian random variables with variance

varry = op, = ¢’ + o2 (24)
where we have defined
g =27 (25)
for future convenience. Hence, it is the parameter set
8 = (B, 0%, o3) (26)

"Note that, without loss of generality we may assume 9l(m) # (¥, any
m, or else the corresponding scale m could be deleted from 9.
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we wish to estimate. As discussed in Section 11, it is often
the case that only 3 or some function of (8, such as the
spectral exponent v, the fractal dimension D, or the self-
similarity parameter H, is of interest. Nevertheless, o
and o2 will still need to be estimated jointly as they are
rarely known a priori. Furthermore, ML estimates of v,
D, H are readily derived from the ML estimate By. In-
deed, since each of these parameters is related to 8 through
an invertible transformation, we have

mL = log; Bur (27a)
Dy = (5 = 9mL)/2 (27b)
Hy = Gu — /2. (27¢)

Proceeding, we may express the likelihood as a func-
tion of the parameters by

£6 =1 ——e { (’Tq
= R = X! —
( ) P,-(r, ) mne® \/21”1)2" P 20,2,,

(28)
for which the log-likelihood function is
1
= . e = —— Z
L®) = Inp,(r; 6) 2 s
1
- {—2 (r7)? +In (27m§7)}. 29)
Um
Equivalently,
1 O
L©) = —= X N(m) {”—2 +1In (2#05")} (30)
2 meMm (™
where the M sample variances
1
P my2 31
Im N(m) ned(im) (rn) ( )

summarize the aspects of the data required in the esti-
mation. It is straightforward to show that the likelihood
function in this case is well behaved and bounded from
above on
B=0, ¢>20, 6220

so that, indeed, maximizing the likelihood function is rea-
sonable.

While we shall assume that 8, o2, ¢2 are all unknown,
it will be appropriate during the development to also spe-
cialize results to the case in which o2 is known. Still more

8For example, if m, < 0, the we could define new parameters through
the invertible transformation

=2 2
0y = Oy
5 = g2gm-!
B=8

for which the observations correspond to positive scales
M= {l,m—m+ 1, . my—m+ 1}

and which lead to the same ML estimates for 8, o2, o2.
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specific results will be described when ¢ = 0, corre-
sponding to the case of noise-free observations. We may
also assume, where necessary, that all m € 91U are positive
without loss of generality.®

A. CaseI: 8, o°, o2 Unknown

Differentiating L(0) with respect to o3, o°, and B, re-
spectively, it follows that the stationary points of L(O) are
given as the solutions to the equations

% T,=0 (32a)
meM
2 BT, =0 (32b)
medM
2 mB"T, =0 (32¢)
meM
where
Ni A2
T, & (’z"){ - ‘%} (32d)
Gm m

However, these equations are difficult to solve, except in
special cases. Consequently, we utilize an estimate-max-
imize (EM) algorithm [10].

A detailed development of the EM algorithm for our
problem is given in Appendix A. The essential steps of
the algorithm are summarized below, where we denote
the estimates of the parameters 3, a2, aﬁ, generated on the
Ith iteration by B8, 627, 631

E step: As shown in Appendix A, this step reduces to
estimating the noise and signal portions of the wavelet
coefficient variances at each scale m € W using current

estimates of the parameters 3, G20 gHh.

Su@") = 4,0 + B, ©")5,  (33)
SOy = 4,6) + BLO)6;,  (33b)
where
A2, 22D pphy—m
Am(é([)) — Oy g [B ] (343)

~2(1 2D A —
ow) + 0()[6()] m

62(1)

2
B,”"'(eu)) - <62f’) " 62‘1‘”[5(’)1_m> (34b)

62(1)[6(1)]—»1 >2

aif{) + 62(])[8([)]-:?1

B, ©") = ( (34c)
M step: This step reduces to using these signal and
noise variance estimates to obtain the new parameter es-

timates B¢+, 62+, 53D

BUTD meZm C,,Nm) S35, (0™MB™" =0  (352)

Zm Nm) S5Oy B+

g = (35b)
mezfm N(m)
> Nm)SE®™")
6'2(,+l) _ meM (35 )
! > N(m) ¢

meM

T
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where
m 1

S mNem 2 Nem)

meM meM

C, & (36)

B. Case II: B8, o> Unknown; o2 Known

If o2 is known, the above algorithm simplifies some-
what. In particular, we may omit the estimation (35¢) and
replace occurrences of 52" in the algorithm with the true
value o2. This eliminates the need to compute sP©6")
and, hence, B(6).The resulting algorithm is as fol-
lows.

E step: Estimate the signal portion of the wavelet coef-
ficient variances at each scale m € 9 using current esti-

mates of the parameters 3¢/, "

S50 = 4,606 + B, 005, (D
where
2. A2 pDy—m
A aw 4 [6 ]
4,01 = T R (38a)
A2 A —m 2
A a-1B"]
Bm(e(l)) - <f_4—_&2‘ " 62”)[8(’)]_M> . (38b)

M step: Use these signal variance estimates to obtain
the new parameter estimates BUTY, G2+,

BITD Zm C,,N(m)S5,(©0MB™ =0  (39%)
> Nm)SL@O) B Y

n meM
F2HD =

39b
2. N(m) (390)

meIMn

where C,, is as in (36).

C. Case IlI: 8, o* Unknown; o, = 0

If o2 is known (or assumed) to be zero, the EM al-
gorithm becomes unnecessary as the likelihood may be
maximized directly. Specifically, with o2 = 0, the signal
variance estimates are available directly as &% Hence the
estimation simplifies to the following:

B < Zm C,,N(m)5,8™ = 0 (402)
Zm N(m) 62, [Bw]”

Ry = — 40b

L Zm o (40b)

with C,, still as in (36). Let us discuss this special case in
more detail not only for its own sake, but also because it
characterizes one of the components of each iteration of
the EM algorithm.

The derivation of these latter estimates is essentially the
same as the derivation of the M step in the Appendix. We
begin by differentiating the likelihood function to find
equations for its stationary points. This leads to a pair of
equations in terms of o2 and 8. Eliminating o from these
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equations is straightforward and gives (40a) directly.
Having determined By as the solution to this polynomial
equation, &3, is obtained by back substitution.

From Lemma 1 in Appendix A, it is apparent that (40a)
has exactly one positive real solution, which is the ML
estimate By . Hence, L has a unique local and thus global
maximum. Moreover, we may use bisection as a method
to find the solution to this equation, provided we start with
an initial interval containing Bu. Since we expect 0 < vy
< 2, an appropriate initial interval is 1 < 8 < 4. Natu-
rally, with some caution, Newton iterations may be used
to accelerate convergence.

Again, since solving equations of the form of (40) con-
stitutes the M step of the iterative algorithm for the more
general problem, the above remarks are equally applica-
ble in those contexts.

[ln 2m0_25 —111]2
—In 2:7702[6 7m]2
—In 21;1026 -m

N(m)
medM 2(0',2,,)2

D. Properties of the Estimators

In this section, we consider two principal issues: 1) how
the parameter estimates of the EM algorithm converge to
the ML parameter estimates; and 2) how the ML param-
eter estimates converge to the true parameter values.

Regarding the first of these issues, we are assured that
the EM algorithm always adjusts the parameter estimates
at each iteration so as to increase the likelihood function
until a stationary point is reached. It can be shown that in
our problem, the likelihood function has multiple station-
ary points, one of which corresponds to the desired ML
parameter estimates. Others correspond to rather patho-
logical saddle points of the likelihood function at the
boundaries of the parameter space:

B = BML|U€.-=0 (41a)
& = GiLlor-o (@1b)
2 =0 (41c)
and

B: arbitrary (42a)
5°=0 (42b)

Zm N(m) 62,
L — (42¢)

22 N(m)
medM

That they are saddle points is rather fortunate, for the only
way they are reached is if the starting value for any one
of 8, 42, 2 is chosen to be exactly zero. Given arbitrarily
small positive choices for these initial parameters, the al-
gorithms will iterate towards the ML parameters.

The preceding discussion suggests that the EM algo-
rithm is fundamentally rather robust in this application.
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However, the selection of the initial parameter values will
naturally affect the rate of convergence of the algorithm.
Moreover, it should be noted that the EM algorithm con-
verges substantially faster for the case in which o2 is
known. In essence, for the general algorithm much of the
iteration is spent locating the noise threshold in the data.

We now turn to a discussion of the properties of the
ML estimate themselves. It is well known that ML esti-
mates are generally asymptotically eflicient and consis-
tent. This, specifically, turns out to be the case here. It is
also the case that at least in some higher signal-to-noise
ratio (SNR) scenarios, the Cramér-Rao bounds closely
approximate the true estimation error variances.

The compute the Cramér-Rao bounds corresponding to
the estimates of v, ¢°, and o2, we construct the Fisher
matrix

—In2"6?[B™") ~—In2"¢?B "

(67’ G (43)
g 1
from which we get
var§ = I (44a)
var 57 = 1% (44b)
var 6% = I (44c)
A2

for any unbiased estimates ¥, 6°, &‘2,‘, and where I* is the
kth element on the diagonal of I~ I. However, local
bounds such as these are of limited value, in general, both
because our estimates are biased and because the bounds
involve the true parameter values, which are unknown.

When O%V is unknown, the Fisher information matrix
simplifies to the upper submatrix

;o Newig "y { [n2"o*F ~In 2'"02}
mem  2(07)" | —In2"g> 1
(45)
from which we get
var% = 1" (46a)
var & = I (46b)

As one would expect, both the actual error variances and
the Cramér-Rao bounds are smaller for this case. Note
that because the bounds are still a function of the param-
eters in this case, their usefulness remains limited. Never-
theless, except in very low SNR settings, the estimate
biases are small in a relative sense and the estimation er-
ror variance is reasonably well approximated by these
bounds. Hence, the bounds are at least useful in reflecting
the quality of estimation that can be expected in various
scenarios.

°In examining the variance of our estimates, we revert back to consid-
ering vy rather than 8, recalling that it is usually some affine function of v
rather than (3 that is actually of interest.
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When ¢2 = 0, we get still further simplification, and
we can write

(In 2)?/2 Zm m N(m) —(n2)/Q0c?) Zm mN(m)

shall see, smoothing is inherently involved in the param-
eter estimation algorithm we derived earlier.

47

—(n2)/Q¢%) X mN(m) 1/Q¢*) 2 Nm)
7 medM medM

from which we get

var 4 = 2/[(In 2)%J] an N(m)  (48a)
var (6%/0%) = 2/J Zm m* N(m) (48b)
where
2
J = { 2 mZN(m)J|: 2 N(m)} - [ > mN(m)} .
medM meM medM
(49)

In this case, the bounds no longer depend on the param-
eters. Moreover, in practice, these expressions give an
excellent approximation to the variances of the ML esti-
mates. Evaluating the Cramér-Rao bounds asymptoti-
cally for the usual implementation scenario described by
(22), we get

var pL ~ 2/[(In 2)°N]
var (6%/0%) ~ 2 (logy N)*)/N

(50a)
(50b)

where N is the number of observation samples.

VI. THE SIGNAL ESTIMATION PROBLEM

In this section, we derive an algorithm for the optimal
estimation of a 1 /fsignal embedded in additive stationary
white noise. For the case of Gaussian processes, these
estimators are optimal in the sense that they minimize the
mean-square estimation error. As is well known from
classical estimation theory, for non-Gaussian scenarios the
estimates are the best linear estimates.

While we do not specifically derive our signal estima-
tion in terms of Wiener filtering in the frequency domain,
interpretations in this domain provide useful insight. In
particular, it is clear that at high frequencies the white
noise spectrum will dominate, while at low frequencies
the 1/f signal spectrum will dominate.'® Consequently,
Wiener filtering for this problem involves a form of low-
pass filtering, where the exact filter shape and “‘cutoff”’
are governed by the particular parameters of the noise and
signal spectra.

Turning now to our specific statement of the problem,
let us consider the estimation of a 1/f signal x(#) from
noisy observations r(#) given by (18), where we still con-
sider zero-mean processes. In our derivation, we shall as-
sume that the signal and noise parameters 3, 0%, ol are
all known, though in practice they are estimated using the
parameter algorithms of the last section. In fact, as we

'1p fact, at sufficiently low frequencies, there will always be arbitrarily
high SNR regardless of the noise threshold.

Again we exploit the wavelet decomposition to obtain
our results. Specifically, we begin with the set of
wavelet coefficients (21). Then, since

= x4+ owy

6D

where x™ and w/ are independent with variances olg "
and o2, respectively, it follows immediately using clas-
sical estimation theory that the estimate of x} that mini-
mizes the mean-square estimation error is given by

{E[x'n"lr:’]
0

m,ne®

2y = Elxy|r] = (52)

otherwise.
Furthermore, since x7 and r) are jointly Gaussian, it is
straightforward to establish that the least squares esti-
mates are linear and given by
2p-m
B

[ n| n] 026 m + U%v n
From these estimates, we can express our optimal esti-
mate of the 1 /f signal as

(53)

2p—m
o8 ]rwm.

B + a2

) = 2 E7YN0 = Zm{

(54)

Note that, consistent with our earlier discussion of

Wiener filtering for this problem, the smoothing factor

02 B —-m
o’ + ol

in (54) has a thresholding role: at coarser scales where the
signal predominates the coefficients are retained, while at
finer scales where noise predominates, the coefficients are
discarded. Note, too, that this factor appears in (34c),
which allows us to interpret (33b) in terms of sample-
variance estimates of the smoothed data. Evidently,
smoothing is inherently involved in the parameter esti-
mation problem.

In practice, good performance is achieved by these es-
timators even in very poor SNR scenarios. This is not sur-
prising given the preponderance of energy at low frequen-
cies (coarse scales) in 1 /f processes. Let us, then, turn to

_a quantitative analysis of the estimation error. First, we

note that because our set of observations is finite the mean-
square estimation error

E[(3(5) — x0))’)
is infinite. Nevertheless, when we define

i = E(R xR (55)
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as the best possible approximation to x(¢) from the finite
data set, we can express the total mean-square error in our
estimate with respect to %(¢) as

€= S E[(%(r) — x(0)*] dt = 2m E[(®) — x))°]

= 2. Elvar x"|r™)] (56)
mne®
which, through routine manipulation, reduces to
2p-m , 2
— Z N [M} 57
€ meM (m) a?B87" + o2 (57

VII. SIMULATIONS

In this section, we present some examples demonstrat-
ing the viability and basic functionality of the derived al-
gorithms. Although a number of properties of the algo-
rithms are suggested by Monte Carlo simulations, we are
not suggesting that they are in any way comprehensive.
The work of this section represents only a very prelimi-
nary investigation of these algorithms.

There are a variety of simulations and simulation scen-
arios that could be considered for this work. For our basic
scenario, we have chosen to synthesize discrete samples
of resolution-limited Gaussian 1 /f processes embedded in
Gaussian white noise. In general, we vary the length N
and SNR of the observations sequence as well as the spec-
tral exponent v of the underlying 1/f processes. We then
perform parameter estimation, followed by signal esti-
mation, using algorithms for the most general scenario,
corresponding to the case in which all signal and noise
parameters 3, o2, o, are unknown. Note that by using the
estimated parameters in the signal estimation algorithm,
our experiments do not allow us to distinguish between
those components of signal estimation error due to errors
in the estimated parameter values and those due to the
smoothing process itself.'!

There are a number of methods for simulating 1 /f pro-
cesses available in the literature. Indeed, the wavelet-
based expansion for 1/f processes in [23] suggests one
more method for synthesizing 1/f processes. However,
for the simulations of this section, we construct Gaussian
1/f processes using the discrete-time implementation of
Keshner’s model for 1/f processes described in [5]. By
choosing a synthesis algorithm fundamentally different
from wavelet-based synthesis, modeling sensitivity and
robustness issues are not bypassed in the simulations with
our inherently wavelet-based algorithms. However, as a
result, our experiments do not allow us to distinguish be-
tween errors inherent in the modeling and errors inherent
in the estimation process.

Finally, there are a large number of wavelet bases from
which to select for our analysis. However, given the em-
pirical insensitivity of the algorithms to the choice of ba-
sis, for our simulations we somewhat arbitrarily chose to

""However, it turns out that the quality of the signal estimation is rather
insensitive to errors in the parameter estimates used.
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Fig. 2. Rms errors in the estimates of the signal parameters as a function
of the SNR of the observations. The data length of the observations is fixed
to N = 2048 samples. (The symbols associated with each y mark the actual

empirical measurements; dashed lines are provided as visual aides only.)
(a) absolute rms error in 4y,. (b) Percentage rms error in &3, .

use Daubechies fifth-order finite-extent ‘‘maximally reg-
ular’’ wavelet basis for which the corresponding conju-
gate quadrature filters have 10 nonzero coefficients.

The first simulations demonstrate some aspects of the
performance of the parameter estimation algorithms. In
Fig. 2, we plot the rms error of the estimates of y and ¢
for various values of v as a function of SNR where the
observation sequence length is fixed to N = 2048. The
results from 64 trials were averaged to obtain the error
estimates shown. As the results suggest, the quality of the
estimates of both parameters is bounded as a consequence
of the finite length of the observations. Moreover, the
bounds are virtually independent of the value of -y and are
achieved asymptotically. For increasing values of v, the
bounds would appear to be attained at increasing SNR
thresholds.

In Fig. 3, we plot the rms error of the estimates of y
and ¢ for various values of y as a function of observation
sequence length N where the SNR is fixed to 20 dB.
Again, results from 64 trials were averaged to obtain the
error estimates shown. While the results show that the
estimation error decreases with data length as expected,
they also suggest, particularly for the case of 62, that the
convergence toward the true parameters can be rather
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Fig. 3. Rms errors in the estimates of the signal parameters as a function
of the data length N of the observations. The SNR of the observations is
fixed to 20 dB. (Again, the symbols associated with each y mark the actual
empirical measurements; dashed lines are provided as visual aides only.)
(a) Absolute rms error in 9y (b) Percentage rms error in 6.

slow. Note, too, that a rather large amount of data is re-
quired before the relative estimation error in ¢ can be
made reasonably small.

The second set of simulations demonstrate some as-
pects of the performance of the signal estimation. In Fig.
4, we plot the SNR gain of our smoothed signal estimates
for various values of v as a function of the SNR of the
observations where the sequence length is fixed to N =
2048. Again, results from 64 trials were averaged to ob-
tain the error estimates shown. The SNR gains predicted
by the mean-square error formula (57) are also superim-
posed on each plot. As the results indicated, the actual
SNR gain is typically no more than 1 dB below the pre-
dicted gain, as would be expected. However, under some
circumstances the deviation can be more than 3 dB.
Worse, the SNR gain can be negative, i.e., the net effect
of smoothing can be to increase the overall distortion in
the signal. Such degradations in performance are due pri-
marily to limitations on the accuracy to which the wavelet
coefficients at coarser scales can be extracted via the
DWT. In particular, they arise as a result of undesired
effects introduced by modeling the data outside the ob-
servation interval as periodic to accommodate the inher-
ent data-windowing problem. By contrast, error in the pa-
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gain ol
10k O ¥y=167
= - =033
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expected = 1.00
£ gain 24—
c = -
F 5 —— Y 1.67
O] 1
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0 10 20 30 40 50

SNR (dB)

Fig. 4. SNR gain (decibels) of the signal estimate as a function of the SNR
of the observations. The data length of the observations is N = 2048 sam-
ples. Both the gains predicted by (57) and gains actually obtained are in-
dicated.
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Fig. 5. A Smoothing example. A 65 536-sample 1/fsignal with y = 1.67
is embedded in noise corresponding to 0 dB SNR. An estimate of the signal
is generated from the noisy data using parameter estimates obtained from
the data; specifically, 4y, = 1.66. The SNR gain in the estimate is 13.9
dB. (a) A 1000 sample segment of the 1/f signal. (b) The corresponding
segment of the same signal embedded in noise. (c) The corresponding seg-
ment of the smoothed estimate of the signal.

rameter estimates is a much less significant factor in these
degradations. The plots also indicate that better gains are
achieved for larger values of y for a given SNR. This is
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to be expected since for larger vaues of vy there is more
signal power at coarser scales and correspondingly less at
finer scales where the noise predominates and the most
attenuation takes place.

Finally, in Fig. 5 we show a segment of a 65 536-sam-
ple 1/f signal, the same signal embedded in noise, and
the signal estimate. In this example, the spectral exponent
is ¥ = 1.67, and the SNR in the observations of 0 dB.
The estimated spectral exponent is 4y, = 1.66, and the
SNR gain of the signal estimate is 13.9 dB. As antici-
pated, the signal estimate effectively preserves detail at
the coarse scales where the SNR was high, while detail
on fine scales is lost where the SNR was low.

VIII. CoNCLUSIONS

In this work we derive computationally efficient and ro-
bust wavelet-based algorithms for performing ML param-
eter estimation and minimum mean-square error smooth-
ing of 1/f processes embedded in additive white
observation noise. Moreover, somewhat indirectly, our
algorithms allow us to compute ML estimates of the frac-
tal dimension of 1/f signals from noisy observations,
which are of considerable interest in their own right for
many applications.

While a considerable amount of additional analysis and
testing of these algorithms remains to be done, the prelim-
inary study presented here suggests they are highly prac-
ticable and widely applicable in a number of signal pro-
cessing applications.

A number of outstanding issues associated with this
work remain to be addressed. One relates to the wavelet-
based representation of 1/f processes. In particular, we
have relied on strong empirical evidence that there exists
a matching analysis result corresponding to the synthesis
result of [23]. However, a strong theoretical Jjustification
that the orthonormal wavelet decomposition of 1/f pro-
cesses yields virtually independent transform coefficients
~would be an important result.

Another issue pertains to the unusual data-windowing
problem inherent in the wavelet decomposition. In this
work, we avoid the problem by modeling the data as pe-
riodic outside the finite observation interval in computing
the DWT. However, this leads to a number of rather un-
desirable effects, some of which manifested themselves in
the smoothing simulations. More effective approaches to
accommodating observations on the finite interval need to
be developed.

Finally, a number of interesting, straightforward and
useful extensions to this work are suggested by the ap-
proaches described here. Specifically, the problem of dis-
tinguishing and isolating two superimposed fractal signals
is, in principle, readily solved by the methods of this
work. In addition, the separable extension of the results
presented herein to two and higher dimensions is likewise
straightforward. In each case, we anticipate that a number
of powerful yet practical algorithms can be developed.

o T
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APPENDIX
AN EM ALGORITHM
In order to derive an EM algorithm for estimation of ©
= (B, o2, ¢2), we first define our observed (incomplete)
data to be

r={r,mne®} (58)
and our complete data to be (x, r) where
x={x;,mne®}. (59)

Consequently, the EM algorithm for the problem is de-
fined as [10]
E step: Compute

u®, 6 (60)
M step:
max U(©, 6") - ¢+ (61)
e
where
U®, ) £ Elln p, (r, x; O)|r; O]. (62)

For our case, U is obtained conveniently via
U®, ) = Elln p,,(r|x; ©) + In p,(x; ©)|r; 6] (63)
with

o - (ry = x3)!
Prcrlxs ©) = 1o exp = =5 (64)
and

1 ()
;1 8) = - . (65
px(xa e) m.1n_£(R (‘27‘_026‘ —m €Xp 2026—m ( )
Then
- 1 |
Ue®e, 8) = —= 2 Nm) {—2 S2(6) + In 270>
2 mem g
+ l_m 55 + In 2#026_"'} (66)
o°B
where
1
w — El my2 m; 9 67
Sn(©) = Yo ey ELOVD?IIS O] (672)
Si0) = —— 3 Bl e]  (67b)
N(m) ne(m)

are (quasi) conditional sample-variance estimates from the
data based upon the model parameters ©. Evaluating the
expectations we get

S,(8) = A4,(0) + B (©)5} (68a)
$5(0) = A4,(0) + BL(©)52 (68b)
where
02‘ . OZBfm
= 69
Am(e) 0'2“ + 0267,,, ( a)
P o o
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02. 2
Bi(©) = Z<r_—ai, — B‘"’> (69b)
. 3 GZB—M 2
B, (©) = <ai, " UQB-,,,> (69¢)

which completes our derivation of the E step.

To derive the structure of the M step, we maximize
U(©, 6) as given by (66). This maximization is always
well defined as U(O, 6) = L(©) for any O, 6.

The local extrema are obtained by differentiating U(8,
©) with respect to each of the parameters of ©. Since (66)
expresses U(O, ©) as the sum of two terms, one of which
depends only on o> and the other of which depends only
on B8 and o2, the maximization can be broken down into
two independent parts.

Considering first our maximization over 0>, we readily
obtain the maximizing &2 as the sample average

2 N(m)S;,(©)

2 meIM

62 =
> N(m)

medM

(70)

Turning next to 8 and o2, we find that the maximizing
parameters 3 and &7 satisfy

2 Nm)S5(©)8"
medM

PEEDY N(m)

med

o2 2 mN(m). (71b)
medM

(71a)

>, mN(m)S5,(©)8"
medM

Eliminating o we obtain that B is the solution of the poly-
nomial equation

> C,Nm)S%5(©®)B" =0

medM

(72)

where C,, is as defined in (36). The eliminated variable
&2 is trivially obtained by back-substitution:

> Nom)SL(®)B"
medM

5> = ) 73
’ > N(m) 73

med

Finally, to show that the maximizing parameters are the
only solution to (71) it suffices to show that the solution
to (72) is unique, which we establish via the following
lemma.

Lemma 1: Any polynomial equation of the form

> C.K.8" =0
meM

(74

where C,, is given by (36) and K,, = 0 has a unique pos-
itive real solution provided M = 2 and not all K, are
zero.
Proof: Let
2 mN (m)

meM

2 N(m)

med

(75)

my =

be a weighted average of the m € M, so my < my < my.
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Then, from (36), for m > my, C, > 0, while form <
my, C, < 0. Hence, C,(m — my) = 0 with strict ine-
quality for at least two values of m € M from our hy-
pothesis. Now let f(B) be the left-hand side of (74), and
observe that

fB & fdL™ (76)

is increasing for 8 > 0, i.e.,

F= Zm C,(m — my)Nem&2,8" ™' > 0. (17

Then, since f(0) = —o and f(®) = @, we see f(B) has
a single real root on B > 0. Since f(B) shares the same
roots on 8 > 0, we have the desired result.

This completes our derivation for the M step. The com-
plete algorithm follows directly.
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