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ABSTRACT

This paper introduces a filter bank interpretation of various sam-
pling strategies, which leads to efficient interpolation and recon-
struction methods. An identity, referred to as the Interpolation
Identity, is used to obtain particularly efficient discrete-time (DT)
systems for interpolation to uniform Nyquist samples, either for
further processing in that form or for conversion to continuous-
time (CT). The Interpolation Identity also leads to a new class of
sampling theorems including an extension of Papoulis' general-
ized sampling expansion.

1. INTRODUCTION

Discrete-time signal processing (DSP) inherently relies on sam-
pling a continuous time signal to obtain a DT representation of the
signal. The most common form of sampling used in the context
of DSP is uniform (periodic) sampling. However, there are a va-
riety of applications in which data is sampled in other ways, such
as nonuniformly in time or through multichannel data acquisition.
There are also applications where we can benefit from deliberately
introducing more elaborate sampling schemes.

Several extensions of the uniform sampling theorem are well
known. Specifically, it is well established that a bandlimited sig-
nal can be uniquely determined from nonuniform samples, pro-
vided that the average sampling rate exceeds the Nyquist rate ([7]).
However, in contrast to uniform sampling, reconstruction of the
CT signal from nonuniform samples using the direct interpolation
procedure is computationally difficult. Several alternative recon-
struction methods from nonuniform samples have been previously
suggested. These methods involve iterative algorithms (e.g. [1])
which are computationally demanding and have potential issues of
convergence. Another well known sampling theorem by Papoulis
([5]), which generalizes uniform sampling of a signal, states that
a bandlimited signal can be reconstructed from uniformly spaced
samples of the outputs of linear time-invariant (LTI) systems
with the signal as their input, sampled at one- ' th of the Nyquist
rate. However, the reconstruction from these generalized samples
is again computationally complex. In order to exploit alternative
sampling methods in various applications practical, efficient re-
construction algorithms are required.

In this paper we formulate an identity that leads to efficient
reconstruction methods from generalized samples, as well as ef-
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ficient interpolation to uniformly spaced samples. We then de-
velop a new non-iterative approach to reconstruction from recur-
rent nonuniform samples. The resulting procedure consists of pro-
cessing the samples with a bank of LTI filters either to reconstruct
the original bandlimited CT signal or to interpolate the recurrent
nonuniform samples to uniformly spaced samples. In addition to
offering efficient implementations, the filter bank framework leads
to a new class of sampling theorems. As an example, we show that
applying the identity to perfect reconstruction filter banks results
in a generalization of Papoulis' sampling theorem ([5]).

2. THE INTERPOLATION IDENTITY

Throughout the paper we use the variables and to denote fre-
quency variables for CT and DT respectively. Capital letters are
used to denote the Fourier transform. Parentheses are used for
CT signals, and brackets for DT signals. We assume that all sig-
nals are bandlimited to , i.e. their Fourier transform is zero for

. denotes the Nyquist period given by .
We use the notation depicted in Fig. 1 to denote conversion of a
sequence of samples to a CT signal where

.

Figure 1: Converting samples to a CT signal .

The following equivalence, which we refer to as the Interpo-
lation Identity, will be used in subsequent sections to arrive at effi-
cient implementations of the reconstruction from generalized and
nonuniformly spaced samples. The proof of a more general form
of this identity is given in [2].

The Interpolation Identity: for any CT signal and im-
pulse response with corresponding frequency response
bandlimited to the block diagrams depicted in Fig. 2(a)
and 2(b) with

(1)

and are equivalent.
The block diagram of Fig. 2(a) consists of converting a se-

quence of samples to a CT signal followed by CT filtering. The
block diagram of Fig. 2(b) consists of expanding the sequence of
samples by a factor of . The expanded output is then filtered
by a DT filter with frequency response given by (1), followed by
impulse modulation and CT low-pass filtering.
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Figure 2: The Interpolation Identity.

Note, that (1) implies that where is the
DT impulse response associated with . Since , the
sequence is in general an undersampled representation of

and consequently is in general an aliased reconstruc-
tion from these samples.

3. INTERPOLATION AND RECONSTRUCTION FROM
SAMPLES OF A SIGNAL AND ITS DERIVATIVE

As an example of the application of the Interpolation Identity con-
sider sampling a signal and its derivative. It is well known that a
signal can be recovered from samples of the signal and its deriva-
tive at half the Nyquist rate ([3]) using the reconstruction formula

sinc
(2)

where and . Note that

the sequences and are undersampled representations of
and respectively.

Eq. (2) can be implemented using the CT filter bank (CTFB)
depicted in Fig. 3, with sinc and
sinc . If instead of reconstructing we are

Figure 3: Reconstruction from samples of a signal and its deriva-
tive at half the Nyquist rate.

interested in converting and to uniform Nyquist sam-
ples of , the interpolation formula is obtained by substituting

in (2).
Interpolation and reconstruction of using (2) are difficult

to implement directly. However, both interpolation and reconstruc-
tion can be implemented in a simpler form by applying the Inter-
polation Identity to the system in Fig. 3. Specifically, the CTFB
of Fig. 3 can be converted to a DT filter bank (DTFB) followed
by a CT low-pass filter (LPF). Applying the equivalence of Fig. 2
to each branch in Fig. 3 and moving the identical impulse train
modulation and LPF in each branch outside the summer we obtain

the equivalent implementation in Fig. 4 where
for . As with the CTFB, the overall output of Fig. 4 is
the original CT signal . Since is reconstructed through
low-pass filtering of a uniformly spaced impulse train, the impulse
train values must correspond to uniformly spaced samples of

at the Nyquist rate. Thus, the DTFB provides a DT mech-
anism for converting the generalized samples to uniform Nyquist
samples.

Using the DTFB of Fig. 4 we can reconstruct the CT signal
very efficiently from samples of the signal and its derivative by
exploiting the many known results regarding efficient implemen-
tation of the filters comprising a DTFB (see e.g. [6]). By following
an analogous procedure, we can arrive at efficient interpolation and
reconstruction methods for other forms of generalized samples. In
the next section we focus on efficient implementation of the recon-
struction from recurrent nonuniform samples using a bank of CT
and DT filters.

Figure 4: Interpolation and reconstruction using a DTFB.

4. RECURRENT NONUNIFORM SAMPLING

It is well established that a CT signal can be reconstructed
from its samples at a set of sampling times if the average
sampling period is smaller than the Nyquist period, where the av-
erage sampling period is defined as ([7]). In this sec-
tion we focus on an efficient implementation of the reconstruction
for the case of recurrent nonuniform sampling. In this form of
sampling the sampling points are divided into groups of points
each. The groups have a recurrent period, denoted by , equal
to times the Nyquist period . Each period consists of
nonuniform sampling points. Denoting the points in one period by

, the complete set of sampling points are

(3)

where . Without loss of generality we will assume
throughout that .
The reconstruction formula is given by (see [2] and [8]):

(4)

where

(5)

Reconstruction from recurrent nonuniform samples using (4)
is considerably more complex than reconstruction from uniform
samples. Eq. (4) has a time varying form and therefore cannot
be implemented directly using LTI filters. If implemented directly
the infinite sum in (4) must be approximated in the time domain,
resulting in relatively large approximation errors. In the next sub-
section, we develop an efficient implementation of (4) through the
use of a bank of CT LTI filters. In section 4.2 we develop an alter-
native implementation using a bank of DT LTI filters.
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4.1. Reconstruction From Recurrent Nonuniform Samples Us-
ing A Continuous-Time Filter Bank

In this sub-section we develop a CTFB representation of Eq. (4).
To this end, we interchange the order of summations in (4), and
denote the inner sum by , i.e.

(6)

Using the relation we rewrite
as

(7)

Eq. (7) can be expressed as a convolution. Specifically,

(8)

with

(9)

and is an impulse train of samples, i.e.

(10)

Using (8) we can express (4) as a sum of convolutions:

(11)

Eq. (11) can be interpreted as a CTFB as depicted in Fig . 5.
The signals are formed according to (10), i.e. the samples
are divided into sub-sequences, where each sub-sequence corre-
sponds to samples at one- ' th of the Nyquist rate of a time-shifted
version of the original signal. Each sub-sequence is converted to
a CT signal using a shifted impulse train. The signal
is then filtered by a CT filter with impulse response given
by (9). Summing the outputs of the branches results in the re-
constructed signal . Note, that each one of the sub-sequences
corresponds to uniform samples at one- 'th of the Nyquist rate.
Therefore, the output of each branch of the filter bank is an aliased
and filtered version of . The filters as specified by (9) have
the inherent property that the aliasing components of the filter out-
puts cancel in forming the summed output . The filters have
the additional properties that for , i.e. they
are bandlimited to the same bandwidth as the CT signal and each
frequency response is piecewise constant over frequency
intervals of length .

4.2. Interpolation and Reconstruction From Recurrent Nonuni-
form Samples Using A Discrete-Time Filter Bank

Following an analogous procedure to section 3, the CTFB in Fig. 5
can be converted to a DTFB followed by a CT LPF. Noting that the
delay of in the impulse train of the ' th branch in Fig. 5 can be
incorporated into the filter and applying the Interpolation

...
...

...

Figure 5: Reconstruction from recurrent nonuniform samples us-
ing a CTFB.

Identity of Fig. 2 to each resulting branch we obtain the equivalent
implementation in Fig. 6 where

(12)

for .

...
...

...

Figure 6: Reconstruction from recurrent nonuniform samples us-
ing a DTFB.

As with the CTFB of Fig. 5, the overall output of Fig. 6 is
the original CT signal . Furthermore, since is recon-
structed through low-pass filtering of a uniformly spaced impulse
train, the impulse train values must correspond to uniformly
spaced samples of at the Nyquist rate. Thus, the DTFB of
Fig. 6 effectively interpolates the recurrent nonuniform samples
to uniform Nyquist samples. The DTFB of Fig. 6 can be used to
reconstruct the CT signal from its recurrent nonuniform samples.
As with the CTFB, the magnitude responses of the DT filters are
piecewise constant, which allows for further efficiency in the im-
plementation.

5. GENERATING NEW SAMPLING THEOREMS

The Interpolation Identity can be used to convert the reconstruc-
tion (synthesis) part of a CTFB to an equivalent DTFB followed
by impulse modulation and low-pass filtering. Similarly, we can
convert the sampling (analysis) part of the filter bank using the
equivalence of Fig. 7(a) and 7(b) for any , bandlimited
to , where

(13)
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Figure 7: Sampling equivalence.

The equivalence of Fig. 7 follows in a straightforward way by
noting that sampling a CT signal at one- ' th of the Nyquist rate
can be realized by sampling the signal at the Nyquist rate followed
by decimation by a factor of . We can then apply the known
result ([4]) regarding DT processing of a CT signal to replace the
CT filter by a DT filter with frequency response given by (13),
operating on Nyquist rate samples of the CT signal.

Figure 8: Perfect reconstruction DTFB.

The Interpolation Identity of Fig. 2 together with the equiva-
lence of Fig. 7 enables us to convert any CTFB to an equivalent
DTFB preceded by Nyquist rate sampling and followed by low-
pass filtering, and vice versa. Thus, any perfect reconstruction
(PR) filter bank (i.e. a DT analysis-synthesis filter bank for which
the input and output are equal) can be converted to a CTFB, which
can then be interpreted in terms of sampling and reconstruction.

As an example consider the PR filter bank of Fig . 8. The the-
ory of PR filter banks is well established (see e.g. [6]) and closed
form solutions for the synthesis filters given the analysis
filters are known. We can convert the analysis part of the
filter bank to a sampling strategy by applying the equivalence of
Fig . 7. This results in the sampling strategy depicted in Fig. 9(a),
where the signal is filtered by three CT filters with frequency
responses , , and the outputs are sampled at
the corresponding rates. The reconstruction is obtained by apply-
ing the Interpolation Identity of Fig. 2 to the synthesis part of the
filter bank followed by impulse modulation and low-pass filtering,
resulting in the reconstruction depicted in Fig. 9(b).

The sampling procedure of Fig. 9(a) together with the recon-
struction of Fig. 9(b) constitute a generalization to Papoulis' well
known generalized sampling expansion ([5]). Papoulis showed
that a bandlimited signal is uniquely determined by the sam-
ples of the responses of LTI systems with input

, sampled at one- ' th of the Nyquist rate. By converting a
PR filter bank with unequal decimation factors to a sampling and
reconstruction scheme, we allow for different sampling rates of the
filters outputs, thus generalizing Papoulis' theorem.

Papoulis does not derive necessary and sufficient conditions
on the filters such that the signal can be reconstructed from the
generalized samples. However, such conditions can be derived by
using (13) to convert the CT filters to DT filters comprising a DT
filter bank. Given the analysis filters of a DTFB, we can determine

if synthesis filters ensuring PR exist ([6]), i.e. if the signal can be
reconstructed from samples of the filters outputs.

(a) (b)

Figure 9: (a) Sampling procedure. (b) Reconstruction using a CTFB.

6. CONCLUSION

This paper introduces a filter bank interpretation of various sam-
pling methods, thereby allowing for efficient implementation of
the reconstruction from generalized samples as well as from recur-
rent nonuniform samples. The block diagram equivalences formu-
lated in this paper are general in the sense that they can be used to
convert arbitrary CTFBs to equivalent DTFBs and vise versa. Pre-
senting the reconstruction from generalized samples in terms of
CT filters and applying the Interpolation Identity leads to efficient
implementations that inherently interpolate the uniform Nyquist
samples of the signal. Furthermore, the equivalences provide ad-
ditional insight into the sampling and reconstruction process, thus
leading to a whole new class of sampling theorems.
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