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A Frequency Warping Approach
to Speaker Normalization

Li Lee, Student Member, IEEEAnd Richard Roseylember, IEEE

Abstract—In an effort to reduce the degradation in speech
recognition performance caused by variation in vocal tract shape
among speakers, a frequency warping approach to speaker nor-
malization is investigated. A set of low complexity, maximum
likelihood based frequency warping procedures have been ap-
plied to speaker normalization for a telephone based connected
digit recognition task. This paper presents an efficient means
for estimating a linear frequency warping factor and a simple
mechanism for implementing frequency warping by modifying
the filterbank in mel-frequency cepstrum feature analysis. An
experimental study comparing these techniques to other well-
known techniques for reducing variability is described. The
results have shown that frequency warping is consistently able to
reduce word error rate by 20% even for very short utterances.

Index Terms—Continuous speech recognition, frequency warp-
ing, hidden Markov modeling, speaker normalization.

|. INTRODUCTION
NE MAJOR source of interspeaker variability in hidde

Markov model-based (HMM-based) continuous spee

recognition is the variation of vocal tract shape among spea . )
g P gsp f|%<—r‘rformed by Andreouet al. in that several techniques are

ers in a population. The positions of spectral formant peaks

utterances of a given sound are inversely proportional to tRE

length of the vocal tract. Since the vocal tract length can v
from approximately 13 cm for adult females to over 18 cm fi

adult males, formant center frequencies can vary by as mU&¥
as 25% between speakers. This source of variability results i

among speakers. These procedures attempted to solve the
difficult problem of estimating the formant positions that
correspond to the “true” vocal tract shape of each speaker,
and then compensating for these differences.

Recently, Andreoet al. proposed a set of maximum likeli-
hood based speaker normalization procedures to extract and
use acoustic features that are robust to variations in vocal
tract length [1]. The procedures reduced speaker dependent
variations between formant frequencies through a simple linear
warping of the frequency axis, which was implemented by
resampling the speech waveform in the time domain. However,
despite the simple form of the transformation being considered,
over five minutes of speech was used to estimate the warping
factor for each speaker in their study. While this and other
studies of frequency warping procedures have shown improved
speaker independent automatic speech recognition (ASR) per-
formance, the performance improvements were achieved at

EE’:: cost of highly computationally intensive procedures [11].

e work presented here represents an extension to that

roposed for making frequency warping methods efficient,
nd an experimental study is performed to characterize the
ehavior of these techniques on a telephone based speech
ognition task.

nUnlike other speaker normalization procedures, the tech-

a significant degradation from speaker dependent to speaRiues described in this paper make no attempt at uncover-

independent speech recognition performance. The contributld
of this paper is to describe a set of frequency warpiH

g information relating to the underlying vocal tract shape.
Qstead, the optimization criterion used to estimate the pa-

based speaker normalization techniques that are applied ifFE€ters of the frequency warping transformation is directly
single utterance based speech recognition paradigm. In thi@lgted to the degree of mismatch between the input ut-
procedures, the parameters of the frequency transformatf§fance and the speech recognition models. It was thought
that is applied to the utterance are estimated using orfiat the most reasonable means for estimating parameters
the samples from the utterance that is input to the spedBhany speaker normalization procedure should involve an

recognizer.

optimization criterion that is consistent with that used in the

Techniques that attempted to “normalize” parametric repréPeech recognizer. These techniques are applied in the context

sentations of the speech signal for the purpose of reducing

Hd1MM-based continuous speech recognition over the public

effects of interspeaker differences have been investigatedsititched telephone network.

the context of vowel identification [3], [7], [13]. Normalization The effectiveness and efficiency of these procedures are
was performed using linear and nonlinear frequency warpistydied from several different perspectives. In addition to
functions to compensate for variations in formant positiorgpeech recognition performance, experiments are performed
_ _ _ to evaluate the convergence properties of the proposed proce-
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how to most efficiently improve the speaker robustness of ASR Warping Factor Estimation

systems. The goal of such a study is to better understand th%onceptually, the warping factor represents the ratio be-
basic properties of speaker normalization so that the techniqgen a speaker's vocal tract length and some notion of
can become practical for use in existing applications. a reference vocal tract length. However, reliably estimating
The paper is organized as follows. The next section presepizq| tract length of speakers based on the acoustic data is
a detailed description of procedures for performing speakeryiticult problem. In the work described here, the warping
normalization in HMM based speech recognition. Procedurggor is chosen to maximize the likelihood of the normalized
which implement frequency warping, warping factor estimazayre set with respect to a given statistical model, so that
tion, model training, and recognition are described. A SiMp{Re “reference” is taken implicitly from the model parameters.
mixture based method that estimates the warping funcligye though lip movements and other variations change the
more efficiently during recognition is also presented. Sectiqgnqh of the vocal tract of the speaker according to the sound
Il presents an experimental study of the effectiveness gfing produced, it is assumed that these types of variations
the speaker normalization procedure for a telephone basgd gimilar across speakers, and do not significantly affect
connected digit recognition task. The data base, the tagke estimated warping factor. Therefore, one warping factor is
and the baseline speech recognition system are descriRedimated for each person using all of the available utterances.
The effectiveness of speaker normalization is examined frqf}igence supporting the validity of this assumption will be
several perspectives, including recognition performance sented in Section Il
convergence issues. In Section IV, the speaker normalizationrne warping factor estimation process is described mathe-
procedure is compared with other procedures designed {ayicaly as follows. The basic notation is defined here. In the
reduce the effects of speaker and channel variability, includiggqyt-time analysis of utterangefrom speaket, the samples
ggnder—dependent modeling and cgpstr_al mean normalizatignine +th speech frame, obtained by applying Afi-point
Discussion and summary are provided in Section V. tapered Hamming window to the sampled speech waveform,
are denoted withs; ; +[m]|, m =1 ... M. The discrete-time
Fourier transform o#;_ ; [m] is denoted a$; ; ,(w), and the

Il. A FREQUENCY WARPING APPROACH cepstral feature vectors obtained from this spectrum is denoted
TO SPEAKER NORMALIZATION asZ; j ¢+ The entire utterance is represented as a sequence of
) ) ) o feature VeCtOI’SXZ‘J = {fi7j7 1, fi7j7 2, v, fi,j,T}-
This section presents detailed descriptions of the proceqn the context of frequency warpin @ (w) is defined

dures used to implement a frequency warping approacht be S; , ,(aw). The cepstrum feature vectors that are
speaker normalization. These procedures attempt to redéggnputed from the warped spectrum is denotedzgs ,,
the interspeaker variation of speech sounds by compensati@ the warped representation of the utterance is represented
for variations in vocal tract length among speakers. Becauge a sequence of the warped feature vectdis, =
distortions caused by vocal tract length differences can ‘Pﬁ;’?j AT ok ’
modeled by a simple linear warping in the frequency domain Additionally, W; ; refers to the word level transcription of
of the speech signal, the normalization procedure scales thierance; from speakeri. This transcription can either be
signal frequency axis by an appropriately estimated warpiRgown in advance or obtained from the speech recognizer.
factor. o Finally, we let

It should also be noted that frequency warping is performed, Xe = {X2), X8,

in the context of speaker independent ASR, where speaker g,506 representations for all of the available utterances
independent HMM's are trained using utterances from a large o, speakeri, warped bya

population of speakers. The application of frequency warping, vy . — {Wi,1, Wi 2, -+, Wi n, } denote the set of tran-
to HMM training is investigated so that a speaker independent scriptions of all of the utte}aﬁces,

HMM can be produced that is defined over a frequency-, &; denote the optimal warping factor for speaker
normalized feature set. Frequency warping is applied during, ) genote a given HMM trained from a large population
recognition in order to reduce the mismatch between the test speakers.

utterance and the frequency-normalized HMM model. . : oA
. R ; . Then, the optimal warping factor for speakgrs;, is ob-
This section is divided into four parts. First, the warp:_. L e
. o . : . ained by maximizing the likelihood of the warped utterances
ing factor estimation process is presented in Section II-W.i h respect to the model and the transcriotions
Second, Section II-B describes the iterative procedure useé P P
to train HMM'’s using normalized feature vectors from the
training data. Section 1I-C describes procedures for warping
factor estimation and frequency warping during HMM speech
recognition. The first warping factor estimation procedurndowever, a closed-form solution fak from (1) is difficult
involves two recognition passes over the input utterande. obtain. This is primarily because frequency warping cor-
The second more efficient procedure treats frequency warpmegponds to a highly nonlinear transformation of the speech
as a set of “class-dependent” transformations. Finally, tihecognition features. Therefore, the optimum warping factor is
implementation of frequency warping as part of the filterbardbtained by searching over a grid of 13 factors spaced evenly

feature extraction front-end is described in Section II-D.  between 0.88< « < 1.12. This range ofv is chosen to

—

-+, X3y, } denote the set of feature

&; = arg max Pr (XA, W,). (1)
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of training

y_zt\ Pr (X0, W) > Pr(X,_1|\j_1, W). (4)
~______—| Aligning
- While this informal proof of convergence does not hold when

the data is divided in half, empirical evidence is presented in
Section Il to show that the model likelihood converges even

1. Train an HMM A; with 2. Choose &' in set A in that case
warped utterances in set T. to maximize Pr(X?I Ar, Wt ). )
Fig. 1. HMM training with speaker normalization. C. Recognition Procedure

. ~ During recognition, the goal is to warp the frequency scale
roughly reflect the 25% range in vocal tract lengths found isf each test utterance to “match” that of the normalized

adults. HMM model Ax. Unlike the training scenario, however,
only one testing utterance is used to estiméateand the
B. Training Procedure transcription is not given. Two procedures are discussed for

The goal of the training procedure is to appropriately warf aximgm Iikelihpod est_imation of_the warping factor. The
the frequency scale of the utterances for each speaker in tiigl, discussed in Section II-C1, is a three-step procedure
training set consistently, so that the resulting speaker indgat requires two recognition passes over the input utterance.
pendent HMM will be defined over a frequency-normalizedhe second procedure, described in Section 1I-C2, chooses
feature set. It is clear from (1) that the warping factor estim¥1€ correct warping transformation by classifying the input
tion process requires a preexisting speech model. Therefdfé€rance according to a set of “warp class” models before
an iterative procedure is used to alternately choose the b&gognition. _ _ .
warping factor for each speaker and then build a model using!) Multiple-Pass StrategySince no satisfactory solution
the warped training utterances. A diagram of the proceduref® direct form estimation of the warping factor in (1) has
shown in Fig. 1. been obtained, the optimui is found by aligning warped

First, the speakers in the training data are divided into twterances with respect to a hypothesized word string. The
sets, training 7) and aligning @). An HMM, Ar, is then following three-step process, as illustrated in Fig. 2, is used.
built using the utterances in sét Then, the optimal warping 1) The unwarped utteranck; ; and the normalized model
factor for each speaket in set A is chosen to maximize An are used to obtain a preliminary transcription of the
Pr (X¢|A\r, W;). Since we assume the vocal tract length to be  utterance. The transcription obtained from the unwarped
a property of the speaker, all of the utterances from the same features is denoted &d; ,.
speaker are used to estimatdor that speaker. Setd and 7T’ 2) & is found using (1) as follows:
are then swapped, and we iterate this process of training an
HMM with half of the data, and then finding the best warping
factor for the second half. A final frequency-normalized model,  The probability is evaluated by probabilistic alignment
A, is built with all of the frequency warped utterances when  of each warped set of feature vectors with the transcrip-
there is no significant change in the estimatid between tion W.

iterations. o 3) The utteranceX?; is decoded with the modely to
With a large amount of training data from a large number  optain the final recognition result.

of speakers, it may not be necessary to divide the data set int% Mixture Based Warping Factor Estimatiorin the ear-

half. If the data were not divided into two separate Sets, it " jiscyssions of warping factor estimation, the warping

can t?e easily shown that the it(_arative procedure of e,StimatiflaQ:tor is conceptualized simply as a representation of the
warping factors and then updating the model always INCr€as&fo between a speaker’s vocal tract length and some notion

the likelihood of the trained model with respect to the warp a reference vocal tract length. However, warping factor

da’Fa_. Suppose we usg,, to de”"te. the se_t ,Of all Warpedestimation can also be considered as a classification problem.
training vectors from all spea_kers in |tera_t|gn— 1, and During speaker normalization, each speaker is first classified
Aj-1 o Qenote the ”.‘Ode' trained V.V'th th|s_data_. Then, 'Becording to an estimate of his/her vocal tract length, and class-
reest_lmatmg the warping factor§ during thie |§er§t|on, the dependent transformations are then applied to the speech to
warping fgctor_s are chosen to increase the likelihood of t??eld a final feature set, which is used in recognition. From this
data setX;, with respect to};; point of view, speakers are placed into different classes based
Pr(leAj_l, W) > Pr (Xj_lp\j_b W). (2) on th_e warping factor estimated usin.g their utterance;, anq .the
warping factor can be better described as a class identifier.
In addition, the use of the Baum-Welch algorithm to trdin |ntuitively, the feature space distributions of untransformed
using X; guarantees the following: speech from the different classes of speakers would vary due
&1y &1y to the acoustic differences of speech produced by vocal tracts
PrX;h, W) 2 Pr(X; A, W). @) of different lengths. Therefore, if statistical models of the
By combining (2) and (3), it is seen that the likelihood of théeature space distribution of each class are available, it may be
data with respect to the model is increased with each iteratipassible to determine the warping factor by finding out which

& = arg max Pr (X7 | A, Wi ;).
p ,
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i _________________ 1 Fig. 3. Mixture based optimal factor estimation.
filterbank front-end can be modified to include frequency
CH A warping.
D& | | The standard Davis—Mermelstein filterbank front-end works
: Frequency & Recognizer | __Recognition by windowing the speech, calculating its magnitude spectrum,
p | Werping g ! Result passing that through a mel-scaled filterbank, and finally using
““““““““““““““““ an inverse cosine transform to arrive at the cepstrum [2]. While
Fig. 2. HMM recognition with speaker normalization. it is perhaps most intuitive to perform frequency warping by

resampling the speech in the time domain prior to passing

class distribution is most likely to have generated the givéf€ Signal through the front-end, it is possible and more
sequence of feature vectors. efﬂmgnt to push the warping process into thg filterbank front-

The mixture based warping factor estimation techniqd itself [5]. Frequency warping can be |mpIementiF|i by
described here is motivated by this classification perspectit&1Ply varying the spacing and width of the component filters
of speaker normalization. In training, after warping factor‘%f the filterbank without changing the original speech signal

have been determined for all of the speakers using the procE8& €xample, to compress the speech signal in the frequency
shown in Fig. 1, mixtures of multivariate Gaussians are train main, we keep the frequency scale of .the S|gn_al_the Same,
to represent the feature space distributions of each of tAut Stretch the frequency scale of the filters. Similarly, we
possible classes. That is, for each warping factor, mixtures &4NPress the filterbank frequencies to effectively stretch the
trained using thenwarpedeature vectors from utterances thapidnal frequency scale. This process is illustrated in Fig. 4.
were assigned to that warping factor. Then, during recognitio%',nce only one single DFT needs to be pe_rform_ed in each
the probability of the incoming utterance before frequendyAMe: there is no need to resample the original signal.
warping is evaluated against each of these distributions, and ) ) )
the warping factor is chosen for the distribution that yield§- Discussion of Bandwidth Differences
the highest likelihood over the entire utterance. The speech i3Vhen the frequency axis is warped linearly, the bandwidth
warped using this estimated warping factor, and the resultio§ the resulting signal differs from that of the original. For
feature vectors are then used for HMM decoding. A blodke experiments described in this work, the sampling rate
diagram describing this process is shown in Fig. 3. is fixed at 8 kHz, imposing a limit on the maximum signal
This mixture based method results in faster recognitidstandwidth of 4 kHz. However, with the warping factors
time, because it eliminates the need to obtain a preliminamnging between 0.88 and 1.12, the bandwidths of the warped
transcription using the unwarped utterance that is used &ignals range between 3.52 and 4.48 kHz. Since the search for
performing probabilistic alignment at all of the grid pointsthe “best” warping factor is made using a frequency band
However, unlike the method described in Section 1I-C, it dodsom 0 to 4 kHz, the compressed signals do not contain
not take advantage of the temporal information in the signaseful information over the entire 4 kHz, and the expanded
during warping factor estimation, so that the estimated warpisgnals contain information above 4 kHz that is not used.
factor may be less accurate. Different bandwidths that result from different warping factors
represent a source of mismatch between the warped signal and
the model. The filterbank front-end mitigates the mismatch
somewhat by blurring the exact location of the band-edge in
In the previous sections, the processes of HMM traininfpe warped signals. This results from the wide filters used near
and recognition with speaker normalization were defined ithe signal band-edge being almost 700 Hz wide.
dependent of the analysis method used to obtain the cepstrunDne possible solution to this problem is to consider warping
Here we describe how the Davis—Mermelstein mel-frequenfynctions that are piecewise linear or even nonlinear, such that

D. Filterbank Analysis with Frequency Warping
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Fig. 4. Mel filterbank analysis with warping.

the bandwidth of the warped signal is the same as that of thiethe convergence properties of the iterative procedure for
original. For example, a piecewise linear warping function likestimating the warping factor during HMM training.
the following may be considered:

af, 0< F< fo A. Task and Data Bases

G(f) =< fmax — afo . Two telephone based connected digit data bases were used
o fonee — fo (f = fo) +afo, fo<[< finax in this study. The first, DB1, was used in all of the speech
(5) recognition experiments. It was recorded in shopping malls
In (5), fmax denotes the maximum signal bandwidth, andcross 15 dialect-distinct regions of the United States, using
fo can be an empirically chosen frequency that falls abow®&o carbon and two electret handsets that were tested and
the highest significant formant in speech. The effect of classesind to be in good working condition. The size of the vo-
of functions like the above should be to reduce the effeatabulary was eleven words: “one” to “nine,” as well as “zero”
of discontinuities at the band-edge. Preliminary experimemiad “oh.” The speakers read digit strings between one and
using such a piecewise linear warping function for speakegven digits long in a continuous manner and the utterances
normalization suggested that they may indeed be more robwelre recorded over a long-distance telephone connection. Each
than a simple linear warping [12]. In addition, Oppenheintterance ranged from about 0.5 to 4 s in duration. The training
and Johnson described a set of nonlinear frequency warpingrances were endpointed, whereas the testing utterances
functions that are implementable by a series of allpass filtakgre not. All of the data was sampled at 8 kHz. Table |
and map the frequency range< w < 27 onto itself [8]. describes the training and testing sets in more detail.
However, because such warping functions have no simpleA second connected digit data base, DB2, was used to
correlation to physical sources of variations, only the lineavaluate properties of the speaker normalization procedures
warping function is used in this paper, and exploration of oth@rmich required more data per speaker than available in DB1.

functions is left for future work. DB2 was taken from one of the dialect regions used for
DB1, but contains a larger number of utterances per speaker.
IIl. BASELINE EXPERIMENTS In DB2, approximately 100 digit strings were recorded for

. . . each speaker. A total of 2239 utterances, or 6793 digits, were
This section presents an experimental study of the effec-".
. A . vailable from 22 speakers (ten males, 12 females).
tiveness of the speaker normalization procedures described'| : ;
hroughout this paper, word error rate is used to evaluate the

Section Il. The principle measure of effectiveness is speech : : .

. i o rformance of various techniques. The error rate is computed
recognition performance obtained on a connected digit speé)cen )

" ition &% follows:
recognition task over the telephone network. In addition 0
characterizing the effect on speech recognition performance, a % Error = 100 - Sub+ Del + Ins (6)
number of additional issues are investigated and discussed. 0 B Total Number of Words
Experiments were_per_formed to understand the_ab|llty 9Yf<here “Sub” is the number of substitutions, “Del” is the
the speaker normalization procedures to decrease interspeaker . G ) )

e . X ._number of deletions, and “Ins” is the number insertions. These
variability, and to produce normalized HMM'’s that describe g . : . _
y guantities are found using a dynamic programming algorithm
the data more efficiently. . . . ; :
ST . ) to obtain the highest scoring alignment between the recognized
The section is divided into five parts. After the task, data : .
; . : . rd string and the correct word string.
base, and speech recognizer are described in Sections e
A and 1lI-B, ASR performance before and after speaker ) )
normalization is presented in Section III-C. Section III-03>- Baseline Speech Recognizer
presents an analysis of the distribution of the chosen warpingThe experiments described in this paper have been con-
factors among the speakers in the training set to veriflucted using an HMM speech recognition system built at
the effectiveness of the maximum likelihood warping factohT&T. Each digit was modeled by eight to ten state continuous
estimation procedure. Section IlI-E presents statistics on ttensity left-to-right HMM's. In addition, silence was explicitly
ability of the warping factor estimation procedure to generateodeled by a single state HMM. The observation densities
reliable estimates on very short utterances of only one or twm@re mixtures of eight multivariate Gaussian distributions with
digits in length. Finally, Section IlI-F provides empirical studydiagonal covariance matrices. Thirty-nine dimensional feature
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TABLE | TABLE 1
Data Base DB1 DeScCRIPTION THE Rows LABELED “CARBON UTTERANCES' WORD ERROR RATE BEFORE AND AFTER USING SPEAKER NORMALIZATION
AND “ELECTRET UTTERANCES' CORRESPOND TO THENUMBER OF UTTERANCES —
THAT WERE RECORDED USING CARBON AND ELECTRET HANDSET TRANSDUCERS Condition Carbon | Electret All
S T n Baseline 2.8 % 41% [34%
- aining Set | Testing se Speaker Normalization | 2.4 % 31% | 27%
# digits 26717 13185
# total utterances 8802 4304
# carbon utterances ig?{g giiz distortions caused by vocal tract length variations. Secondly,
# electret utterances the normalization procedures should result in speech utterances
# male speakers 372 289 and model representations that exhibit reduced interspeaker
# female speakers 341 307

variation. These two issues are addressed in this and the next
sections.

vectors were used: normalized enerefit]-c[12] derived from  Histograms of the chosen warping factors for the speakers

a mel-spaced filterbank of 22 filters, and their first and secoffl the training set are shown in Fig. 5. On average, about

derivatives. The performance metric used was word error ral& utterances are used to estimate the warping factor for

This configuration is used for all of the experiments describeéch speaker. The warping factors chosen for the males are

in this section unless otherwise noted. shown on top, and those for the females shown on the bottom.
N The value of the estimated warping factor is displayed along
C. Speech Recognition Performance the horizontal axis, and the number of speakers who were

Table 1l shows the recognition word error rate on DB@ssigned to each given warping factor is plotted on the vertical
using only the baseline recognizer, and using the baselid¥s. Warping factors below 1.00 correspond to frequency
recognizer with the speaker normalization procedures. TR@Mpression, and those above 1.00 correspond to frequency
first row reports the word error rate observed when testiPansion. The mean of warping factors is 1.00 for males,
unwarped feature vectors using models trained on unwarge§4 for females, and 0.975 for all of the speakers.
feature vectors. The second row reports the error rate observeglearly, the average warping factor among males is higher
using speaker normalization. The models were trained usiﬂi@n that among females. This satisfies our intuition because
frequency-normalized feature vectors obtained after the fif§fnales tend to have shorter vocal tract lengths, and higher
iteration of the iterative HMM training procedure. The erroformant frequencies. As a result, it is reasonable that the
rates for utterances through the carbon and electret handéé&nalization procedure chooses to compress the frequency
are shown separately in the second and third columns, akgs more often for female speech than for male speech.
averaged in the last column. At the same time, however, the fact that the mean of the

There are several observations that can be made fré§timated warping factors over all speakers is not 1.00 is
Table II. First, it is clear from the table that the overalfOmewhat surprising, because the iterative training process was
word error rate is reduced by approximately 20% throug’ﬁitiated with a model built with unwarped utterances. One
the use of frequency warping during both HMM trainingexplanation for this result lies in the difference in the effective
and recognition. The second observation concerns the relatd@dwidth between utterances whose frequency axes have
error rate obtained using carbon and electret transducers. f8gn compressed or expanded to different degrees. One side
both conditions, the error rate for the carbon transducerseffect of frequency compression is the inclusion of portions of
significantly lower than that for the electret. These resultge frequency spectrum that may have originally been out-of-
are consistent with those observed by [9], and a possitiand. If parts of the discarded spectra carry information useful
explanation for the performance discrepancy was providé®l recognition, the maximum likelihood warping factor esti-
there. Finally, this performance difference between carbon af@tion is likely to be biased toward frequency compression.
electret transducers is reduced after speaker normalization. Ve note here that the mean of estimated warping factors

While it is important that speech recognition performance & not required to be 1.0 under model-based warping factor
the final criterion for judging the performance of any speak&stimation because any notion of a “reference” vocal tract
normalization procedure, it is also important to understand thggth must be considered in reference to the model parame-
behavior of the procedure at a more fundamental level. In tHS. Itis the relative differences in warping factors chosen for
remaining experiments presented in the section, the frequesfifferent speakers which is most significant to the ability of
warping procedure is investigated in terms of its effect on tf{g€ procedure to generate a consistently frequency-normalized
distribution of the estimated warping factors and its effect dgature set.
the characteristics of the HMM.

E. Warping Factor Estimation with Short Utterances

D. Distribution of Chosen Warping Factors A major assumption made in the paper is that the vocal tract
In evaluating the effectiveness of the warping factor efength of the speaker is a long-term speaker characteristic.
timation procedure, two issues are of concern. First, whileherefore, it is assumed that the variations in effective vocal
there is no absolute measure of the “correct” warping facttract length due to the production of different sounds do
for each speaker, the chosen warping factors over the entia significantly affect the warping factor estimation process.
speaker population should satisfy our intuition about thénder this assumption, with “sufficient” amounts of data
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Fig. 5. Histogram of warping factors chosen for speakers in the training set.

for each utterance, the warping factor estimates should matrespond to the female speakers, and those marked by “+”
vary significantly among different utterances by the sanworrespond to the male speakers. In the bottom plotythgis
speaker. This section presents an experiment that attempledotes the standard deviation of the warping factor estimates
to test and better understand this assumption by gatheramgong utterances in s8f, and they-axis denotes the standard
and examining statistics reflecting how the warping factaeviation of the warping factor estimates among utterances in
estimates change across utterances of different durations detL;. “X™'s are used to marked the data points. In both plots,
the same speaker. These statistics also reflect the ability of the liney = « is drawn as a reference to aid in discussing the
maximum likelihood based warping factor estimation methddends in the plotted points.
to generate reliable estimates even when the utterances arBwvo important observations can be made based on the top
very short. plot of Fig. 6. First, the means of the warping factor estimates
In this experiment, the three-step speaker normalizatioh the male speakers are always higher than those of the
recognition procedure depicted in Fig. 2 was used on the dé¢aale speakers regardless of the length of the utterance.
in DB2, where approximately 100 utterances are available fSecond, the mean of the warping factor estimates over the
each of 22 speakers. The set of all utterare$rom speaker longer utterances is significantly higher than the mean over the
¢ Is divided roughly evenly into two sets based on the numbehorter utterances among the male speakers. This difference
of digits in each utterance. The set of utterances containiranged from only 1% to almost 7.5%. While the cause of
one or two digits is denoted by;, and the set of utterancesthis trend is not clear, one possible explanation may be that
containing three to seven digits is denoted by For each for the shorter utterances, a larger portion of the available
speakeri, the means and standard deviations of the warpimigta consists of silences and other nonvoiced sounds for
factor estimates for utterances within each%fand L; are which the frequency warping compensation model is not
computed. The differences between the means computed dppropriate. Since the test utterances are not endpointed, a
S; and L; are examined to observe any significant differencéasrge portion of the single-digit utterances is not speech. The
in the warping factor estimates as the amount of availaldemputed likelihood over nonspeech frames may be higher
data increases. The standard deviations are also comparefbtdeature vectors corresponding to frequency compression,
see if the variance of warping factor estimates over differebécause frequency compression results in the inclusion of
utterances decreases with longer utterances. portions of the frequency spectrum which would have been
Fig. 6 shows two plots in which the mean and standadiscarded otherwise.
deviation of warping factor estimates for utterancesjrare Two observations can be made from the second plot of
plotted against those statistics computed olgr for all of Fig. 6. First, it is clear that the standard deviation of the
the speakers in DB2. In the top plot, theaxis denotes the warping factor estimates generally decreases for the set of
mean of the warping factor estimates among utterances in legtger utterances. This implies that the warping factor es-
S;, and they-axis denotes the mean of the warping factdimation process does become more “stable” as the amount
estimates among utterances in égt Points marked by “*" of available data increases. Second, the standard deviation
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Fig. 6. Comparisons of means and standard deviations among utterances of different lengths.

of the warping factor estimates over the shorter utterance®dels is mathematically guaranteed to increase at the end of
is less than 0.04 for a majority of the speakers. Taking in&mach iteration. While the iterative normalized-HMM training
account that the possible warping factors are spaced Ogf¥dcedure is not guaranteed to converge mathematically, we
apart in the grid search process, we see that the warpgt@dy changes in recognition error rate on the training and test-
factor estimation process produces estimates that do not vy data as the number of training iterations is increased. This
greatly from utterance to utterance, depending on the particudstperiment also serves to further test whether the frequency
phonetic content of the utterance. Hence, these observatiom—ping procedures are indeed reducing the speaker variability
are consistent with our assumption that the vocal tract leng#t least in the training set), and that the normalized HMM’s
of the speaker does not change significantly with the sougge becoming more efficient over the iterations.
being produced. Table 11l shows how the model likelihood and recognition
word error rate on the training and testing data changes as
the number of training iteration increases. In the table, the
F. Convergence of Model Training Procedure second column shows the average log-likelihood of the warped
This section presents an experiment performed to undéaining data with respect to the frequency-normalized model.
stand the convergence properties of the iterative trainifigne third column shows recognition performance when the
procedure. In the standard Baum-Welch HMM training afrequency-normalized models were used to decode the same
gorithm, the likelihood of the training data with respect to thdata that was used to train them. The fourth column shows
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TABLE 111 TABLE IV
AVERAGE MODEL LOG-LIKELIHOOD AND WORD ERROR RATE ON TRAINING AND PERFORMANCE OF MORE EFFICIENT SPEAKER
TESTING DATA AFTER 0—3 TRAINING |ITERATIONS WHERE SPEAKER NORMALIZATION RECOGNITION PROCEDURES
NORMALIZATION WITH FREQUENCY WARPING IS APPLIED TO THE TRAINING DATA
_ _ Search method # Search pts. | Error Rate

No. of Iter. | Model Log-Likelihood | Train Set | Test Set Baseline(No warping) 0 3.4%
0 2208 ZA% | 207 FVM based 13 27
5 '31'13 3 (7" 59 7" HMM-based 7 2.8%
3 '31'09 I3 (; X (7" HMM-based 5 2.8%
el A A HMM-based 3 2.9%
Mixture-based [ 13 | 2.9%

recognition results on the testing set using the three-step

procEss gescrlbedthln f_Sef[:tlon ”E)C:t Th? model ussd_ltfor ttEez The first row of the table gives the error rate for the
results shown in the first row, ©-iterations, was bullt wi lE)aseline speech recognizer described in Section 11I-B without

unwarped data. frequency warping. The search method referred to as “HMM-

From the table, it is clear that multiple iterations increasggl ..y i the first column refers to the multiple-pass procedure

the likelihood of the data with respect to the model. Th&fscribed in Section 1I-C1, which involves performing proba-
[

!mproved performance on the training data shqws that a SI9Wjristic alignment with respect to a hypothesized transcription
icant amount of variance among the speakers in the training Sfleach possible warping factor. The second through fifth

_has been reduced, H(_)\_/vever, while multiple training i'Feratiorllgws of the table show the recognition performance when the
improved the recognition performance on the training dajg, et of possible warping factor values is decreased from
dramatically, recognition performance on the test data i

b Additionally. it is int tina that using th to 3 points. The last row of the table shows the recognition
not Improve. ttionally, 1t 1S Interesting that using &, rate when the mixture based warping factor estimation

speaker normalization procedure during recognition With ey js used. Each of the mixtures used 32 multivariate

_unnormalized HMM (first row of tabl_e).still OﬁersaSigniﬁcamGaussians. This experiment was performed on speech data
improvement over the baseline. This is due to the fact that tBSse DB1

speaker normalization procedure used during recognition is, o comparison among rows two through five in Table IV

its own, reducing the amount of m|sr_n§1tch between the testidfows that using a successively smaller number of possible
speakers and the models of the training speakers. warping factors results in a graceful degradation in perfor-

mance. The recognition error rate increased by only about
IV. EFFICIENT APPROACHES TOSPEAKER ROBUST SysTEMs  7.5% when the number of warping factors decreased from 13

to three. Compared with the baseline system with no frequency

This section considers the frequency warping approach iy ning, allowing only three possible warping factors still
speaker normalization in terms of its computational requirgsers a 15% reduction in error rate.
ments. It is also considered in relation to existing methOdSComparing the second and last rows of the Table IV,
designed to reduce the effects of speaker and channel Vil see that using the mixture based search method also
ability on speech recognition performance. In comparing theg ts in about a 7.5% increase in error rate. This suggests
frequency warping approach to speaker normalization Wil the temporal information in the speech signal is indeed
these other techniques, we gain additional insight into thRefy| for determining the warping factor. Despite the slightly
advantages and disadvantages of using this physiologicg{{yner error rate, however, the computational complexity of
motivated procedure over other “statistically based” compefje warping factor estimation stage during recognition is

sation and modeling procedures. _ significantly reduced using the mixture based method.
This section presents several sets of experimental results in

three parts. Section IV-A compares the performance of the _ _
mixture based warping factor estimation procedure describBd Comparison with Other Approaches

in Section 1I-C-2 with that achieved using variations of the +o1a has been a large body of work on characterizing and
mu:yplg—pass m%thod. Section IV'_Bh StUdéeS ZOW sp()jeaker n?(?mpensating for speaker variability in speech recognition.
malzation procedures compare W't. gender-gepen ent MOGHhis section, speaker normalization is compared with two
and cepstral mean normalization. Finally, Section IV-C StUd'%?Qer approaches to improve an ASR system’s robustness
whether the effects of speaker normalization can be achlevtg speaker variability. First, gender-dependent modeling, an

simply by using more parameters in the HMM' A Closeh,éxample of an approach to speaker class-dependent modeling,
associated question is whether the complexity of the HMM'§ implemented and tested. Second, we investigate cepstral

affects the amount of performance gain achieved by Spea“r‘?éan normalization (CMN), an example of a technique that
normalization. '

uses long-term spectral averages to characterize fixed speaker
] ) .. and channel characteristics. These techniques are described,
A. Performance of Mixture Based Warping Factor Estimatioq,,§ the recognition results are presented below.

Table IV shows the results of applying the mixture based 1) Gender-Dependent Modeldn gender-dependent mod-
warping factor estimation procedure described in Section Bing, two sets of HMM'’s are trained: one using speech from
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TABLE V The overall results show that the error rates were reduced
PERFORMANCE OF SPEAKER NORMALIZATION PROCEDURES AS by 20% with speaker normalization, by 15% with gender-
ComPARED TO USING NO WARPING, TO USING GENDER-DEPENDENT o .
MoDELS, AND TO CEPSTRAL MEAN NORMALIZATION depe.n_dent.models, an.d by 10% W'_th CMN. For all of the
conditions in the experiment, recognition performance on the

Condition Carbon | Electret | Both .
Bascline(no warping) 2.8% 1% | 3.4% test data spoken through the carbon transducers is better than

Speaker Normalization | 2.4% 31% | 2.7% that for the electret transducers, even though the model was
GD Models 2.3% 3.4% | 2.9% trained from data spoken through both carbon and electret
CMN 2.5% 3.7% | 31% tranducers. This result is consistent with those presented in

[9], and some possible explanations are presented there.

4) Speaker Normalization versus Class-Dependent Models:
males and another using speech from females. During 3ender-dependent modeling is one example of a large class
Viterbi search for the most likely state sequence in recognitiogf, techniques where class-dependent models are trained for
these HMM's are used to create two separate gender-specififerent speaker groups according to gender, dialect, or by
networks. Again, the maximum likelihood criterion is use@utomatic clustering of speakers [6], [10]. Using this set of
to find the best state sequence. Because the average vgggtedures, the separate HMM's are used in parallel during
tract length differs significantly between males and femalgscognition to simultaneously determine the class that the
and GD modeling can capture such differences, GD modelseaker belongs to, as well as the string transcription of the
can be considered to “approximate” the speaker normalizatigflerance. It is important to realize that, with enough data, a
process. For this reason, it is important to understand whetlgfjjar approach could be taken for the speaker normalization
the extra computational requirements of speaker normalizatig;bcedures' One could train different sets of HMM's using
results in higher performance. training speakers assigned to each warping factor, and decode

2) Cepstral Mean NormalizationLong-term spectral aver- ;sing all of the HMM's. However, one common problem
ages have been used to characterize both speaker and Che}ﬂ”ﬁ"gining class-dependent models is that as the number of
characteristics [5]. CMN is an example of one of thesgasses increases, the models may become undertrained.
techniques that has been successfully used in ASR to comy, class-dependent modeling techniques like gender-
pensate for both types of distortions. In our implemen_tatiqgnapendent models, no attempt is made to explicitly char-
of CMN, the mean of the cepstral vectors in the nonsilenc@yarize and compensate for the defining aspects of different
portions of each utterance is assumed to characterize 10Qfsces in feature space so that the spaces modeled by the
term characteristics of the speaker and channel. Therefoé%ss-dependent HMM'’s can become more similar. As a result,

the cepstral mean is computed and subtracted from the eNfitEre is a need to build complete models carrying both phonetic

utterance. Two processing steps are taken. First, an enerdXa classification information for each class. The amount of

based speech activity dgtector is used over the entire Utterar%1‘§}?‘jiilable training data, therefore, limits the number of speaker
and the cepstral mean is computed over those frames that

'@%ses. In the speaker normalization approach, however, the
marked as speech. Then, new feature vectors are obtain P bp

: : - Interclass differences are modeled using a relatively simple
by subtracting this mean from each cepstral vector in the L : : .
rametrization and transformation. It is possible to transform

utterance. In cases where long delays cannot be tolerated, : . :
) .Ihe data from different classes into the same class, and build

the estimate of the mean vector can be updated sequential . .

: - . a ‘model using all of the data, without the occurrence of
by applying a sliding window to the utterance. The use of a

- . . dertrained models even with a large number of classes. The
speech activity detector is also very important to the success 9

application of this technique. Recognition performance h dtglrorgglcorisi':i)cl::]“olrfl(;]rnswgiige\r/vi?rfsss s;\/l(lzlrogf)ril:gl\?gt:g;
been found to degrade when the mean vector is compu e& . 9 P P . '
Is is clear from the second and third rows in Table V,

over a large number of silence frames. By forcing the cepstr
mean to be zero for all utterances in training and in testin a#ere the gender-dependent models actually used .doqble
number of model parameters than speaker normalization.

CMN compensates for differences in convolutional distortio N o o - .
that may arise from either speaker and channel differenc;%%e possibility of dividing the training speaker set into 13
ifferent classes is a direct consequence of the physical model

between training and testing. i L i
3) Experimental ResultsTable V shows recognition word and simple parameterization of the transformation process.

error rates on DB1 using the baseline models, speaker normal-

ization, gender-dependent models, and CMN. The errors &e HMM Parameterization

shown separately for utterances spoken through the carbon and

electret handsets in the first and second columns. The thirdThis section attempts to determine whether the performance
column shows the overall error rate. The baseline and speakeprovements given by speaker normalization can be observed
normalization results are the same as those shown in Table simply increasing the complexity of the HMM'’s used.

I. All models used eight to ten states per digit, and mixturé&hen more Gaussians per mixture are used to represent the
of eight multivariate Gaussians as observation densities. Weservation density in each HMM state, the feature space
note here that since two sets of models are used in gendtistribution can be more accurately described. However, more
dependent models, these models used twice the numbercafmplex HMM's use more parameters, incurring greater stor-

model parameters as the other methods. age and computational requirements. Moreover, with a limited
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TABLE VI using a telephone based digit recognition data base in which

PERFORMANCE OF SPEAKER NORMALIZATION the utterances are between one and seven digits in length.

OVER DIFFeReNT CompLexTy HMM's Recognition results showed that using the frequency warping

# Gaussians/mix. | Baseline | Warping | % Improvement approach to speaker normalization reduces the word error rate

8 34% | 27% 20 % by about 20% on this task. The best performance obtained
16 28% | 24% 14 % was a word error rate of 2.0%.

24 2.3 % 20 % 13 % The frequency warping approach to speaker normalization

32 27 % — — was compared to other simple methods for reducing the effects

of speaker and channel variability on speech recognition
performance. These methods included cepstral mean normal-

amount of training data, there may not be enough data i#@tion, gender-dependent modeling, and higher complexity
reliably estimate all of the parameters of highly compleklMM parameterizations. Experimental results showed that
HMM'’s, resulting in undertrained models. the physiologically based speaker normalization procedures

In this experiment, the size of the Gaussian mixtures usiyestigated in this paper perform significantly better than
in the observation densities is increased incrementally, affgse statistically motivated methods, which do not explicitly
the performance of using the baseline recognizer alone ana@del the effects of known physical sources of variation.
speaker normalization on DB1 is observed. The results areSeveral unresolved issues remain. The first is the parameter-
shown in Table VI. The rows of the table show the recognitio@ation of the warping function used in speaker normalization.
results as the number of Gaussians used in each observafiopecond issue is whether the procedure should be applied
density mixture is increased. The second and third colum@atthe segmental level as opposed to applying it to an entire
show the error rates of the baseline and speaker normalizatiigrance. Finally, a last issue concerns the development of
methods. The last column show the amount of error reductianmore consistent criterion for combining HMM parameter
offered by frequency warping in percent. estimation with speaker normalization during training. The

From the baseline case, it is clear that as the number @ferall advantage of the procedure as it is currently imple-
Gaussians per mixture increases to 32, the models becomented is that it represents a very efficient physiologically
undertrained, and no further performance improvements dawtivated procedure for reducing the mismatch between an
be observed. The table shows that when the baseline modefit utterance and a speech recognition model.
are not undertrained, using frequency warping with simpler
models results in error rates similar to those obtainable using
more complex models. The trade-off here is between the REFERENCES
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