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A Frequency Warping Approach
to Speaker Normalization

Li Lee, Student Member, IEEE,and Richard Rose,Member, IEEE

Abstract—In an effort to reduce the degradation in speech
recognition performance caused by variation in vocal tract shape
among speakers, a frequency warping approach to speaker nor-
malization is investigated. A set of low complexity, maximum
likelihood based frequency warping procedures have been ap-
plied to speaker normalization for a telephone based connected
digit recognition task. This paper presents an efficient means
for estimating a linear frequency warping factor and a simple
mechanism for implementing frequency warping by modifying
the filterbank in mel-frequency cepstrum feature analysis. An
experimental study comparing these techniques to other well-
known techniques for reducing variability is described. The
results have shown that frequency warping is consistently able to
reduce word error rate by 20% even for very short utterances.

Index Terms—Continuous speech recognition, frequency warp-
ing, hidden Markov modeling, speaker normalization.

I. INTRODUCTION

ONE MAJOR source of interspeaker variability in hidden
Markov model-based (HMM-based) continuous speech

recognition is the variation of vocal tract shape among speak-
ers in a population. The positions of spectral formant peaks for
utterances of a given sound are inversely proportional to the
length of the vocal tract. Since the vocal tract length can vary
from approximately 13 cm for adult females to over 18 cm for
adult males, formant center frequencies can vary by as much
as 25% between speakers. This source of variability results in
a significant degradation from speaker dependent to speaker
independent speech recognition performance. The contribution
of this paper is to describe a set of frequency warping
based speaker normalization techniques that are applied in a
single utterance based speech recognition paradigm. In these
procedures, the parameters of the frequency transformation
that is applied to the utterance are estimated using only
the samples from the utterance that is input to the speech
recognizer.

Techniques that attempted to “normalize” parametric repre-
sentations of the speech signal for the purpose of reducing the
effects of interspeaker differences have been investigated in
the context of vowel identification [3], [7], [13]. Normalization
was performed using linear and nonlinear frequency warping
functions to compensate for variations in formant positions
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among speakers. These procedures attempted to solve the
difficult problem of estimating the formant positions that
correspond to the “true” vocal tract shape of each speaker,
and then compensating for these differences.

Recently, Andreouet al. proposed a set of maximum likeli-
hood based speaker normalization procedures to extract and
use acoustic features that are robust to variations in vocal
tract length [1]. The procedures reduced speaker dependent
variations between formant frequencies through a simple linear
warping of the frequency axis, which was implemented by
resampling the speech waveform in the time domain. However,
despite the simple form of the transformation being considered,
over five minutes of speech was used to estimate the warping
factor for each speaker in their study. While this and other
studies of frequency warping procedures have shown improved
speaker independent automatic speech recognition (ASR) per-
formance, the performance improvements were achieved at
the cost of highly computationally intensive procedures [11].
The work presented here represents an extension to that
performed by Andreou,et al. in that several techniques are
proposed for making frequency warping methods efficient,
and an experimental study is performed to characterize the
behavior of these techniques on a telephone based speech
recognition task.

Unlike other speaker normalization procedures, the tech-
niques described in this paper make no attempt at uncover-
ing information relating to the underlying vocal tract shape.
Instead, the optimization criterion used to estimate the pa-
rameters of the frequency warping transformation is directly
related to the degree of mismatch between the input ut-
terance and the speech recognition models. It was thought
that the most reasonable means for estimating parameters
in any speaker normalization procedure should involve an
optimization criterion that is consistent with that used in the
speech recognizer. These techniques are applied in the context
of HMM-based continuous speech recognition over the public
switched telephone network.

The effectiveness and efficiency of these procedures are
studied from several different perspectives. In addition to
speech recognition performance, experiments are performed
to evaluate the convergence properties of the proposed proce-
dures. Methods for improving the efficiency of performing
model-based speaker normalization and implementing fre-
quency warping are proposed and evaluated. Finally, compar-
isons of speaker normalization with other techniques to reduce
interspeaker variations are made in order to gain insight into
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how to most efficiently improve the speaker robustness of ASR
systems. The goal of such a study is to better understand the
basic properties of speaker normalization so that the technique
can become practical for use in existing applications.

The paper is organized as follows. The next section presents
a detailed description of procedures for performing speaker
normalization in HMM based speech recognition. Procedures
which implement frequency warping, warping factor estima-
tion, model training, and recognition are described. A simple
mixture based method that estimates the warping function
more efficiently during recognition is also presented. Section
III presents an experimental study of the effectiveness of
the speaker normalization procedure for a telephone based
connected digit recognition task. The data base, the task,
and the baseline speech recognition system are described.
The effectiveness of speaker normalization is examined from
several perspectives, including recognition performance and
convergence issues. In Section IV, the speaker normalization
procedure is compared with other procedures designed to
reduce the effects of speaker and channel variability, including
gender-dependent modeling and cepstral mean normalization.
Discussion and summary are provided in Section V.

II. A FREQUENCY WARPING APPROACH

TO SPEAKER NORMALIZATION

This section presents detailed descriptions of the proce-
dures used to implement a frequency warping approach to
speaker normalization. These procedures attempt to reduce
the interspeaker variation of speech sounds by compensating
for variations in vocal tract length among speakers. Because
distortions caused by vocal tract length differences can be
modeled by a simple linear warping in the frequency domain
of the speech signal, the normalization procedure scales the
signal frequency axis by an appropriately estimated warping
factor.

It should also be noted that frequency warping is performed
in the context of speaker independent ASR, where speaker
independent HMM’s are trained using utterances from a large
population of speakers. The application of frequency warping
to HMM training is investigated so that a speaker independent
HMM can be produced that is defined over a frequency-
normalized feature set. Frequency warping is applied during
recognition in order to reduce the mismatch between the test
utterance and the frequency-normalized HMM model.

This section is divided into four parts. First, the warp-
ing factor estimation process is presented in Section II-A.
Second, Section II-B describes the iterative procedure used
to train HMM’s using normalized feature vectors from the
training data. Section II-C describes procedures for warping
factor estimation and frequency warping during HMM speech
recognition. The first warping factor estimation procedure
involves two recognition passes over the input utterance.
The second more efficient procedure treats frequency warping
as a set of “class-dependent” transformations. Finally, the
implementation of frequency warping as part of the filterbank
feature extraction front-end is described in Section II-D.

A. Warping Factor Estimation

Conceptually, the warping factor represents the ratio be-
tween a speaker’s vocal tract length and some notion of
a reference vocal tract length. However, reliably estimating
vocal tract length of speakers based on the acoustic data is
a difficult problem. In the work described here, the warping
factor is chosen to maximize the likelihood of the normalized
feature set with respect to a given statistical model, so that
the “reference” is taken implicitly from the model parameters.
Even though lip movements and other variations change the
length of the vocal tract of the speaker according to the sound
being produced, it is assumed that these types of variations
are similar across speakers, and do not significantly affect
the estimated warping factor. Therefore, one warping factor is
estimated for each person using all of the available utterances.
Evidence supporting the validity of this assumption will be
presented in Section III.

The warping factor estimation process is described mathe-
matically as follows. The basic notation is defined here. In the
short-time analysis of utterancefrom speaker, the samples
in the th speech frame, obtained by applying an-point
tapered Hamming window to the sampled speech waveform,
are denoted with . The discrete-time
Fourier transform of is denoted as , and the
cepstral feature vectors obtained from this spectrum is denoted
as . The entire utterance is represented as a sequence of
feature vectors .

In the context of frequency warping, is defined
to be . The cepstrum feature vectors that are
computed from the warped spectrum is denoted as ,
and the warped representation of the utterance is represented
as a sequence of the warped feature vectors

.
Additionally, refers to the word level transcription of

utterance from speaker . This transcription can either be
known in advance or obtained from the speech recognizer.

Finally, we let

• denote the set of feature
space representations for all of the available utterances
from speaker , warped by ,

• denote the set of tran-
scriptions of all of the utterances,

• denote the optimal warping factor for speaker,
• denote a given HMM trained from a large population

of speakers.

Then, the optimal warping factor for speaker, , is ob-
tained by maximizing the likelihood of the warped utterances
with respect to the model and the transcriptions

(1)

However, a closed-form solution for from (1) is difficult
to obtain. This is primarily because frequency warping cor-
responds to a highly nonlinear transformation of the speech
recognition features. Therefore, the optimum warping factor is
obtained by searching over a grid of 13 factors spaced evenly
between 0.88 1.12. This range of is chosen to
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Fig. 1. HMM training with speaker normalization.

roughly reflect the 25% range in vocal tract lengths found in
adults.

B. Training Procedure

The goal of the training procedure is to appropriately warp
the frequency scale of the utterances for each speaker in the
training set consistently, so that the resulting speaker inde-
pendent HMM will be defined over a frequency-normalized
feature set. It is clear from (1) that the warping factor estima-
tion process requires a preexisting speech model. Therefore,
an iterative procedure is used to alternately choose the best
warping factor for each speaker and then build a model using
the warped training utterances. A diagram of the procedure is
shown in Fig. 1.

First, the speakers in the training data are divided into two
sets, training ( ) and aligning ( ). An HMM, , is then
built using the utterances in set. Then, the optimal warping
factor for each speaker in set is chosen to maximize

. Since we assume the vocal tract length to be
a property of the speaker, all of the utterances from the same
speaker are used to estimatefor that speaker. Sets and
are then swapped, and we iterate this process of training an
HMM with half of the data, and then finding the best warping
factor for the second half. A final frequency-normalized model,

, is built with all of the frequency warped utterances when
there is no significant change in the estimated’s between
iterations.

With a large amount of training data from a large number
of speakers, it may not be necessary to divide the data set into
half. If the data were not divided into two separate sets, it
can be easily shown that the iterative procedure of estimating
warping factors and then updating the model always increases
the likelihood of the trained model with respect to the warped
data. Suppose we use to denote the set of all warped
training vectors from all speakers in iteration 1, and

to denote the model trained with this data. Then, in
reestimating the warping factors during theth iteration, the
warping factors are chosen to increase the likelihood of the
data set, , with respect to

(2)

In addition, the use of the Baum–Welch algorithm to train
using guarantees the following:

(3)

By combining (2) and (3), it is seen that the likelihood of the
data with respect to the model is increased with each iteration

of training

(4)

While this informal proof of convergence does not hold when
the data is divided in half, empirical evidence is presented in
Section III to show that the model likelihood converges even
in that case.

C. Recognition Procedure

During recognition, the goal is to warp the frequency scale
of each test utterance to “match” that of the normalized
HMM model . Unlike the training scenario, however,
only one testing utterance is used to estimate, and the
transcription is not given. Two procedures are discussed for
maximum likelihood estimation of the warping factor. The
first, discussed in Section II-C1, is a three-step procedure
that requires two recognition passes over the input utterance.
The second procedure, described in Section II-C2, chooses
the correct warping transformation by classifying the input
utterance according to a set of “warp class” models before
recognition.

1) Multiple-Pass Strategy:Since no satisfactory solution
for direct form estimation of the warping factor in (1) has
been obtained, the optimum is found by aligning warped
utterances with respect to a hypothesized word string. The
following three-step process, as illustrated in Fig. 2, is used.

1) The unwarped utterance and the normalized model
are used to obtain a preliminary transcription of the

utterance. The transcription obtained from the unwarped
features is denoted as .

2) is found using (1) as follows:

The probability is evaluated by probabilistic alignment
of each warped set of feature vectors with the transcrip-
tion .

3) The utterance is decoded with the model to
obtain the final recognition result.

2) Mixture Based Warping Factor Estimation:In the ear-
lier discussions of warping factor estimation, the warping
factor is conceptualized simply as a representation of the
ratio between a speaker’s vocal tract length and some notion
of a reference vocal tract length. However, warping factor
estimation can also be considered as a classification problem.
During speaker normalization, each speaker is first classified
according to an estimate of his/her vocal tract length, and class-
dependent transformations are then applied to the speech to
yield a final feature set, which is used in recognition. From this
point of view, speakers are placed into different classes based
on the warping factor estimated using their utterances, and the
warping factor can be better described as a class identifier.
Intuitively, the feature space distributions of untransformed
speech from the different classes of speakers would vary due
to the acoustic differences of speech produced by vocal tracts
of different lengths. Therefore, if statistical models of the
feature space distribution of each class are available, it may be
possible to determine the warping factor by finding out which
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Fig. 2. HMM recognition with speaker normalization.

class distribution is most likely to have generated the given
sequence of feature vectors.

The mixture based warping factor estimation technique
described here is motivated by this classification perspective
of speaker normalization. In training, after warping factors
have been determined for all of the speakers using the process
shown in Fig. 1, mixtures of multivariate Gaussians are trained
to represent the feature space distributions of each of the
possible classes. That is, for each warping factor, mixtures are
trained using theunwarpedfeature vectors from utterances that
were assigned to that warping factor. Then, during recognition,
the probability of the incoming utterance before frequency
warping is evaluated against each of these distributions, and
the warping factor is chosen for the distribution that yields
the highest likelihood over the entire utterance. The speech is
warped using this estimated warping factor, and the resulting
feature vectors are then used for HMM decoding. A block
diagram describing this process is shown in Fig. 3.

This mixture based method results in faster recognition
time, because it eliminates the need to obtain a preliminary
transcription using the unwarped utterance that is used for
performing probabilistic alignment at all of the grid points.
However, unlike the method described in Section II-C, it does
not take advantage of the temporal information in the signal
during warping factor estimation, so that the estimated warping
factor may be less accurate.

D. Filterbank Analysis with Frequency Warping

In the previous sections, the processes of HMM training
and recognition with speaker normalization were defined in-
dependent of the analysis method used to obtain the cepstrum.
Here we describe how the Davis–Mermelstein mel-frequency

Fig. 3. Mixture based optimal factor estimation.

filterbank front-end can be modified to include frequency
warping.

The standard Davis–Mermelstein filterbank front-end works
by windowing the speech, calculating its magnitude spectrum,
passing that through a mel-scaled filterbank, and finally using
an inverse cosine transform to arrive at the cepstrum [2]. While
it is perhaps most intuitive to perform frequency warping by
resampling the speech in the time domain prior to passing
the signal through the front-end, it is possible and more
efficient to push the warping process into the filterbank front-
end itself [5]. Frequency warping can be implemented by
simply varying the spacing and width of the component filters
of the filterbank without changing the original speech signal
For example, to compress the speech signal in the frequency
domain, we keep the frequency scale of the signal the same,
but stretch the frequency scale of the filters. Similarly, we
compress the filterbank frequencies to effectively stretch the
signal frequency scale. This process is illustrated in Fig. 4.
Since only one single DFT needs to be performed in each
frame, there is no need to resample the original signal.

E. Discussion of Bandwidth Differences

When the frequency axis is warped linearly, the bandwidth
of the resulting signal differs from that of the original. For
the experiments described in this work, the sampling rate
is fixed at 8 kHz, imposing a limit on the maximum signal
bandwidth of 4 kHz. However, with the warping factors
ranging between 0.88 and 1.12, the bandwidths of the warped
signals range between 3.52 and 4.48 kHz. Since the search for
the “best” warping factor is made using a frequency band
from 0 to 4 kHz, the compressed signals do not contain
useful information over the entire 4 kHz, and the expanded
signals contain information above 4 kHz that is not used.
Different bandwidths that result from different warping factors
represent a source of mismatch between the warped signal and
the model. The filterbank front-end mitigates the mismatch
somewhat by blurring the exact location of the band-edge in
the warped signals. This results from the wide filters used near
the signal band-edge being almost 700 Hz wide.

One possible solution to this problem is to consider warping
functions that are piecewise linear or even nonlinear, such that
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Fig. 4. Mel filterbank analysis with warping.

the bandwidth of the warped signal is the same as that of the
original. For example, a piecewise linear warping function like
the following may be considered:

(5)
In (5), denotes the maximum signal bandwidth, and
can be an empirically chosen frequency that falls above

the highest significant formant in speech. The effect of classes
of functions like the above should be to reduce the effects
of discontinuities at the band-edge. Preliminary experiments
using such a piecewise linear warping function for speaker
normalization suggested that they may indeed be more robust
than a simple linear warping [12]. In addition, Oppenheim
and Johnson described a set of nonlinear frequency warping
functions that are implementable by a series of allpass filters
and map the frequency range onto itself [8].
However, because such warping functions have no simple
correlation to physical sources of variations, only the linear
warping function is used in this paper, and exploration of other
functions is left for future work.

III. B ASELINE EXPERIMENTS

This section presents an experimental study of the effec-
tiveness of the speaker normalization procedures described in
Section II. The principle measure of effectiveness is speech
recognition performance obtained on a connected digit speech
recognition task over the telephone network. In addition to
characterizing the effect on speech recognition performance, a
number of additional issues are investigated and discussed.
Experiments were performed to understand the ability of
the speaker normalization procedures to decrease interspeaker
variability, and to produce normalized HMM’s that describe
the data more efficiently.

The section is divided into five parts. After the task, data
base, and speech recognizer are described in Sections III-
A and III-B, ASR performance before and after speaker
normalization is presented in Section III-C. Section III-D
presents an analysis of the distribution of the chosen warping
factors among the speakers in the training set to verify
the effectiveness of the maximum likelihood warping factor
estimation procedure. Section III-E presents statistics on the
ability of the warping factor estimation procedure to generate
reliable estimates on very short utterances of only one or two
digits in length. Finally, Section III-F provides empirical study

of the convergence properties of the iterative procedure for
estimating the warping factor during HMM training.

A. Task and Data Bases

Two telephone based connected digit data bases were used
in this study. The first, DB1, was used in all of the speech
recognition experiments. It was recorded in shopping malls
across 15 dialect-distinct regions of the United States, using
two carbon and two electret handsets that were tested and
found to be in good working condition. The size of the vo-
cabulary was eleven words: “one” to “nine,” as well as “zero”
and “oh.” The speakers read digit strings between one and
seven digits long in a continuous manner and the utterances
were recorded over a long-distance telephone connection. Each
utterance ranged from about 0.5 to 4 s in duration. The training
utterances were endpointed, whereas the testing utterances
were not. All of the data was sampled at 8 kHz. Table I
describes the training and testing sets in more detail.

A second connected digit data base, DB2, was used to
evaluate properties of the speaker normalization procedures
which required more data per speaker than available in DB1.
DB2 was taken from one of the dialect regions used for
DB1, but contains a larger number of utterances per speaker.
In DB2, approximately 100 digit strings were recorded for
each speaker. A total of 2239 utterances, or 6793 digits, were
available from 22 speakers (ten males, 12 females).

Throughout this paper, word error rate is used to evaluate the
performance of various techniques. The error rate is computed
as follows:

Error
Sub Del Ins

Total Number of Words
(6)

where “Sub” is the number of substitutions, “Del” is the
number of deletions, and “Ins” is the number insertions. These
quantities are found using a dynamic programming algorithm
to obtain the highest scoring alignment between the recognized
word string and the correct word string.

B. Baseline Speech Recognizer

The experiments described in this paper have been con-
ducted using an HMM speech recognition system built at
AT&T. Each digit was modeled by eight to ten state continuous
density left-to-right HMM’s. In addition, silence was explicitly
modeled by a single state HMM. The observation densities
were mixtures of eight multivariate Gaussian distributions with
diagonal covariance matrices. Thirty-nine dimensional feature
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TABLE I
DATA BASE DB1 DESCRIPTION. THE ROWS LABELED “CARBON UTTERANCES”
AND “ELECTRET UTTERANCES” CORRESPOND TO THENUMBER OF UTTERANCES

THAT WERE RECORDED USING CARBON AND ELECTRET HANDSET TRANSDUCERS

vectors were used: normalized energy,[1]– [12] derived from
a mel-spaced filterbank of 22 filters, and their first and second
derivatives. The performance metric used was word error rate.
This configuration is used for all of the experiments described
in this section unless otherwise noted.

C. Speech Recognition Performance

Table II shows the recognition word error rate on DB1
using only the baseline recognizer, and using the baseline
recognizer with the speaker normalization procedures. The
first row reports the word error rate observed when testing
unwarped feature vectors using models trained on unwarped
feature vectors. The second row reports the error rate observed
using speaker normalization. The models were trained using
frequency-normalized feature vectors obtained after the first
iteration of the iterative HMM training procedure. The error
rates for utterances through the carbon and electret handsets
are shown separately in the second and third columns, and
averaged in the last column.

There are several observations that can be made from
Table II. First, it is clear from the table that the overall
word error rate is reduced by approximately 20% through
the use of frequency warping during both HMM training
and recognition. The second observation concerns the relative
error rate obtained using carbon and electret transducers. For
both conditions, the error rate for the carbon transducers is
significantly lower than that for the electret. These results
are consistent with those observed by [9], and a possible
explanation for the performance discrepancy was provided
there. Finally, this performance difference between carbon and
electret transducers is reduced after speaker normalization.

While it is important that speech recognition performance be
the final criterion for judging the performance of any speaker
normalization procedure, it is also important to understand the
behavior of the procedure at a more fundamental level. In the
remaining experiments presented in the section, the frequency
warping procedure is investigated in terms of its effect on the
distribution of the estimated warping factors and its effect on
the characteristics of the HMM.

D. Distribution of Chosen Warping Factors

In evaluating the effectiveness of the warping factor es-
timation procedure, two issues are of concern. First, while
there is no absolute measure of the “correct” warping factor
for each speaker, the chosen warping factors over the entire
speaker population should satisfy our intuition about the

TABLE II
WORD ERROR RATE BEFORE AND AFTER USING SPEAKER NORMALIZATION

distortions caused by vocal tract length variations. Secondly,
the normalization procedures should result in speech utterances
and model representations that exhibit reduced interspeaker
variation. These two issues are addressed in this and the next
sections.

Histograms of the chosen warping factors for the speakers
in the training set are shown in Fig. 5. On average, about
15 utterances are used to estimate the warping factor for
each speaker. The warping factors chosen for the males are
shown on top, and those for the females shown on the bottom.
The value of the estimated warping factor is displayed along
the horizontal axis, and the number of speakers who were
assigned to each given warping factor is plotted on the vertical
axis. Warping factors below 1.00 correspond to frequency
compression, and those above 1.00 correspond to frequency
expansion. The mean of warping factors is 1.00 for males,
0.94 for females, and 0.975 for all of the speakers.

Clearly, the average warping factor among males is higher
than that among females. This satisfies our intuition because
females tend to have shorter vocal tract lengths, and higher
formant frequencies. As a result, it is reasonable that the
normalization procedure chooses to compress the frequency
axis more often for female speech than for male speech.

At the same time, however, the fact that the mean of the
estimated warping factors over all speakers is not 1.00 is
somewhat surprising, because the iterative training process was
initiated with a model built with unwarped utterances. One
explanation for this result lies in the difference in the effective
bandwidth between utterances whose frequency axes have
been compressed or expanded to different degrees. One side
effect of frequency compression is the inclusion of portions of
the frequency spectrum that may have originally been out-of-
band. If parts of the discarded spectra carry information useful
for recognition, the maximum likelihood warping factor esti-
mation is likely to be biased toward frequency compression.

We note here that the mean of estimated warping factors
is not required to be 1.0 under model-based warping factor
estimation because any notion of a “reference” vocal tract
length must be considered in reference to the model parame-
ters. It is the relative differences in warping factors chosen for
different speakers which is most significant to the ability of
the procedure to generate a consistently frequency-normalized
feature set.

E. Warping Factor Estimation with Short Utterances

A major assumption made in the paper is that the vocal tract
length of the speaker is a long-term speaker characteristic.
Therefore, it is assumed that the variations in effective vocal
tract length due to the production of different sounds do
not significantly affect the warping factor estimation process.
Under this assumption, with “sufficient” amounts of data
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Fig. 5. Histogram of warping factors chosen for speakers in the training set.

for each utterance, the warping factor estimates should not
vary significantly among different utterances by the same
speaker. This section presents an experiment that attempted
to test and better understand this assumption by gathering
and examining statistics reflecting how the warping factor
estimates change across utterances of different durations for
the same speaker. These statistics also reflect the ability of the
maximum likelihood based warping factor estimation method
to generate reliable estimates even when the utterances are
very short.

In this experiment, the three-step speaker normalization
recognition procedure depicted in Fig. 2 was used on the data
in DB2, where approximately 100 utterances are available for
each of 22 speakers. The set of all utterancesfrom speaker

is divided roughly evenly into two sets based on the number
of digits in each utterance. The set of utterances containing
one or two digits is denoted by , and the set of utterances
containing three to seven digits is denoted by. For each
speaker , the means and standard deviations of the warping
factor estimates for utterances within each ofand are
computed. The differences between the means computed for

and are examined to observe any significant differences
in the warping factor estimates as the amount of available
data increases. The standard deviations are also compared to
see if the variance of warping factor estimates over different
utterances decreases with longer utterances.

Fig. 6 shows two plots in which the mean and standard
deviation of warping factor estimates for utterances inare
plotted against those statistics computed over, for all of
the speakers in DB2. In the top plot, the-axis denotes the
mean of the warping factor estimates among utterances in set

, and the -axis denotes the mean of the warping factor
estimates among utterances in set. Points marked by “*”

correspond to the female speakers, and those marked by “+”
correspond to the male speakers. In the bottom plot, the-axis
denotes the standard deviation of the warping factor estimates
among utterances in set, and the -axis denotes the standard
deviation of the warping factor estimates among utterances in
set . “X”’s are used to marked the data points. In both plots,
the line is drawn as a reference to aid in discussing the
trends in the plotted points.

Two important observations can be made based on the top
plot of Fig. 6. First, the means of the warping factor estimates
of the male speakers are always higher than those of the
female speakers regardless of the length of the utterance.
Second, the mean of the warping factor estimates over the
longer utterances is significantly higher than the mean over the
shorter utterances among the male speakers. This difference
ranged from only 1% to almost 7.5%. While the cause of
this trend is not clear, one possible explanation may be that
for the shorter utterances, a larger portion of the available
data consists of silences and other nonvoiced sounds for
which the frequency warping compensation model is not
appropriate. Since the test utterances are not endpointed, a
large portion of the single-digit utterances is not speech. The
computed likelihood over nonspeech frames may be higher
for feature vectors corresponding to frequency compression,
because frequency compression results in the inclusion of
portions of the frequency spectrum which would have been
discarded otherwise.

Two observations can be made from the second plot of
Fig. 6. First, it is clear that the standard deviation of the
warping factor estimates generally decreases for the set of
longer utterances. This implies that the warping factor es-
timation process does become more “stable” as the amount
of available data increases. Second, the standard deviation
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Fig. 6. Comparisons of means and standard deviations among utterances of different lengths.

of the warping factor estimates over the shorter utterances
is less than 0.04 for a majority of the speakers. Taking into
account that the possible warping factors are spaced 0.02
apart in the grid search process, we see that the warping
factor estimation process produces estimates that do not vary
greatly from utterance to utterance, depending on the particular
phonetic content of the utterance. Hence, these observations
are consistent with our assumption that the vocal tract length
of the speaker does not change significantly with the sound
being produced.

F. Convergence of Model Training Procedure

This section presents an experiment performed to under-
stand the convergence properties of the iterative training
procedure. In the standard Baum–Welch HMM training al-
gorithm, the likelihood of the training data with respect to the

models is mathematically guaranteed to increase at the end of
each iteration. While the iterative normalized-HMM training
procedure is not guaranteed to converge mathematically, we
study changes in recognition error rate on the training and test-
ing data as the number of training iterations is increased. This
experiment also serves to further test whether the frequency
warping procedures are indeed reducing the speaker variability
(at least in the training set), and that the normalized HMM’s
are becoming more efficient over the iterations.

Table III shows how the model likelihood and recognition
word error rate on the training and testing data changes as
the number of training iteration increases. In the table, the
second column shows the average log-likelihood of the warped
training data with respect to the frequency-normalized model.
The third column shows recognition performance when the
frequency-normalized models were used to decode the same
data that was used to train them. The fourth column shows
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TABLE III
AVERAGE MODEL LOG-LIKELIHOOD AND WORD ERROR RATE ON TRAINING AND

TESTING DATA AFTER 0–3 TRAINING ITERATIONS WHERE SPEAKER

NORMALIZATION WITH FREQUENCY WARPING IS APPLIED TO THETRAINING DATA

recognition results on the testing set using the three-step
process described in Section II-C. The model used for the
results shown in the first row, 0 iterations, was built with
unwarped data.

From the table, it is clear that multiple iterations increased
the likelihood of the data with respect to the model. The
improved performance on the training data shows that a signif-
icant amount of variance among the speakers in the training set
has been reduced. However, while multiple training iterations
improved the recognition performance on the training data
dramatically, recognition performance on the test data did
not improve. Additionally, it is interesting that using the
speaker normalization procedure during recognition with an
unnormalized HMM (first row of table) still offers a significant
improvement over the baseline. This is due to the fact that the
speaker normalization procedure used during recognition is, on
its own, reducing the amount of mismatch between the testing
speakers and the models of the training speakers.

IV. EFFICIENT APPROACHES TOSPEAKER ROBUST SYSTEMS

This section considers the frequency warping approach to
speaker normalization in terms of its computational require-
ments. It is also considered in relation to existing methods
designed to reduce the effects of speaker and channel vari-
ability on speech recognition performance. In comparing the
frequency warping approach to speaker normalization with
these other techniques, we gain additional insight into the
advantages and disadvantages of using this physiologically
motivated procedure over other “statistically based” compen-
sation and modeling procedures.

This section presents several sets of experimental results in
three parts. Section IV-A compares the performance of the
mixture based warping factor estimation procedure described
in Section II-C-2 with that achieved using variations of the
multiple-pass method. Section IV-B studies how speaker nor-
malization procedures compare with gender-dependent models
and cepstral mean normalization. Finally, Section IV-C studies
whether the effects of speaker normalization can be achieved
simply by using more parameters in the HMM. A closely
associated question is whether the complexity of the HMM’s
affects the amount of performance gain achieved by speaker
normalization.

A. Performance of Mixture Based Warping Factor Estimation

Table IV shows the results of applying the mixture based
warping factor estimation procedure described in Section II-

TABLE IV
PERFORMANCE OFMORE EFFICIENT SPEAKER

NORMALIZATION RECOGNITION PROCEDURES

C2. The first row of the table gives the error rate for the
baseline speech recognizer described in Section III-B without
frequency warping. The search method referred to as “HMM-
based” in the first column refers to the multiple-pass procedure
described in Section II-C1, which involves performing proba-
bilistic alignment with respect to a hypothesized transcription
at each possible warping factor. The second through fifth
rows of the table show the recognition performance when the
number of possible warping factor values is decreased from
13 to 3 points. The last row of the table shows the recognition
error rate when the mixture based warping factor estimation
method is used. Each of the mixtures used 32 multivariate
Gaussians. This experiment was performed on speech data
base DB1.

A comparison among rows two through five in Table IV
shows that using a successively smaller number of possible
warping factors results in a graceful degradation in perfor-
mance. The recognition error rate increased by only about
7.5% when the number of warping factors decreased from 13
to three. Compared with the baseline system with no frequency
warping, allowing only three possible warping factors still
offers a 15% reduction in error rate.

Comparing the second and last rows of the Table IV,
we see that using the mixture based search method also
results in about a 7.5% increase in error rate. This suggests
that the temporal information in the speech signal is indeed
useful for determining the warping factor. Despite the slightly
higher error rate, however, the computational complexity of
the warping factor estimation stage during recognition is
significantly reduced using the mixture based method.

B. Comparison with Other Approaches

There has been a large body of work on characterizing and
compensating for speaker variability in speech recognition.
In this section, speaker normalization is compared with two
other approaches to improve an ASR system’s robustness
to speaker variability. First, gender-dependent modeling, an
example of an approach to speaker class-dependent modeling,
is implemented and tested. Second, we investigate cepstral
mean normalization (CMN), an example of a technique that
uses long-term spectral averages to characterize fixed speaker
and channel characteristics. These techniques are described,
and the recognition results are presented below.

1) Gender-Dependent Models:In gender-dependent mod-
eling, two sets of HMM’s are trained: one using speech from
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TABLE V
PERFORMANCE OFSPEAKER NORMALIZATION PROCEDURES AS

COMPARED TO USING NO WARPING, TO USING GENDER-DEPENDENT

MODELS, AND TO CEPSTRAL MEAN NORMALIZATION

males and another using speech from females. During the
Viterbi search for the most likely state sequence in recognition,
these HMM’s are used to create two separate gender-specific
networks. Again, the maximum likelihood criterion is used
to find the best state sequence. Because the average vocal
tract length differs significantly between males and females
and GD modeling can capture such differences, GD models
can be considered to “approximate” the speaker normalization
process. For this reason, it is important to understand whether
the extra computational requirements of speaker normalization
results in higher performance.

2) Cepstral Mean Normalization:Long-term spectral aver-
ages have been used to characterize both speaker and channel
characteristics [5]. CMN is an example of one of these
techniques that has been successfully used in ASR to com-
pensate for both types of distortions. In our implementation
of CMN, the mean of the cepstral vectors in the nonsilence
portions of each utterance is assumed to characterize long-
term characteristics of the speaker and channel. Therefore,
the cepstral mean is computed and subtracted from the entire
utterance. Two processing steps are taken. First, an energy-
based speech activity detector is used over the entire utterance,
and the cepstral mean is computed over those frames that are
marked as speech. Then, new feature vectors are obtained
by subtracting this mean from each cepstral vector in the
utterance. In cases where long delays cannot be tolerated,
the estimate of the mean vector can be updated sequentially
by applying a sliding window to the utterance. The use of a
speech activity detector is also very important to the successful
application of this technique. Recognition performance has
been found to degrade when the mean vector is computed
over a large number of silence frames. By forcing the cepstral
mean to be zero for all utterances in training and in testing,
CMN compensates for differences in convolutional distortions
that may arise from either speaker and channel differences
between training and testing.

3) Experimental Results:Table V shows recognition word
error rates on DB1 using the baseline models, speaker normal-
ization, gender-dependent models, and CMN. The errors are
shown separately for utterances spoken through the carbon and
electret handsets in the first and second columns. The third
column shows the overall error rate. The baseline and speaker
normalization results are the same as those shown in Table
I. All models used eight to ten states per digit, and mixtures
of eight multivariate Gaussians as observation densities. We
note here that since two sets of models are used in gender-
dependent models, these models used twice the number of
model parameters as the other methods.

The overall results show that the error rates were reduced
by 20% with speaker normalization, by 15% with gender-
dependent models, and by 10% with CMN. For all of the
conditions in the experiment, recognition performance on the
test data spoken through the carbon transducers is better than
that for the electret transducers, even though the model was
trained from data spoken through both carbon and electret
tranducers. This result is consistent with those presented in
[9], and some possible explanations are presented there.

4) Speaker Normalization versus Class-Dependent Models:
Gender-dependent modeling is one example of a large class
of techniques where class-dependent models are trained for
different speaker groups according to gender, dialect, or by
automatic clustering of speakers [6], [10]. Using this set of
procedures, the separate HMM’s are used in parallel during
recognition to simultaneously determine the class that the
speaker belongs to, as well as the string transcription of the
utterance. It is important to realize that, with enough data, a
similar approach could be taken for the speaker normalization
procedures. One could train different sets of HMM’s using
training speakers assigned to each warping factor, and decode
using all of the HMM’s. However, one common problem
in training class-dependent models is that as the number of
classes increases, the models may become undertrained.

In class-dependent modeling techniques like gender-
dependent models, no attempt is made to explicitly char-
acterize and compensate for the defining aspects of different
classes in feature space so that the spaces modeled by the
class-dependent HMM’s can become more similar. As a result,
there is a need to build complete models carrying both phonetic
and classification information for each class. The amount of
available training data, therefore, limits the number of speaker
classes. In the speaker normalization approach, however, the
interclass differences are modeled using a relatively simple
parametrization and transformation. It is possible to transform
the data from different classes into the same class, and build
a model using all of the data, without the occurrence of
undertrained models even with a large number of classes. The
additional “resolution” in speaker class divisions allows for
better recognition performance with speaker normalization.
This is clear from the second and third rows in Table V,
where the gender-dependent models actually used double
the number of model parameters than speaker normalization.
The possibility of dividing the training speaker set into 13
different classes is a direct consequence of the physical model
and simple parameterization of the transformation process.

C. HMM Parameterization

This section attempts to determine whether the performance
improvements given by speaker normalization can be observed
by simply increasing the complexity of the HMM’s used.
When more Gaussians per mixture are used to represent the
observation density in each HMM state, the feature space
distribution can be more accurately described. However, more
complex HMM’s use more parameters, incurring greater stor-
age and computational requirements. Moreover, with a limited
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TABLE VI
PERFORMANCE OFSPEAKER NORMALIZATION

OVER DIFFERENT COMPLEXITY HMM’S

amount of training data, there may not be enough data to
reliably estimate all of the parameters of highly complex
HMM’s, resulting in undertrained models.

In this experiment, the size of the Gaussian mixtures used
in the observation densities is increased incrementally, and
the performance of using the baseline recognizer alone and
speaker normalization on DB1 is observed. The results are
shown in Table VI. The rows of the table show the recognition
results as the number of Gaussians used in each observation
density mixture is increased. The second and third columns
show the error rates of the baseline and speaker normalization
methods. The last column show the amount of error reduction
offered by frequency warping in percent.

From the baseline case, it is clear that as the number of
Gaussians per mixture increases to 32, the models become
undertrained, and no further performance improvements can
be observed. The table shows that when the baseline models
are not undertrained, using frequency warping with simpler
models results in error rates similar to those obtainable using
more complex models. The trade-off here is between the
computational requirements associated with the normalization
procedure and the memory storage requirements associated
with higher complexity models. When baseline models are
undertrained, however, it is clear that frequency warping is
better than simply increasing the complexity of the HMM
parameterization.

V. SUMMARY

In this paper, we developed and evaluated a set of speaker
normalization procedures that explicitly model and compen-
sate for the effects of variations in vocal tract length by linearly
warping the frequency axis of speech signals. The degree
of warping applied to each speaker’s speech was estimated
using the speaker’s utterance(s) within a model-based max-
imum likelihood framework. Using a model-based criterion
for estimating a warping function is extremely important.
Estimating a warping function that provides a better match
to the HMM model, instead of trying to solve the difficult
problem of obtaining an estimate of the “true” vocal tract
shape for a particular speaker, is much more likely to have an
impact on speech recognition performance. While there have
been many examples of more interesting frequency warping
transformations applied to speaker normalization in speech
recognition, none have used an optimization criterion that is
consistent with that used in the recognizer to estimate the
parameters of the transformation.

The effectiveness of this set of speaker normalization pro-
cedures was examined in an experimental study performed

using a telephone based digit recognition data base in which
the utterances are between one and seven digits in length.
Recognition results showed that using the frequency warping
approach to speaker normalization reduces the word error rate
by about 20% on this task. The best performance obtained
was a word error rate of 2.0%.

The frequency warping approach to speaker normalization
was compared to other simple methods for reducing the effects
of speaker and channel variability on speech recognition
performance. These methods included cepstral mean normal-
ization, gender-dependent modeling, and higher complexity
HMM parameterizations. Experimental results showed that
the physiologically based speaker normalization procedures
investigated in this paper perform significantly better than
these statistically motivated methods, which do not explicitly
model the effects of known physical sources of variation.

Several unresolved issues remain. The first is the parameter-
ization of the warping function used in speaker normalization.
A second issue is whether the procedure should be applied
at the segmental level as opposed to applying it to an entire
utterance. Finally, a last issue concerns the development of
a more consistent criterion for combining HMM parameter
estimation with speaker normalization during training. The
overall advantage of the procedure as it is currently imple-
mented is that it represents a very efficient physiologically
motivated procedure for reducing the mismatch between an
input utterance and a speech recognition model.
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