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Fast Iterative Coding Techniques
for Feedback Channels

James M. Ooi and Gregory W. Wornell,Member, IEEE

Abstract—A class of capacity-achieving, low-complexity, high-
reliability, variable-rate coding schemes is developed for com-
munication over discrete memoryless channels with noiseless
feedback. Algorithms for encoding and decoding that require
computations growing linearly with the number of channel inputs
used are developed. The error exponent associated with the
scheme is shown to be optimal and implies that capacity is achiev-
able. Simulations are performed and support the analytically
predicted high performance and low complexity.

Index Terms—Error-correction coding, feedback channels, it-
erative coding.

I. INTRODUCTION

T HE availability of feedback in a communication sys-
tem—i.e., a channel from receiver to transmitter through

which the receiver passes the transmitter its observa-
tions—generally enables schemes for communicating over
the forward channel to have lower computational complexity,
higher reliability, higher capacity, or a combination of these
advantages, in comparison to feedback-free communication
schemes. The research of Schalkwijk and Kailath [1], Horstein
[2], Berlekamp [3], Yamamoto and Itoh [4], Burnashev [5],
Kudryashov [6], Gaarder and Wolf [7], Cover and Leung [8],
Veugen [9], and many others attests to these advantages.

In this paper, we develop a framework through which high-
reliability, low-complexity coding schemes for a broad class
of channels with feedback can be designed. We then focus
on using this framework to develop for discrete memoryless
channels with feedback (DMC’s) a coding scheme with the
highest possible error exponent (optimum reliability); we study
the complexity of the resulting scheme in some detail and show
it to be minimal in a natural asymptotic sense.

The central notion underlying the framework, which we
term the compressed-error-cancellation framework, is best
conveyed via the following example of a coding scheme
for communicating over a DMC with channel transition
function and capacity-achieving input distribution .
For notational convenience, let and be random variables
such that
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Then consider a coding scheme in which the transmitter,
receiver, and channel act as follows1 (also see Fig. 1 for a
graphical representation):

Tx.1: a) Precodes message bits into
channel inputs2 that look independent and
identically distributed (i.i.d.) according to .

b) Sends over channel.

Ch.1: Corrupts according to .
Rx.1: Feeds corrupted data back to Tx.

Tx.2: a) Using , compresses into
new data bits.3

b) Precodes new data bits into

channel inputs , which look i.i.d. accord-
ing to .

c) Sends over channel.

Ch.1: Corrupts according to .
Rx.2: Feeds corrupted data back to Tx.

Tx.3: a) Using , compresses into
new data bits.

b) Precodes new data bits into

channel inputs , which look i.i.d.
according to .

c) Sends over channel.
...

If we assume both precoding and source coding to be
invertible, then data transmitted at Tx. along with data
received at Rx.are sufficient to determine the data transmitted
at Tx. . Therefore, a receiver can recover the original message
if it can recover any one of the messages transmitted on any
iteration.

1Note that this description is a high-level one and omits a number of details
that will be given shortly.

2As a notational convenience to consolidate lists of variables in this paper,
we adopt the shorthandan

m
for (am; am+1; � � � ; an), and, in turn, the

shorthandan for an
1

. As related notation, we useAn to denote then-fold
Cartesian product of a setA with itself, wheren may be infinite. This notation
holds only for sub- and superscripted variables that have not otherwise been
specifically defined.

3Note that in the system we develop later in this paper, the length of
the compressed data is actually a random variable with mean close to
N1H(XjY ).
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Fig. 1. Graphical representation of the iterative coding scheme for a DMCf with input alphabetfa; b; cg and output alphabetfx; y; zg; the capacity-achieving
distribution is such thatH(X) < 1.

When the process iterates indefinitely, the number of chan-
nel inputs used is

giving a rate equal to the channel capacity. Again, in practice,
we terminate the process after a finite number of iterations
by sending a final block of data over the channel using a
termination coder.

We should note that an idea of this type was used by
Ahlswede in his proof of the coding theorem for DMC’s [10],
though his investigation was rather limited in scope. In the
remainder of this paper, we precisely develop how this idea can
be applied to construct low-complexity, high-rate, optimum-
reliability coding schemes for DMC’s. And although beyond
the scope of the present paper, we emphasize at the outset
that the same framework can also be used to obtain low-
complexity, high-rate, high-reliability strategies for discrete
finite-state channels, unknown channels, and multiple-access
channels, all with complete, noiseless feedback, as well as
channels with noisy and partial feedback [11].

We begin the detailed development of a coding scheme
for DMC ’s with a formulation of variable-length coding in
Section II. We follow with a description and analysis of the
coding scheme in Sections III–VI and discuss some remaining
practical and theoretical issues in Section VII.

II. V ARIABLE-LENGTH CODES AND THEIR

PROPERTIES: RELIABILITY AND COMPLEXITY

A variable-lengthcodeis a -tuple , where
is the number of message bits to be transmitted,

is the encoding function,

is a sequence of stopping functions, and4 :
is the decoding function.

The first argument to the encoding functionrepresents the
message to be encoded, while the second argument represents
the stream of feedback coming back to the transmitter. Because
of the causal nature of the feedback,is restricted to have the
form

(1)

where the range of is for all .
In describing the performance characteristics of such a code

on a given DMC we let the random variables
represent the i.i.d. equally likely message

bits, i.e., the message is a discrete random variable that
is uniformly distributed over the set

(2)

We then let the process be the output process
resulting from passing through the DMC via

—i.e.,

(3)

for all and all .
To define the rate of the code, we must define its trans-

mission length, which is the point at which the receiver stops
data acquisition. The stopping functionsare the mechanism
by which the receiver determines from its observations when
to stop data acquisition. By simulating the receiver using the
feedback link, the transmitter can also determine when to
correspondingly terminate transmission. In particular, at each
time , the function maps the data observed up to that time,

, into a decision as to whether to terminate transmission;
the value one is the signal to terminate, while the value zero
is the signal to continue, i.e., . In terms of

4In the description of variable-length tuples, it is convenient to useAy

to denote the set of all tuples whose elements are in the setA, i.e.,
Ay = [1

n=1
An.
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this notation, the transmission length is given by the random
variable

(4)

The rate of the code is then defined to be
.

The decoder makes an estimate of the message sent
using its decoding function , i.e.,

(5)

and the associated error probability of the code is
.

A coding schemeis a function mapping two parameters
and to a variable-length code. We say a coding scheme

attains an error-exponent function if for each
rate , where , there is a sequence of parameter
pairs such that the resulting sequence of
codes is such that the corresponding
rate sequence and the probability of error sequence

obey

(6)

(7)

where is the number of message bits for the code
.

While reliability is an important property of codes, it
says little about the computational resources—i.e., the time
and space complexities—required by encoding and decoding
algorithms. Making our notions of time and space complexity
more precise, we define time complexity and space complexity
to be the asymptotic order of growth of the time cost and
space cost used to run an algorithm on a random-access
machine under theuniform-costcriterion. See [12] for more
details. It is important to keep in mind, however, that there
are many alternative notions of computational complexity,
a number of which are outlined in [13]. Since no single
notion seems to have become dominant in the channel coding
literature, we choose the above measure as for its tractability
and meaningfulness.

III. A F EEDBACK CODING SCHEME FOR DMC ’s

Having defined the elements that constitute a variable-length
feedback code, we can describe a coding scheme for a
given a DMC based on the compressed-error-
cancellation framework. As stated in the previous section,
a coding scheme is a function taking two parameters as
input and returning a code. Our scheme takes as its
two parameters a message lengthand a termination coder
parameter , which together determine the rate and probability
of error for the code, as we show later. Then is
a variable-length feedback code , which
we now describe, with primary emphasis on the encoder
—the corresponding definitions of the decoder and stopping

functions are implied by definition of the encoder. Note that for
notational cleanliness, we do not make explicit the dependence

of the last three elements of the-tuple on , , or the
DMC parameters. Also for notational purposes, we letbe
the capacity-achieving input distribution for the channel, and
let and be random variables that are jointly distributed
according to , for all
and all .

A. Encoding

To define , we define the sequence of channel inputs
that is transmitted when the message to be sent

to the receiver is and when the sequence is fed back.
To describe this sequence of transmitted channel inputs, we

make use of the following subsystems: precoders ,
where precodes bits; lossless source coders ,
where conditionally source codes channel inputs; and
a termination encoder , which encodes a block of
bits, where is given further below as a function of ,
at some rate and probability of error determined by the
parameter . At this stage, we focus on the basic structure
of the encoding process, deferring a precise description of
the functions , , and to Sections
III-A1)–III-A3).

We begin with the simplifying assumption that we have
available a length- sequence , where5 ,
that is perfectly detectable—no false alarms and no missed
detections—after passing through the DMC. This assumption
is removed in Section V.

The encoder is then defined as follows:

Initialization:

(8)

(9)

for :

(10)

(11)

(12)

(13)

(14)

(15)

5oN (�) is the usual order notation with a subscript explicitly denoting the
limiting variable, i.e., iff(N) = oN (g(N)), then

lim
N!1

f(N)

g(N)
= 0:

We also useON(�) and�N (�) so thatf(N) = ON (g(N)) means that

lim inf
N!1

f(N)

g(N)
� 0

lim sup
N!1

f(N)

g(N)
<1

andf(N) = �N(g(N)) means that

lim inf
N!1

f(N)

g(N)
> 0

lim sup
N!1

f(N)

g(N)
<1:

The extra subscript is convenient in expressions where dependencies between
variables are implicit.
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Final message:

(16)

Encoding function:

(17)

In (12), the mapping IN returns a
sequence of length corresponding to a binary
representation of its integer argumentwith each bit repeated
once followed by a terminating string .6 The invertible
mapping7 : IN is introduced to ensure
that is uniformly distributed over the set . To do
so, adds (modulo-) a pseudorandom Bernoulli-sequence
to its first argument, using its second argument as a “seed.”
As a result, the output of is indistinguishable from an i.i.d.
Bernoulli- source, and is reversible in the sense that the
tuple can be recovered from and . In (16), the
mapping repeats each input bit and
adds the terminating string .8 In (17), the synchronization
sequence is used to enable correct parsing of the
incoming stream by the receiver, as we discuss in Section
III-B. The sequence is a fairly arbitrary length- “filler”
sequence to be ignored, where ;
it serves only to ensure that is transmitted at an
integer multiple of . Note that we have simplified our
notation in (17) by suppressing the (potential) dependence of
the termination encoder , which may itself be a feedback
coder, on the appropriate subsequences of.

We choose the number of iterations according to

(18)

to ensure that the expected number of final bits is small enough
for sufficiently large .

To complete a precise specification of the encoder, we
precisely define the precoding, source coding, and termination
coding subsystems.

1) Precoding Subsystem:To effect a transformation from a
sequence of i.i.d. Bernoulli- random variables (bits) into
a sequence that is approximately i.i.d. according to, the
precoder uses two key ideas: 1) that
a sequence of variables taking values in a discrete set with
cardinality can be mapped to a real number in
via its -ary expansion and 2) that a real random variable
with some desired distribution can be created by applying
the inverse cumulative distribution function (cdf) associated
with the desired distribution to a uniformly distributed random
variable.

The precoding then takes place in three steps: 1) the data
bits to be precoded are mapped to a real number ;

6For example,�(6) = (1; 1; 1; 1; 0; 0; 0; 1), since the number6 has binary
representation(1;1; 0).

7We have observed that, in practice, the randomizing functionr in (12) is
unnecessary; it is, however, convenient for analysis.

8So that, for example,�((1;0; 1)) = (1;1; 0; 0; 1; 1; 0; 1).

2) an appropriate inverse cdf function is applied to this
real number to form another real number ; and 3) an
appropriate number of -ary expansion digits of are taken
to be the output of the precoder. These three steps are similar
to those taken by a decoder for an arithmetic source coder.

To define precisely, we define the sequence of channel
inputs that correspond to precoding thedata bits

. We first transform to a real number
according to

(19)

where

(20)

and is a random variable that is uniformly distributed over
. The sole purpose of is so is uniformly distributed

over when is uniformly distributed over .
Next, assuming (which sacrifices

no generality), we define the cdf whose inverse is used
for the transformation. Let be an i.i.d. process with
marginal pmf . We then map this process onto the unit
interval by letting be a random variable defined by

, and we let be the cdf for .
With the base of all expansions in this section taken to be
, the precoder is defined by9

(21)

(22)

where the expansion in (21) is -ary, and IN
is defined as follows to ensure that the output of the precoder
stops after enough digits of the -ary expansion of
have been put out to uniquely determine the firstbits of .
That is, is defined by

for

for (23)

This definition of implies that the precoder is a lossless
coder, i.e., if , then is a variable-length
tuple whose elements are in; from and , we can
determine . No knowledge of is required by the decoder.

This definition also implies that the distribution of the
output of the precoder approximates the desired channel input
distribution in the following sense: if the input to the precoder

9As additional notation, for any given numbera 2 [0; 1), we usea[i] to
denote itsith K-ary (base-K) expansion digit, i.e.,

a =
1

i=1

a[i]K
�i; with a[i] 2 f0; 1; � � � ; K � 1g:

When using this notation, the baseK of the expansion is either stated
explicitly or clear from context. Ifa has twoK-ary expansions, thena[i]
specifically denotes theith digit of the expansion that ends in an infinite
sequence of zeros. Also,a[t][s], wheres < t denotes the tuple(a[s]; � � � ; a[t]),

anda[t][1] is abbreviated bya[t].
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is uniformly distributed over , then the elements
of form a random process that can be generated by
taking an i.i.d. process with marginal pmf and truncating
it according to a stopping rule [14].

2) Source Coder:We now define the source coding func-
tion . This function compresses its
first argument, a sequence representing the channel
inputs, using a statistical model for its dependence on its
second argument, a sequence representing the cor-
responding channel outputs.

Since is generated by the precoder, whose output is
approximately an i.i.d. process, and results from passing

through the DMC effectively without feedback, we choose
the following statistical model for use in the source coder.
Let denote an i.i.d. process with marginal pmf , and
let denote the channel output process resulting from
passing through the DMC without feedback. The
source coder then assumes that the probability ofgiven
is simply

(24)

Source coding is accomplished with this model via a Shan-
non–Fano strategy [15]. That is, with ,

(25)

where the expansion in above is binary, and

(26)

(27)

and is the cdf for conditioned on . The source
coder is lossless in the sense that can be recovered from

with .
Note that the statistical model used in the source coder is

inaccurate: Modeling the precoder output assamples of
the i.i.d. process is not strictly correct, because
itself is dependent on the values of . Nevertheless, we use
this source coder in our overall scheme and show that these
inaccuracies are inconsequential.

3) Termination Coding Subsystem:We now describe the
termination encoder that we use in the code

. The termination encoder, as we mentioned
earlier, protects bits with a rate and probability of error
determined by its parameter. Let us first discuss how many
bits the termination coder should be designed to protect.

For the overall scheme to have high reliability, the final
data bits should be encoded within a single-bit block, on
average. For this reason, we choose according to

(28)

To show that is sufficiently large, we let denote the
number of -bit blocks required to send the first bits of

, where

(29)

represents the number of final data bits that are sent by the
termination coder up to and including the first appearance of
the string in . Then

(30)

(31)

where the inequality follows from the simple ceiling function
property . Taking expectations of the right-hand
side of (31)

(32)

We show in Appendix E that with the precoder and source
coder designs given in the previous two sections

(33)

which shows that our choice of gives the desired behavior.
While any of a wide range of codes can be used as the

termination coding scheme that protects the final bits, we
choose what we call amodified Schalkwijk–Barron(mSB)
coding scheme, so named because it can be viewed as a special
case of a coder developed by Yamamoto and Itoh [4] in a paper
bearing this name in the title. The mSB coder is itself a highly
reliable feedback coder, which, as we show in Section IV,
gives the overall scheme high reliability.

The mSB coder that we use sends a block of bits as
follows: let and be two elements of defined by

(34)

where denotes the Kullback–Leibler distance between
two pmf’s.10 Assuming the channel has positive capac-
ity, it can be shown easily that the probability of error
associated with maximum-likelihood decoding of the two-
codeword, length- codebook consisting of the words

and is below
for some .

Each of the bits is sent via this two-codeword codebook,
i.e., the sequence is sent for a and is sent for a
. After the bits are sent via this procedure, the transmitter

determines whether the receiver has decoded any of the bits
incorrectly. Via the union bound, the probability that any of
these bits are decoded incorrectly can be shown to be .
If any errors occur, then the transmitter sends the length-

sequence . Otherwise, the length-sequence

is sent; if the receiver successfully determines
that (and not ) was sent, the process is repeated from
the beginning. Note that the bits are decoded correctly
unless is mistaken for . Since the probability of this
event clearly decreases asincreases, the parametercontrols

10The Kullback–Leibler distance, also called the information divergence,
between two pmf’sp and q is given by [15]

D(pkq) =
x

p(x) log
p(x)

q(x)
:
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the probability of error for this termination coding scheme.
Because mistaking for causes a decoding error while the
opposite error merely causes a retransmission, the two errors
are not equally important. The two sequences are therefore not
distinguished with maximum-likelihood decoding—rather, the
method described in [4] is used that trades a smaller probability
of mistaking for for a larger probability of the opposite
error.

B. Decoding

Let us now outline the processing that takes place in
the associated decoder for the encoder (17). The following
high-level description of this processing implicitly defines the
stopping functions and decoder .

The receiver has two operating modes, “normal mode,” in
which it starts, and “termination-decoding mode.” In normal
mode, the receiver saves the data from the incoming bitstream
directly to memory without processing it while watching for
the occurrence of the sequence . When this sequence
is detected, it enters termination-decoding mode and begins
decoding incoming data using the decoder corresponding to
the termination code. It concatenates the decoded messages
into a long decoded string, appending each newly decoded
message to the end of the string. After decoding each block of

bits and appending it to the string, the receiver searches
for the termination sequence anywhere in the full
string and stops data acquisition when it detects this sequence.

The receiver then proceeds to decode enough of to
recover , , , and . Starting with this
information, it decodes the data set acquired in normal mode
according to the following recursive procedure:

1) Subtract from the location at which was
detected to determine . Let .

2) Let . Use the received data
and to construct the (a posteriori) source-coding
pmf that was used to generate, and invert the source-
coded block according to this pmf to obtain .

3) Use to invert the precoded block to obtain
.

4) Decrement . If , extract , , and from
using the seed to invert the effect of , and go to

Step 2); otherwise, stop because , and the
message has been determined.

IV. RELIABILITY

The reliability of a coding scheme, also known as its error
exponent, gives the asymptotic relationship among the coding
scheme’s rate, probability of error, and blocklength. In this
section, we prove at a high level, leaving most of the details to
the Appendix, the following theorem regarding the reliability
for the scheme:

Theorem 4.1:Let be a coding scheme mapping
and to the corresponding code consisting of the encoder
described in Section III-A with its implied associated stopping
functions and decoder. Then, in the sense of Section II,
attains the error exponent function defined on the

interval by

(35)

where

(36)

Remarks: Burnashev [5] has shown that is anupper
bound to the error exponent of any variable-length feedback
transmission scheme for a DMC. This scheme therefore
attains the largest possible error exponent at all rates. Finally,
note that may be infinite (e.g., if an output symbol
has positive probability under one channel input but zero
probability under another as in a “-channel”) in which
case the error exponent becomes degenerate and somewhat
meaningless.

Proof: This theorem follows directly from three key
properties of the coding scheme, which we highlight to begin
the proof. We call these properties “Subsystem Properties,”
because each focuses on a key aspect of one of the subsys-
tems. The reader should be aware, though, that some of the
properties do depend on multiple subsystems and the way they
interconnect. The main point is that if we choose a different
design for the precoder, source coder, termination coder, or
synchronization subsystem, then as long as these properties
hold, then Theorem 4.1 also holds.

Subsystem Property 1:If is uniformly distributed over
, then there exists a constant that is

independent of such that

(37)

Subsystem Property 2:The precoders and the
source coders are such that
there exists a function such that

for (38)

where also has the properties that and is
nonnegative, monotonically increasing, and concaveover

.

Subsystem Property 3:The termination coding scheme
takes two parameters and and returns a code.

For any , there exists a sequence of parameters
such that , whose corre-

sponding encoder is denoted , encodes
message bits into an average number of channel inputs

and has error probability bounded
according to

(39)

where .

Subsystem Property 1 is proven in Appendix A, Subsystem
Property 2 is proven in Appendix B, and Subsystem Property
3 is proven in Appendix C.
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Using these key properties, we can now prove the theorem
as follows: let be given, and let us construct a
sequence of codes with corresponding sequence of rates and
error probabilities satisfying (6) and (7).

Intuition from the third illustration in Section I suggests that
the expected transmission length of a code sending
message bits and using a termination coder that puts out a
sequence of average length, satisfies

(40)

This equation in turn suggests that a sequence of codes with
rate converging to is , where is a
termination code parameter giving the termination code a
corresponding expected length of , where

(41)

That an appropriate sequence of parameters exists is
guaranteed by Subsystem Property 3. Let us examine this
sequence of codes more closely to verify
that it behaves as desired.

To prove that the sequence of rates corresponding to this
sequence of codes satisfies (6), we first develop a bound on the
expected transmission length of the code
as follows. Using the notation of Section III, first consider the
termination-coded transmission of the sequence defined
in (16). If the receiver fails to detect the sequence
when it first appears in the transmission , then it is
detected in a subsequent block because this coded sequence
is repeated indefinitely thereafter (cf. (16)). Moreover, for
each of these blocks the probability of a missed detection is
also less than , the probability of error associated
with the termination coder used by . Thus the
expected length of the transmission starting with the length-
transmission of until termination is less than

(42)
Furthermore, the expected length of the transmission before

in (17) is

(43)

Hence, the total expected length of the transmission is bounded
according to

(44)

The following lemma, which is proven in Appendix D, uses
Subsystem Properties 1 and 2 to upper-bound.

Lemma 4.1:

(45)

And the next lemma, which is proven in Appendix E, uses
Subsystem Property 3 to upper-bound.

Lemma 4.2:

(46)

Since , by substituting (45) and (46) into
(44), we get that

(47)

This inequality with (41) implies that the rate of
satisfies .

The last step in showing that is attainable is to find the
probability of error corresponding to . With
the decoder described above, the invertibility of the source
coder and precoder—together with the perfect detectability
of —mean that decoding errors in the overall scheme
occur only if one of the blocks that is termination-coded is
decoded incorrectly. Since equals the probability of such
an event, it can be union bounded above according to

(48)

Inequality (39) with (33) gives an upper bound on the right-
hand side of (48). Substituting (41) into this upper bound,
taking the log, and multiplying by yields

(49)

(50)

where (50) follows from the fact that .
Since these results hold for for arbitrary ,
the theorem is proved.

V. REMOVING THE PERFECT-DETECTION ASSUMPTION

In the previous section, we assume that a perfectly de-
tectable sequence exists. Since, in general, no such
sequence exists when the forward channel is a DMC, we must
modify the coding scheme before it can work with a forward
channel that is a DMC. In this section, we outline modifi-
cations to our basic iterative coding scheme that allow us to
remove the assumption that is perfectly detectable.

To develop the modified scheme, we first construct
out of legitimate channel inputs from. Let be an element
of defined by

(51)

and then let . The encoder uses the
sequence in the same way, communicating the time index

defined in (10) to the decoder by sending at time
and later sending bits describing. The decoder

tests for the presence of this sequence in each new incoming
block of samples, using a minimum-probability-of-error
detector of the form

if

otherwise.

(52)
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There is now the possibility that returns a when
is sent over the channel (missed detection) or that

returns a when is not sent over the channel (false
alarm). As increases, the probability of either sort of error
can be shown to be less than for some .

We now encounter a dilemma in choosing: if we accept
that whenever a false alarm or missed detection
occurs, then we need to choose proportional to to
maintain probability of error decaying exponentially in. But
choosing proportional to causes the rate to decrease by
an asymptotically nonnegligible amount. On the other hand,
if we choose , then the probability of error does
not decrease exponentially in .

The solution is to choose but to use feedback
to detect missed detections and false alarms, allowing the
encoder to take corrective action. We therefore choose
according to

(53)

which ensures that the probability of a false alarm or missed
detection occurring at any time during the transmission decays
to as . The scheme is then modified as follows.

As in the idealized case, the receiver has two modes of
operation: normal mode and termination-decoding mode. In
normal mode, at every time that is an integer multiple of

, the receiver tests the most recentchannel outputs to see
whether . The receiver enters termination-
decoding mode if and only if this condition holds true.
Once in termination-decoding mode, the receiver decodes each
incoming block to find the message coded in that block. Con-
catenating these messages, the receiver stops receiving when
it is in termination-decoding mode and finds the sequence

somewhere in the concatenated message.
The transmitter knows exactly what the receiver is doing via

the feedback. Hence, it can exploit the fact that the receiver
always enters termination-decoding mode on detection of

by sending the receiver a message regarding its
detection of . In particular, if a false alarm occurs,
then the sequence

is transmitted in blocks of bits using the termination
coder. The first two elements of the sequence, , inform
the receiver that a false alarm has occurred and that the
remainder of the sequence is to be regarded as the original
message. Note that even if some of these-bits blocks are
decoded incorrectly, the receiver eventually sees the sequence

and stops data acquisition.
In the case of a missed detection—that is, when is

transmitted but not detected by the receiver—the transmitter
resends until it is detected by the receiver. After
detection, the transmitter sends coded in -
bit blocks using the termination coder. The sequence
encodes the number of missed detections that occurred.
From this information, the receiver can correctly ascertain the
value of .

In Fig. 2, a flowchart giving an outline of how the scheme
makes use of the synchronization subsystem is shown.

1) Reliability of the Modified Scheme:It is proven in Ap-
pendix G that Theorem 4.1 continues to hold for the modified
scheme when a synchronization subsystem can be designed
with the following property:

Subsystem Property 4:With , a sequence satis-
fying , the sequence of detector-sequence pairs

is such that the false-alarm and missed-
detection probabilities and , respectively, as-
sociated with each use of by the receiver, satisfies

(54)

(55)

for some constant .

In Appendix F, Subsystem Property 4 is shown to hold for
the synchronization subsystem design given by (51)–(53).

VI. COMPLEXITY

In what follows, we show that the above coding scheme
can be carried out with time and space complexity that is
linear in the length of the number of channel inputs used. This
linear time complexity is clearly the lowest time complexity
(in terms of asymptotic order of growth) achievable by any
coding scheme.

A. Time and Space Complexity for the
Transmitter and Receiver

To show that the encoder and decoder can be implemented
with linear time and space complexities, we show that the
four constituent subsystems—precoding, source coding, syn-
chronization, and termination coding—can individually be
implemented with linear time and space complexities.

Precoding and postcoding (precoding inversion) operate
nearly identically to arithmetic source-coding decoders and
encoders, respectively, for i.i.d. sources. The dominant com-
putation required for arithmetic source coding and decoding
is the computation of the relevant cdf. Because the cdf can
be computed using a recursive algorithm [15], it can easily
be seen that arithmetic coding can be performed with time
cost that is proportional to the sum of the number of inputs
and outputs under the uniform-cost criterion. Space cost,
excluding buffering of input and output, can be easily seen
to be a constant, so the total space cost including buffering
requirements is proportional to the sum of the number of
inputs and outputs. Thus the total time cost and total space cost
associated with precoding in the transmitter and postcoding in
the receiver are linear in .

The source encoding and decoding subsystems are based
on Shannon–Fano source coding, which can also be carried
out using the arithmetic source-coding algorithm. Use of
arithmetic coding again results in the time costs of the source
encoder and decoder both being linear in the length of their
inputs plus outputs. Space cost is again constant. Therefore,
the time complexities and space complexities associated with
source encoding and decoding are also .

The synchronization subsystem requires that the transmitter
send the synchronization sequence and that the decoder test
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Fig. 2. Encoding modified for imperfect detection of;t [N ]. The notation “Yk  Feedback” indicates that one sample of feedback is retrieved and stored
in Yk. Similarly, “Y a  Feedback” indicates thata samples are retrieved and stored inY a.

for the sequence every samples using . Sending the
sequence clearly takes a number of operations linear in
and requires buffer registers to store the sequence. Each
use of clearly costs time linear in under the uniform-
cost criterion. Space cost is clearly . Since is used
fewer than times, the total time complexity attributable
to the synchronization subsystem in the receiver is linear in

. Each time is used, it can reuse its registers, so the
total space cost is only . The transmitter must also
perform each of these hypothesis tests to determine the state
of the receiver, so it shares the same complexity.

The number of computations required for mSB decoding
depends on the specific inner code used, but is at most

(56)

under the uniform-cost criterion for each time the inner code-
word and corresponding length-verification message are sent.
The first term accounts for decoding of the inner code at the
receiver (which must also be replicated at the transmitter).
The second term accounts for the computation required for the
transmitter to send or and for the receiver to distinguish
the two sequences. For the important case in which , we
can write , and the two terms in (56) can be
combined into , i.e., the time and space cost of a single
use of the mSB coder is nearly proportional to the number
of channel inputs used by the coder. Since the total number
of channel uses due to mSB coding is less than, the total
computation due to mSB decoding must also be . The
time complexity of mSB encoding is less than for decoding,
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so it can also be shown to be . Space complexity
for the mSB encoder and decoder is under both cost
criteria, since and and the inner codebook, all of which
are composed of discrete-valued sequences, must be stored.

Summarizing, each subsystem can be implemented with
time and space complexity that is under the uniform-
cost criterion, and therefore so can the overall scheme. It
follows that, at a fixed rate, the expected number of com-
putations and amount of storage required by the transmitter
and receiver is . More detailed characterizations of the
behavior of these algorithms on finite-length register digital
computers are given in [11].

B. Uniform Versus Nonuniform Complexity

In comparing this scheme to other low-complexity coding
schemes, we find that concatenated codes [16] with linear
complexity can also be designed. Specifically, by using codes
developed by Spielman in [17] as outer codes and using a
randomly selected inner code, one can obtain concatenated
codes requiring computations proportional to blocklength with
exponentially decaying probability of error at any rate below
capacity. It may be tempting then to conclude that feedback
offers no advantages in terms of complexity.

But there is an important distinction between the linear
complexity of the feedback scheme we have just introduced
and the linear complexity of such a concatenated code. A
concatenated coding scheme whose inner code is decoded
via exhaustive-search maximum-likelihood decoding requires
more computation per message bit as its operating rate in-
creases. That is, at a particular value of the rate, the
computation per message bit is independent of the number
of message bits. But the computation per message bit de-
pends heavily on the rate and increases rapidly and without
bound as the rate approaches capacity. While the problem
can be mitigated by using special inner codes that can be
decoded with more computationally efficient decoders, no such
capacity-achieving codes and corresponding decoders appear
to be known.

On the other hand, it is straightforward to verify that the
feedback scheme we have introduced does not behave in this
way. The rate of the feedback scheme can be made to increase
to capacity by letting and . Computations
per input sample need not grow without bound as these two
limits are approached. There must therefore exist a positive
number independentof the rate and the number of
message bits such that the average number of computations
per channel input required for encoding and decoding is less
than for any below the channel capacity.

We say that our feedback scheme hasuniform linear com-
plexity, while the above concatenated scheme is an example of
a scheme withnonuniformlinear complexity. The difference
has important consequences in terms of what rates are actually
achievable in practice.

VII. I MPLEMENTATION AND PRACTICAL ISSUES

Thus far, we have concerned ourselves with certain fun-
damental theoretical aspects of the feedback coding scheme.

Many issues related to implementation and practical use of the
scheme remain and are discussed in this section.

A. Length Variations

Because our scheme produces variable-length transmissions,
buffer overflows are possible. However, for large blocklengths,
preliminary experiments suggest that variations in transmission
length due to the varying lengths of the precoder and source-
coder outputs are modest; for example, in an experiment in
which the sample mean of was about 204 500, the
maximum value of in 100 trials was 206 336, and
the sample standard deviation of was about 794.
This behavior is not surprising, because for long blocks, most
of the relevant sequences are “typical” and are compressed
to “typical” lengths, which are close to the corresponding
expected length.

Note that it is possible to design a scheme that uses lossy
(but effectively lossless) precoders and source coders with
fixed-length inputs and outputs. This variation of the scheme
is particularly important for analysis in the next section and is
described in detail in [11]. The scheme has the advantages that
it needs no synchronization subsystem and has output length
that is more easily characterized analytically.

B. Structuring Computation

We have not accounted in the foregoing analyses for the
fact that computation may take time. Suppose that we have
a computer that does a fixed number of computations per
unit of time. In the framework we have described in this
paper, if we assume that the precoders and source coders
require the full block of input before they can compute their
outputs, a computational delay arises between iterations that is
proportional to the length of the transmission on the previous
iteration. If we send information-free filler during the delay,
then the rate is reduced, because we waste a number of channel
inputs proportional to .

Fortunately, we can structure the computation so that com-
putation is performed while useful, information-bearing data
rather than information-free filler, is being sent. The technique,
which we callinterleaving, is described as follows: using the
scheme variation mentioned in Section VII-A that uses a fixed-
length precoder and source coder, a-bit message is sent as
follows.

• Send the first length- block of precoded data.
• Send the second length- block of precoded

data. While sending, source code and precode the first
transmissions into new

inputs.
• Send these inputs. While sending,

source code and precode the second transmis-
sions into new inputs.

• Send these inputs. While sending,
etc.

After approximately samples have been sent, we
send the final coded block of data and the verification message.
Note that to support this technique, the computer must be fast
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enough to process channel inputs in the time required to
send channel inputs.

C. Feedback Delay and Noisy Feedback

When communicating over large distances, a significant
delay in feedback may be present. That is, the transmitter
at time may only know , where is some fixed
delay. The primary effect of this delay is that at the beginning
of an iteration, the transmitter may not yet have enough
feedback to start the iteration. In this case, the transmitter
may send information-free filler data as it waits for feedback.
This filler data wastes at most total channel inputs,
which is negligible as . If feedback delays are large
compared to the desired blocklength, however, one could use
a multiplexing strategy whereby one sends another message
during the periods that would otherwise be idle.

Noisy feedback can be accommodated by applying error-
correcting coding to the feedback link; a method for doing so
while maintaining low complexity and overall error probabil-
ities that decay exponentially with blocklength is discussed in
[11].

D. Simulation

To verify that our scheme behaves as predicted by our
analysis and that the asymptotic performance is approachable
in practice, we implemented the scheme and simulated its
performance on a digital computer with finite-length registers.

To simultaneously demonstrate that the coding scheme is
viable on continuous-valued channels, we applied it to the
Gaussian channel. To use the scheme on a continuous-valued
channel, the channel inputs and outputs must be quantized and
the corresponding channel transition probabilities determined.
In a preliminary experiment, we used the fifteen input sym-
bols and chose an approximately
Gaussian input distribution with variance as an input
to a discrete-time channel with zero-mean additive white
Gaussian noise of variance . We then quantized the output
to the twenty-one symbols . We
simulated the Gaussian channel to empirically calculate the
channel transition probabilities for this quantized channel, and
used this channel model in our coder. With , and

, our coder achieved a rate10 of 0.483. The probability
of error can be determined to be less than , where

is the cdf for a unit-variance, zero-mean Gaussian random
variable, which is upper-bounded [18] by .
Comparing this performance with the capacity of the discrete-
time Gaussian channel with a 0-dB signal-to-noise ratio,
which is 0.50-bit/channel input, our scheme appears very
promising for use with continuous-valued channels and has
certain advantages over the scheme of Schalkwijket al. [1].
Namely, our scheme can be easily adapted to achieve rates near

10The theoretical capacity of this DMC approximation to the Gaussian
channel is 0.493 bit/input. In our simulation, this rate was not approached more
closely in part because our implementation of the source coder and precoder
used 32- rather than 64-bit integers, which did not allow for sufficiently
accurate characterization of the channel transition pmf. This shortcoming can
easily be remedied with a more sophisticated implementation.

capacity on non-Gaussian channels such as fading channels
and also allows quantized feedback.

VIII. C ONCLUDING REMARKS

In this paper, we developed the compressed-error-
cancellation framework and used it to develop a coding
scheme for DMC’s with optimal reliability and minimal
complexity. As an illustration of the broader applicability
of this framework, in [11] and [19] rich generalizations of
the scheme are developed for use on channels with memory,
unknown channels, multiple-access channels, and channels
with partial feedback. All retain the underlying block-oriented
structure of the scheme developed in this paper. As such, one
of several interesting directions for future research would be
exploring sequential counterparts to this family of schemes
within the compressed-error cancellation framework, and
interpreting the results in relation to Horstein’s sequential
schemes [2].

APPENDIX A
PROOF OF SUBSYSTEM PROPERTY 1

To upper-bound as in (37), it is useful to
upper-bound by a different function , which is easier to
analyze.

Lemma A.1:Let for , and
let denote the index of the first -ary expansion digit
at which and differ, i.e., let IN be defined
by IN . Then define by

if

if

(57)

where

(for example, if , , and
then ).

Then

for all (58)

Proof: To prove the lemma, we need only show that

where .
To see that this fact holds, first suppose that

. Next, notice that

Since starts with the same first digits, any
element in must also start with the same first

digits. Since truncates only after its -ary
expansiondiffersfrom that of , must also begin
with these digits. Hence, . Next, since

, the -ary expansion digit at which first differs
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from must be smaller than the corresponding digit of
. Therefore, , which corresponds

to with its last element incremented by one, may at
most equal . Hence,

Next, suppose that . First, it is clear that
, since , and . Then

note that

(59)

Therefore,

since every -ary expansion digit of is less than or equal to
the corresponding expansion digit of . Hence, the lemma
follows.

We now prove that
for some , where is defined in (19). Subsystem
Property 1 then follows from this bound with the lemma
above.

Consider a device that takes the random process
and traverses an -ary tree until a leaf is

reached. (An -ary tree is a tree in which every node has
children.) We let the stopping rule, which is nonanticipatory
(as a stopping rule must be) and deterministic, define the leaves
and hence the tree. An example of how the tree is traversed is
the following: If , starting from the root of the tree, we
branch to the left if the first process value is zero, and branch
to the right if it is one; now being at a new node, we branch
to the left if the second process value is zero, and branch to
the right if it is one; we continue until a leaf is reached. Each
value of leads to a different leaf of the tree. We can think
of as the random leaf at which we end, and
of as the depth of this leaf. It is shown in [20] that

(60)

We now show that , where is in-
dependent of , which gives us the desired upper bound

. Let

be the set of all leaves of the tree. Since the stopping rule that
defines the leaves is deterministic, the probability of a leaf

can be written

which implies that

Now, let us evaluate the entropy of, which is, by definition,

To do so, we divide the sum into manageable portions as
follows. Consider for now only the leaves for which

, for some . Define the sets

and

all of which have a countable number of elements. Further
restrict consideration to the leaves . Let be the
element of such that is the smallest member of

. Note that is also the smallest element of

, although other elements of may have equal length.
Label the elements of according to their lengthand their
th -ary-expansion digit. That is, let be the element of

that satisfies and . Note
that is the number of elements in with length .
Now, the probability of a leaf can be written as

(61)

because all leaves in have their first elements
in common. For convenience, let

and note that

(62)

This inequality holds because comes from expanding
until and including the first digit it differs from .

Therefore, if we set the last digit of , , to

zero to form a number, then the interval
includes both and . Since

we arrive at the left half of (62). The right half of (62) holds
because . The part of the entropy
contributed by the leaves in can be upper-bounded as

(63)

(64)
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(65)

(66)

(67)

(68)

where and are chosen appropriately. Equation (65)
follows from (61), and inequalities (67) and (68) follow from
(62). The part of the entropy contributed by the leaves in
can be similarly upper-bounded as

Summing the bounds on the contributions to the entropy from
and , we can upper-bound the entropy contributed by

the leaves in by the sum of the two

(69)

(70)

where (70) follows from the fact that

(71)

(72)

and that the entropy of a binary random variable is less than.
Summing over all intervals, we have that
for an appropriate constant that is independent of.

APPENDIX B
PROOF OF SUBSYSTEM PROPERTY 2

Subsystem Property 2 gives an upper bound on the expected
length in terms of , which is obtained as follows.

Our approach is to first find an upper bound on
in terms of . To find such a

bound, we must know the distribution of the precoder’s output
(the source-coder’s input) conditioned . To find this

distribution, we require the distribution of the precoder’s input
conditioned on . Fortunately, because ofin (12),

we can assume that is, conditioned on , uniformly
distributed over the set . Given such an input, we
asserted in Section III-A1) that the precoder produces
output that is a stopped sequence of random variables that
are i.i.d. according to . Using this characterization of the
precoder ’s output, we model the source coding of this
precoder’s output as follows. Let and be as
defined in Section III-A2). Let , where

is defined as in (23). The precoder ’s output is then
represented by the random variable-length tuple . The
transmitter sends over the channel. The receiver feeds
back , and the transmitter source codes according to

which results in a stream of bits of length . Because

bits are used to represent , we can write the expected
value of as

(73)

We now prove the following lemma that bounds the length
of .

Lemma B.1:

(74)

Proof: We begin by expanding the logarithm in (73) as

we then obtain

(75)

(76)
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Since is a deterministic stopping rule for , and be-
cause is an i.i.d. process and the channel is memoryless,
we have that for all integers

(77a)

(77b)

(77c)

From (77), it follows that for all integers

(78)

(79)

(80)

and

(81)

(82)

(83)

(84)

(85)

(86)

Inequality (84) follows from the fact that conditioning reduces
entropy and that entropy is positive; (86) follows from writing
out the sum corresponding to and using basic algebra.
With (80) and (86) holding for all integers , substituting
the appropriate quantities into (76) and taking the limit as

allows us to upper-bound according to

(87)

which completes the proof of the lemma.

Lemma B.1 immediately implies that

(88)

which implies, after averaging both sides over, that

(89)

(90)

where (90) follows because for any
positive, integer-valued random variable(see, for example,
[21, Corollary 3.12] for a proof).

We may conclude from (90) that for

(91)

where the last three terms are due to the encodings ofand
in . To express the right-hand side completely in terms

of , we first prove the following lemma.

Lemma B.2:For all

(92)

where and

Proof: The probability of the sequence must
be less than . The shortest such sequence would consist
entirely of the element of with lowest nonzero probability,
giving the sequence probability . The lemma then
follows.

This lemma implies that , which implies that
we can write

(93)

That the logarithm is concave and monotonically increasing
completes the proof that Subsystem Property 2 holds.

APPENDIX C
PROOF OF SUBSYSTEM PROPERTY 3

To bound the probability of decoding error for the mSB
coding subsystem, we observe that an mSB decoding error
occurs only if the transmitter sends , and the decoder
mistakes it for . Let be the probability of this event,
and let be the probability of the reverse error (mistaking

for ). If and are distinguished with the detector
described in [4], which makes very small at the expense
of making large (but sufficiently small), then it is shown
in [4] that the choice of and given in Section III-A3)
yields the bound [4] that

(94)

where is defined as in (36).
The average length of the mSB encoder’s outputcan be

upper- and lower-bounded, respectively, according to

(95)

It can easily be shown that and .
If we set and , then (95) implies

that , which can be used with (94) to arrive
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at the inequality

(96)

The probability of error for this mSB scheme can
be written

(97)

which is less than for sufficiently large values of ,
proving that the property holds.

As a final remark, note that we need not have chosen the
“inner” code to be a bit-by-bit repetition code, but could have
used a more complex code. The repetition code happens to be
have very low complexity and is simple to construct.

APPENDIX D
PROOF OF LEMMA 4.1

To bound , we first use Subsystem Property 1 to conclude
that

(98)

Taking expectations of both sides of this bound and combining
with (38) in Subsystem Property 2, we find that

(99)

(100)

where , and .
Note that as and that is a nonnegative,
monotonically increasing, concave function over .

Using the recursion (100), we obtain

(101)

Using that , that for all , that
for , and that

(102)

we can see that

(103)

Using that is concave over with the fact that
for , we can bound the second term in (103)

according to

(104)

(105)

Using (103) and (105), we can write

(106)

which, using elementary algebra, implies that

(107)

Since , and as ,
the lemma follows.

APPENDIX E
PROOF OF LEMMA 4.2

To bound , we first use (92) with (29) to obtain

(108)
We next bound as follows: since from (100) is

and also represents a quantity that is finite, it follows
that there is some constant such that

(109)

so that the bound

(110)

holds. Using (102) with this recursion, we see that

(111)

where is a constant. With (18), it follows immediately that

(112)

This inequality in turn implies via (110) that
. Assuming , which is ensured by Subsys-

tem Property 4, we may conclude that .
Since , it follows from (32) that

(113)

Coupled with the fact that , the lemma
follows.

APPENDIX F
PROOF OF SUBSYSTEM PROPERTY 4

Here, we prove that both false-alarm and missed-detection
probability decay at least exponentially with .

To determine the probability of false alarm, suppose that
are i.i.d. with marginal pmf . With

, being defined by (51), we can upper-bound the
probability of false alarm according to

(114)

(115)
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(116)

(117)

By the Schwartz inequality, , with equality if and
only if and are independent. The probability of missed
detection can also be bounded above by . With
defined by (53), Subsystem Property 4 follows.

APPENDIX G
MODIFIED SCHEME RELIABILITY

To find the reliability of the modified scheme, we must
find the new expected length and probability of error asso-
ciated with the new coding scheme. Let denote the
modified counterpart to defined in Section IV.

We have the following lemma that characterizes the length
for the in terms of that for the length under the
perfect-detection assumption:

Lemma G.1:With denoting the length associated with
the

(118)

Proof: The increase in length has two sources:
false alarms and missed detections of the synchronization
sequence.

The number of additional transmissions due to false
alarms satisfies

(119)

(120)

where is the probability of false alarm associated
with detecting . (Also recall that is the time
at which transmission of the sequence corresponding to the

th iteration of the coding algorithm, and thus indicates
the time at which the symbol is transmitted.) The
reasoning behind (119) is as follows: there are about
opportunities for false alarms in a particular transmission.
If a false alarm occurs, the source bits to be sent via
the termination coder, where each block of bits uses
about channel inputs. Equation (120) follows by using
Subsystem Property 4 with the fact that grows linearly
with (Lemma 4.1).

Next, the number of additional transmissions due to
missed detections satisfies

(121)

(122)

which is derived as follows. Suppose we send the stream
, , and the detector does its hypothesis test

every samples. Then the number of times that is
transmitted before the first detection is a random variable with
mean less than . Because we counted the

first transmission of in of (44), the number of
additional transmissions is bounded above by (121). Equation
(122) follows from exploiting (55). Note that the additional
transmissions due to transmission of is on average
a constant and therefore negligible, asis large enough that

remains as in (113).
Combining the sources of additional channel uses, we obtain

(118) as desired.

The probability of error associated with is char-
acterized in terms of the probability of error associated with
the scheme under the perfect-detection assumption by the
following lemma:

Lemma G.2:With and denoting the proba-
bilities of error associated with and ,
respectively,

(123)

where

(124)

(125)

Proof: The modified scheme introduces only one addi-
tional error event: the event that a false alarm occurs and
then one of the subsequent termination-coded blocks is
received in error. Since the existence of a false alarm does not
affect the probability of error associated with the termination-
coded blocks, we arrive at (124) via the union bound.

Since , Lemma G.2 says that
the probability of error is effectively unchanged. Since Lemma
G.1 says that the expected length is effectively unchanged as
well, Lemmas G.1 and G.2 together imply that the modified
scheme attains the error exponent function defined in
Theorem 4.1.

APPENDIX H
PRECODING WITH LINEAR COMPLEXITY

Without loss of generality, assume that
. Given a sequence to precode

with , let , where is a random variable
uniformly distributed over . Then let , and
let . The precoder then finds the longest interval

of the form such
that and then puts out . The following
algorithm gives a method for doing these steps efficiently.

1) , , , .
2) If and then go to 4). Otherwise, go

to 3).
3) Compute

for

starting with . For , if
, then set , ,

, , , break out of the
loop over , and go to 2).

4) Halt, and return .
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Assuming real arithmetic requires a single computation, this
algorithm has complexity that is linear in the final value of

, which equals .
To recover , we need only recover the first binary-

expansion digits of from . To do so, we compute
. Then and share their first binary-

expansion digits. A convenient formula for is

(126)

Because the -ary-expansion digits of are, by
definition, all zero after the first digits, and be-
cause the product term in (126) can be computed recursively,

can be computed with complexity that is
linear in .

Like arithmetic source encoders and decoders, these meth-
ods for precoding and inversion of precoding suffer from
numerical precision problems on finite-precision computers.
To avoid these problems, we must use systems for arithmetic
with arbitrary precision (see, for example, [22]), or we must
use special rescaling methods similar to those that are used to
carry out arithmetic source encoding and decoding (see, for
example, [23]).
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