2960 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 7, NOVEMBER 1998

Fast Iterative Coding Techniques
for Feedback Channels

James M. Ooi and Gregory W. WorneMember, IEEE

Abstract—A class of capacity-achieving, low-complexity, high- Then consider a coding scheme in which the transmitter,
reliability, variable-rate coding schemes is developed for com- receiver, and channel act as folldw@lso see Fig. 1 for a
munication over discrete memoryless channels with noiseless ; i)
feedback. Algorithms for encoding and decoding that require graphical representation): o
computations growing linearly with the number of channel inputs Tx.1:a) PrecodesV message bits intdV; = N/H(X)

used are developed. The error exponent associated with the channel input%X]fV1 that look independent and
scheme is shown to be optimal and implies that capacity is achiev- identically distributed (i.i.d.) according tgy.
able. Simulations are performed and support the analytically b) SendstVl over channel.

predicted high performance and low complexity. N )
Ch.1: CorruptsX;™* according togy|x.

Rx.1: Feeds corrupted dai§"* back to Tx.
Tx.2: @) UsingY;"*, compressest{" into N, H(X|Y)
new data bits.

Index Terms—Error-correction coding, feedback channels, it-
erative coding.

|. INTRODUCTION b) Precodes new data bits into

HE availability of feedback in a communication sys-

tem—i.e., a channel from receiver to transmitter through No = NH(X|Y)/H(X)
which the receiver passes the transmitter its observa-
tions—generally enables schemes for communicating over channel inputsty' ¥, which look i.i.d. accord-
the forward channel to have lower computational complexity, ing to ax.
higher reliability, higher capacity, or a combination of these c) SendsXy'1> over channel.
advantages, in comparison to feedback-free communicatiorch.1: CorruptsX]’\\fllil’\‘rz according togy|x-.

schemes. The research of Schalkwijk and Kailath [1], Horsteingy . Feeds corrupted da@;ﬁ/\’z back to Tx.
[2], Berlekamp [3], Yamamoto and Itoh [4], Burnashev [5], o
Kudryashov [6], Gaarder and Wolf [7], Cover and Leung [8],
Veugen [9], and many others attests to these advantages.
In this paper, we develop a framework through which high-
reliability, low-complexity coding schemes for a broad class
of channels with feedback can be designed. We then focus
on using this framework to develop for discrete memoryless
channels with feedback (DMG) a coding scheme with the
highest possible error exponent (optimum reliability); we study
the complexity of the resulting scheme in some detail and show
it to be minimal in a natural asymptotic sense. :
The central notion underlying the _framework, Whic_h We |t we assume both precoding and source coding to be
term the compressed-error-cancellation framework, is bgslertible, then data transmitted at Ti<+ 1) along with data
conveyed via the following example of a coding schemgceived at Rx.are sufficient to determine the data transmitted
for communicating over a DMECwith channel transition ¢ Ty; Therefore, a receiver can recover the original message

function ¢y x and capacity-achieving input distribution;. it it can recover any one of the messages transmitted on any
For notational convenience, I&f andY” be random variables jiaration.

Tx.3:a) Using Y2, compresses Xy'f{? into
NoH(X|Y) new data bits.

b) Precodes new data bits into
N3 = N H(X|Y)/H(X)

channel inputsX y'F=EY, which look i.i.d.
according togx.

c) SendsXyitiHY over channel.

such that
INote that this description is a high-level one and omits a number of details
px,v(®, ¥) = ax(x)qy|x (y|x). that will be given shortly.
2As a notational convenience to consolidate lists of variables in this paper,
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Fig. 1. Graphical representation of the iterative coding scheme for a;DMi@ input alphabe{«, b, ¢} and output alphabdte, y, = }; the capacity-achieving
distribution is such thatd(X) < 1.

When the process iterates indefinitely, the number of chais-a sequence of stopping functions, amst Y* — {0, 1}V

nel inputs used is is the decoding function.
i i ) The first argument to the encoding functiomepresents the
N n N <H(A |Y)> N <H(A |Y)> message to be encoded, while the second argument represents
H(X) HX)\ H(X) H(X)\ H(X) the stream of feedback coming back to the transmitter. Because
N of the causal nature of the feedbaeks restricted to have the

T H(X)-H(X|y) form

giving a rate equal to the channel capacity. Again, in practices(w”, 4°°) = (&1 (w®), &x(w?, ¥'), é3(w™, ¥*), --+) (1)
we terminate the process after a finite number of iterations

by sending a final block of data over the channel using¥'ere the range of; is A" for all . o
termination coder. In describing the performance characteristics of such a code

We should note that an idea of this type was used a given DMG (&, gy|x, V), we let the random variables

Ahlswede in his proof of the coding theorem for DME[10], W1+ -+ Wi representNtth ii.d. equally likely message
though his investigation was rather limited in scope. In tHatS. i-e., the messagé’™ is a discrete random variable that
remainder of this paper, we precisely develop how this idea cgnuniformly distributed over the set
be applied to construct low-complexity, high-rate, optimum- W =1{0 1}N. )
reliability coding schemes for DMG. And although beyond ’
the scope of the present paper, we emphasize at the outget then let the procesY;} be the output process
that the same framework can also be used to obtain low¢sulting from passing? Y through the DMG gv|x Via
complexity, high-rate, high-reliability strategies for discretg¢{z;(m, 21 bmego, py—i-€.,
finite-state channels, unknown channels, and multiple-access
channels, all with complete, noiseless feedback, as well as n n . e m k1
channels with noisy and partial feedback [11]. Py (Y [w") = H avix (el (W™ v77)) - ()
We begin the detailed development of a coding scheme =t
for DMC¢'s with a formulation of variable-length coding infor all y* € Y™ and allw™ € {0, 1}".
Section 1. We follow with a description and analysis of the To define the rate of the code, we must define its trans-
coding scheme in Sections IlI-VI and discuss some remainingssion length, which is the point at which the receiver stops
practical and theoretical issues in Section VII. data acquisition. The stopping functiogsare the mechanism
by which the receiver determines from its observations when
to stop data acquisition. By simulating the receiver using the
feedback link, the transmitter can also determine when to
: ) correspondingly terminate transmission. In particular, at each
A variable-lengticodeis a4d-tuple (N, e, {x:}i, A), Where ime 1. the functiony: maps the data observed up to that time,
N is the number of message bits to be transmitted, Y*, into a decision as to whether to terminate transmission;
the value one is the signal to terminate, while the value zero
is the signal to continue, i.ex; : V' — {0, 1}. In terms of

Il. VARIABLE-LENGTH CODES AND THEIR
PROPERTIES RELIABILITY AND COMPLEXITY

e:{0, 1}V x Y™ — x>

is the encoding function, 4In the description of variable-length tuples, it is convenient to use
to denote the set of all tuples whose elements are in the.4set.e.,

{xi - ' = {0, 13}, Al = Uz, A
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this notation, the transmission length is given by the randoofi the last three elements of thetuple onv, N, or the
variable DMC; parameters. Also for notational purposes, wegletbe
. . & the capacity-achieving input distribution for the channel, and
L= Ir%n{k:Xk(Y )=1}. (4) et X andY be random variables that are jointly distributed
according topx,y (z, ¥) = gx(x)qy|x (y|x), for all z € X

The rate of the codeN, e, {x;}{Zy, A) is then defined to be _ 4 yey

N/E[L"].

The decoder makes an estimaté" of the message sent .

o : : : A. Encoding
using its decoding functiom : YT — W, i.e.,

. To define ¢, we define the sequence of channel inputs
WY =AY (5) (W, Y™) that is transmitted when the message to be sent
to the receiver ig¥ " and when the sequend& is fed back.

To describe this sequence of transmitted channel inputs, we
make use of the following subsystems: precodgrs}52 ,,
where m,, precodesn bits; lossless source codefs,, }>2,,

ere g,, conditionally source codes channel inputs; and
a termination encodezlfterm which encodes a block of

its, wheres is given further below as a function a¥,

t some rate and probability of error determined by the
eparameten/ At this stage, we focus on the basic structure
of the encoding process, deferring a precise description of

and the associated error probability of the cod®i§W ™
WL

A coding schemés a function mapping two parametess
and p» to a variable-length code. We say a coding sche
¢ attains an error-exponent functidi : 7 — IR if for each
rater € I, wherel C IR, there is a sequence of paramet
pairs{(p1, »(r), p2, »(r)) }» such that the resulting sequence o
codes{c(p1 n(7), p2,n(r))}n is such that the corresponding
rate sequencé R, }, and the probability of error sequenc

{Pn}n obey the functions {7,}72,, {7.}o2,, and =™, to Sections
lim R, >r (6) MNI-AL)-I-A3).
R"T“’ P, We begin with the simplifying assumption that we have
lim — - 08 S ppy (7) available a lengtityy sequencé’~ [N], wheré ty = on(N),
n—ee Nn that is perfectly detectable—no false alarms and no missed
where N,, is the number of message bits for the coddetections—after passing through the DMC. This assumption
c(pr,n(r), po.n(r)). is removed in Section V.

While reliability is an important property of codes, it The encodek is then defined as follows:
says little about the computational resources—i.e., the t"?mtlallzatlon
and space complexities—required by encoding and decoding

N
algorithms. Making our notions of time and space complexity Lo =N Yo=w" Ag=0 (8)
more precise, we define time complexity and space complexity =7z (Vi) Lo= £(=p) 9)
to be the asymptotic order of growth of the time cost angy ; = 1, ... By:

space cost used to run an algorithm on a random-access

machine under theniform-costcriterion. See [12] for more A=A+ Liy a, (10)
details. It is important to keep in mind, however, that there Yi=or,_,(¢i 1, Vil ) (11)
are many alternative notions of computational complexity, ¥, =7((¢(L;—1), (L7 1), i), 1) (12)
a number of which are outlined in [13]. Since no single L7 =4(1;) (13)

notion seems to have become dominant in the channel coding

literature, we choose the above measure as for its tractability ci _WU;(\P‘) (14)
and meaningfulness. L; =4(5). (15)
Son(+) is the usual order notation with a subscript explicitly denoting the
lll. A FEEDBACK CODING SCHEME FORDMCy’s limiting variable, i.e., if (V) = o (g(1V)), then
Having defined the elements that constitute a variable-length lim / (N;) =
feedback code, we can describe a coding schesmg: for a N=oo g(N)

given a DMG (&, gy|x, V) based on the compressed-errofVe also usex(-) andO . (-) so thatf(V) = O (g(N)) means that

cancellation framework. As stated in the previous section, PP (€10 B
a coding scheme is a function taking two parameters as N—oo g(N) =
input and returning a code. Our schemg,c takes as its Jim sup F(N) <o
two parameters a message lengthand a termination coder N—oso 9g(N)
parameter, which together determine the rate and probabilitynd (V) = © 5 (g(V)) means that

of error for the code, as we show later. Thap\c(N, v) is N 05

a variable-length feedback codeV, ¢, {x;}52;, A), which lim inf o) >0
we now describe, with primary emphasis on the encoder _ FN)
e—the corresponding definitions of the decoder and stopping lim sup o) <

funct!ons are 'mF_’"ed by definition of the enc_o<_jer. Note that fqrhe extra subscript is convenient in expressions where dependencies between
notational cleanliness, we do not make explicit the dependeneeables are implicit.
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Final message: 2) an appropriate inverse cdf functid@g1 is applied to this
G™ =(p(Spy), d[Any /tn 1ty — Apy). real number to form another real numtiérc _[0, 1); and 3) an
S(Ly1), (LS ),0,1,0,1,0,1,0,1, ---) appropriate number af/-ary expansion digits of/ are taken_ _
By=1/: By=1/72 5 5 5 T & to be the output of the precoder. These three steps are similar
(16) 1o those taken by a decoder for an arithmetic source coder.
Encoding function: To definer,, precisely, we define the sequence of channel
e(WNY®) = (ef), €}, -, €1, DF, O'¥[NV], inputs wn(pn) that correspond to precoding thedata bits
CLEE (RN pterm (RN ) ot (GBRN ) LY D", We first transformD™ to a real numberS € [0, 1)
pnov AL PR A ey L) ER A 2Ry + L " according to

17)
S=0,.D"+27"Z (19)
In (12), the mappingy : {0} U N — {0, 1} returns a
sequence of lengtR[log n] + 2 corresponding to a binary Where
representation of its integer argumentvith each bit repeated j
once followed by a terminating strin@, 1).% The invertible Oc.a’ = 0. ajag -+~ a; = Z a; K~ (20)
mappind r: {0, 1} x IN — {0, 1}7 is introduced to ensure im1

that ¥; is uniformly distributed over the s¢b, 1}.Li - Todo and Z is a random variable that is uniformly distributed over
S0. 7 adds (modula?) a pseu_dorandom Bernou@-sequer:ce »1). The sole purpose of is so S is uniformly distributed
to its first argument, using its s_,e(;ond_ argument as a. .Seeg)\/er[o, 1) when D™ is uniformly distributed ovef0, 1}*.

As a result, the output of is indistinguishable from an i.i.d. Next, assuming¥ = {0, 1, ---, M — 1} (which sacrifices

1 - Lo
5181205It'gnsggri;:\,neo:ef frri\r/;rfl'ble :mtjhe Slﬁn(sleG;h?rt];h%o generality), we define the cdfy whose inverse is used
P (d, 5) 5 ) for the transformation. Le{ X, }22 . be an i.i.d. process with

mappingp : {0, 1} — {0, 1}7 repeats each input bit and . : .
0 . 8 . _~marginal pmfgx. We then map this process onto the unit
adds the terminating strin®, 1).° In (17), the synchronization interval [0, 1) by letting X be a random variable defined by

sequencef*¥[N] is used to enable correct parsing of the; _ 047X, s ---. and we letF= be the cdf forX

incoming stream by ;h_e recelver, as we d|scuss“ n S,,eCtlor\Nith the base of all expansio)rgs in this section taken to be
[lI-B. The sequenceb” is a fairly arbitrary lengthZ” “filler M, the precoderr,, is defined b§

sequence to be ignored, whefe=[Ag,, /tn]tn—AB, <tn; ' "
it serves only to ensure that'~[N] is transmitted at an To(w) = ult (W] (21)
integer multiple of¢y. Note that we have simplified our (D) = T (FZY(S)) (22)
notation in (17) by suppressing the (potential) dependence of X

the termination encodef™™, , which may itself be a feedbackwhere the expansion in (21) &-ary, andl,, : [0, 1) — N

coder, on the appropriate subsequence¥ of. is defined as follows to ensure that the output of the precoder
We choose the number of iteratiofty according to stops after enough digits of thef-ary expansion of">'(S)
By = [log? N (18) have been put out to uniquely determine the firgtits of S.

That is,l,, is defined by
to ensure that the expected number of final bits is small enoug

for sufficiently large N. f}n(u) = min{k: F([0a. u, 057wl + M)

To complete a precise specification of the encoder, we C 2™, (i+1)27")}
precisely define the precoding, source coding, and termination for w F)gl([zQ_", (t+1)27™)
coding subsystems. fori=0,---,2" — 1. (23)

1) Precoding Subsystenio effect a transformation from a
sequence of: i.i.d. Bernoulli-; random variables (bits) into  This definition ofr,, implies that the precoder is a lossless
a sequence that is approximately i.i.d. accordingyig the coder, i.e., ifd* € {0, 1}, thenr,(d™) is a variable-length
precoderr,, : {0,1}" — X7 uses two key ideas: 1) thattuple whose elements are ii; from »n andx,(d"), we can
a sequence of variables taking values in a discrete set wittermined”. No knowledge ofZ is required by the decoder.
cardinality A/ can be mapped to a real number [y 1) This definition also implies that the distribution of the
via its M-ary expansion and 2) that a real random variableutput of the precoder approximates the desired channel input
with some desired distribution can be created by applyirtistribution in the following sense: if the input to the precoder
th_e inverse _cumu_lati_ve qlistribution_ functior_l (qdf) associateds ¢ ,qgitional notation, for any given numbere [0, 1), we used
with the desired distribution to a uniformly distributed randorgenote itsith & -ary (basek’) expansion digit, i.e.,
variable.

The precoding then takes place in three steps: 1) the data a=
bits to be precoded are mapped to a real nuntber [0, 1);

[4] to

am[&—_i, with ars € {0 1, -, K — 1}

Iyl

When using this notation, the bad€ of the expansion is either stated
explicitly or clear from context. Ifa has two K -ary expansions, thenw
7We have observed that, in practice, the randomizing functiam (12) is specifically denotes thet[?] digit of the expansion that ends in an infinite
unnecessary; it is, however, convenient for analysis. sequence of zeros. Alse;;, wheres < ¢ denotes the tupleay), - - - apy),
t

830 that, for examplep((1,0,1)) = (1,1,0,0,1,1,0,1). andaH is abbreviated by:[.

8For examplep(6) = (1,1,1,1,0,0,0, 1), since the numbe has binary
representatioril, 1,0).
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D™ is uniformly distributed over0, 1}", then the elements represents the number of final data bits that are sent by the
of m,(D™) form a random process that can be generated ®rmination coder up to and including the first appearance of
taking an i.i.d. process with marginal pmf and truncating the string(0, 1, 0, 1) in G°°. Then

it according to a stopping rule [14]. -

2) Source Coder:We now define the source coding func- Bg = { L -‘ (30)
tion o, : X" x Y* — {0, 1}7. This function compresses its kN
first argument, a sequene® € X" representing the channel 7
inputs, using a statistical model for its dependence on its < - +1 (31)
second argument, a sequengee Y™ representing the cor- N
responding channel outputs. where the inequality follows from the simple ceiling function

Since 2" is generated by the precoder, whose output Rfoperty [z] < z + 1. Taking expectations of the right-hand
approximately an i.i.d. process, apdl results from passing side of (31)
z™ through the DMC effectively without feedback, we choose E[L]+2
the following statistical model for use in the source coder. EBg] <1+ .
Let {X,} denote an i.i.d. process with marginal pm§, and ] ) .
let {¥;152, denote the channel output process resulting froMfe show in Appendix E that with the precoder and source
passing{X;} through the DMCgy- x without feedback. The coder designs given in the previous two sections
source Icoder then assumes that the probability"ofjiven 3™ E[Bgl =1+o0n(1) (33)
is simply

(32)
RN

which shows that our choice efy gives the desired behavior.
Py (2" [Y")- (24) While any of a wide range of codes can be used as the
termination coding scheme that protects the final bits, we
Source coding is accomplished with this model via a Shaghoose what we call anodified Schalkwijk—BarroffmSB)
non—Fano strategy [15]. That is, with = 0y,. X", coding scheme, so named because it can be viewed as a special
nooay case of a coder developed by Yamamoto and Itoh [4] in a paper
on(a”, y") = u (25) bearing this name in the title. The mSB coder is itself a highly
reliable feedback coder, which, as we show in Section IV,

where the expansion in above is binary, and gives the overall scheme high reliability.

U =Fg 5 (Onr. 2" [y") + P (2" /2 (26) The mSB coder that we use sends a bIo_cI«Qf bits as
nlon follows: let x and =’ be two elements of’ defined by
L=[=log pggn("|y")] +1 27)
X ) (z, 2') = arg max D(gy|x (|#) [l avix(]2"))  (34)
and F ;- is the cdf for X conditioned ony™. The source (@)
coder is lossless in the sense thét can be recovered from where D(-||-) denotes the Kullback—Leibler distance between
y" with o, (2", y"). two pmfsl® Assuming the channel has positive capac-

Note that the statistical model used in the source coderitg, it can be shown easily that the probability of error

inaccurate: Modeling the precoder output @ssamples of associated with maximum-likelihood decoding of the two-
the i.i.d. process{ X3 }72, is not strictly correct, because codeword, lengthsy codebook consisting of the words

itself is dependent on the values &F*. Nevertheless, we use ,xx [0] 2 (z, -+, z) and a" 1] EN (z', -+, ) is below
this source coder in our overall scheme and show that thesexs~ for somea > 0.
inaccuracies are inconsequential. Each of thes v bits is sent via this two-codeword codebook,

3) Termination Coding Subsysteive now describe the j ¢  the sequence*~[0] is sent for a0 anda* 1] is sent for a
termination - encodere, 7, that we use in the code . After thery bits are sent via this procedure, the transmitter
come (N, v). The termination encoder, as we mentionegetermines whether the receiver has decoded any of the bits
earlier, protects: bits with a rate and probability of error jncorrectly. Via the union bound, the probabilif, that any of
determined by its parameter Let us first discuss how many these bits are decoded incorrectly can be shown to.hé1).
bits v the termination coder should be designed to protecit any errors occur, then the transmitter sends the length-

For the overall scheme to have high reliability, the fin vA herwi he | -
data bits should be encoded within a single-bit block, on aéftluence; = (@, -+, 2'). Otherwise, the lengtir-sequence

average. For this reason, we choose according to ¢ = (z, - -, x)is sent; if the receiver successfully determines
' ' that w” (and notc”) was sent, the process is repeated from
KN = [Nl/ﬁ_ (28) the beginning. Note that they bits are decoded correctly

unlessw” is mistaken forc”. Since the probability of this
To show thatx  is sufficiently large, we letBs denote the event clearly decreasesaicreases, the parametecontrols

number ofx-bit blocks required to send the firét bits of
G where 10The Kullback—Leibler distance, also called the information divergence,
' between two pmfsp and g is given by [15]

L=20(Sp,)+2[log t]+2[log Lp,—_1]+2[log LF _,]+10 Dl = 3 o) 1o 2.
(29) - ()
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the probability of error for this termination coding schemeanterval (0, I(X; Y)) by
Because mistaking” for ¢ causes a decoding error while the

opposite error merely causes a retransmission, the two errors Ecpe(r) = (1 —r/I(X;Y))Ee, (35)
are not equally important. The two sequences are therefore \r/1v?1tere

distinguished with maximume-likelihood decoding—rather, the

method described in [4] is used that trades a smaller probability E.,= max _ D(gyx(-|2)llayx(-]2"). (36)
of mistakingw” for ¢” for a larger probability of the opposite TCX, X

error.

Remarks: Burnashev [5] has shown th&icgc is anupper
bound to the error exponent of any variable-length feedback
transmission scheme for a DMCThis scheme therefore

Let us now outline the processing that takes place Hitains the largest possible error exponent at all rates. Finally,
the associated decoder for the encoder (17). The followipgte that £.,, may be infinite (e.g., if an output symbol
high-level description of this processing implicitly defines thgas positive probability under one channel input but zero
stopping functions{x; }; and decoder. probability under another as in aZ‘channel”) in which

The receiver has two operating modes, “normal mode,” ghse the error exponent becomes degenerate and somewhat
which it starts, and “termination-decoding mode.” In normaheaningless.

mode, the receiver saves the data from the incoming bitstream proof: This theorem follows directly from three key
directly to memory without processing it while watching folproperties of the coding scheme, which we highlight to begin
the occurrence of the sequenie’[V]. When this sequence the proof. We call these properties “Subsystem Properties,”
is deteCted, it enters termination'decoding mode and begﬁ&:ause each focuses on a key aspect of one of the Subsys_
decoding incoming data using the decoder correspondingti®ns. The reader should be aware, though, that some of the
the termination code. It concatenates the decoded messggeperties do depend on multiple subsystems and the way they
into a long decoded string, appending each newly decodggerconnect. The main point is that if we choose a different
message to the end of the string. After decoding each blockefsign for the precoder, source coder, termination coder, or

rn bits and appending it to the string, the receiver searchggchronization subsystem, then as long as these properties
for the termination sequend®, 1, 0, 1) anywhere in the full hold, then Theorem 4.1 also holds.

string and stops data acquisition when it detects this sequence. ] ] o
The receiver then proceeds to decode enouglGof to Subsystem Property 1if D" is uniformly distributed over

recover g, F, Lpy 1, and L%, . Starting with this {0, 1}™, then there exists a constaft< C, < oo that is
information, it decodes the data set acquired in normal motfglependent ofx such that
according to the following recur§|ve proce(IJIure. E[(mn(D™)] < (n + Cx)/H(X). 37)
1) SubtractF from the location at which@'~[N] was
detected to determindp,, . Let ¢ = By. Subsystem Property 2The precoders{r, }>2, and the
2) LetA;,_; = A; — L;_;. Use the received daﬁﬁiﬁl source coderga,, : X" x Y* — {0, 1}1122 are such that
and L;_, to construct the d posterior) source-coding there exists a functiorh such that
pmf that was used to generatk, and invert the source-
coded block®; according to this pmf to obtais_;. E[L7}] < E[Li] H(X]Y) + ME[L]),
3) UseL? ; to invert the precoded block]_; to obtain fori=0,---, By —1 (38)
W, .
4) Decrement. If i > 1, extractY;, L;_;, andL7_, from where X qlso has the properties thé_l(a:) = o.(x) and X is
¥, using the seed to invert the effect of-, and go to nonnegative, monotonically increasing, and conc@veover
Step 2); otherwise, stop becausg = W, and the [1, 00).
message has been determined. Subsystem Property 3The termination coding scheme
ctr™ takes two parameters and » and returns a code.
For any « > 0, there exists a sequence of parameters

. . . {(Fn, (@)}, such thatc™™(x,, 1,(«)), whose corre-
The reliability of a coding scheme, also known as its eMAnonding encoder is denoteff*™ ( encodes:,, = [n/4]

exponent, gives the asymptotic relationship among the COdiﬁ%ssage bits into an averége number of channel inputs

scheme’s rate, probability of error, and blocklength. In thi . = an+on(n) and has error probability.. e » bounded
section, we prove at a high level, leaving most of the details é%cording to 7 '

the Appendix, the following theorem regarding the reliability
for the scheme: P. term, n < €xpo{—1n(Eew — 0p(1))} (39)

B. Decoding

IV. RELIABILITY

Theorem 4.1:Let epyc be a coding scheme mapping A op
and v to the corresponding code consisting of the encod\('avrhere expy(z) = 2%
described in Section IlI-A with its implied associated stoppin§ubsystem Property 1 is proven in Appendix A, Subsystem
functions and decoder. Then, in the sense of Sectiarp\ic  Property 2 is proven in Appendix B, and Subsystem Property
attains the error exponent functioBcrc defined on the 3 is proven in Appendix C.
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Using these key properties, we can now prove the theorenLemma 4.2:
as follows: letr < I(X; Y) be given, and let us construct a
sequence of codes(with gorresponding sequence of rates and A1 <IN T (1 +on(1))(nn(r) + on(N)). (46)
error probabilities satisfying (6) and (7). Sincety /N = on(1), by substituting (45) and (46) into
Intuition from the third illustration in Section | suggests that44), we get that
the expected transmission lengijL*] of a code sendingv 1 ()
message bits and using a termination coder that puts out B[L*]/N < ———— + (1 + on(1)) INLT) +on(1). (47)

sequence of average length satisfies I(X;Y) N
N This inequality with (41) implies that the rat&y of
E[L*] ~ m + 7. (40) CDMc(N, I/N) satisfiesRy > 7 + ON(l).

The last step in showing th&lcgc is attainable is to find the
This equation in turn suggests that a sequence of codes wtbbability of errorPy corresponding tepyc(V, vy ). With

rate converging tor is {cpmc(n, vn)}o2,, Wherew,, is a the decoder described above, the invertibility of the source
termination code parameter giving the termination code cader and precoder—together with the perfect detectability

corresponding expected length @f(r) + 0,(n), where of §*~[N]—mean that decoding errors in the overall scheme
n , occur only if one of theB blocks that is termination-coded is
m(r) = —< — m) (41) decoded incorrectly. Sinc€y equals the probability of such
T 3

an event, it can be union bounded above according to

That an appropriate sequence of paramefers} eX|sts. is Py < E[BG] Po.vorm. x- 48)

guaranteed by Subsystem Property 3. Let us examine this

sequence of codegpvc(n, v,) 52, more closely to verify Inequality (39) with (33) gives an upper bound on the right-

that it behaves as desired. hand side of (48). Substituting (41) into this upper bound,
To prove that the sequence of rates corresponding to tkaking the log, and multiplying by-Rx /N yields

sequence of codes satisfies (6), we first develop a bound on th%N log Px _ Ry r
expected transmission leng#{L*] of the codecpyc( N, vy)  —— N "z <1_ m> (Bew—on (1))
as follows. Using the notation of Section Ill, first consider the ! ’ oN (49)

termination-coded transmission of the sequet€ defined
in (16). If the receiver fails to detect the sequeigel, 0, 1) > Ecrc(r)—on(1) (50)

when it first appears in the transmissi@g#™, then it is where (50) follows from the fact thaRy > r + on(L).

detected in a subsequent block because this coded SeqURNCE . these results hold fabnc(N, va) for arbitrary N
is repeated indefinitely thereafter (cf. (16)). Moreover, f%e theorem is proved ’ IZI

each of these blocks the probability of a missed detection Is
also less thamP. (e, n, the probability of error associated
with the termination coder used lync(N, vy). Thus the
expected length of the transmission starting with the length-  In the previous section, we assume that a perfectly de-
transmission of)*™ [ V] until termination is less than tectable sequenc# ~[N] exists. Since, in general, no such
sequence exists when the forward channel is a DMC, we must
I 2 tn + <E[BG] + M) (nn (1) + on(N)). modify the cogling scheme befpre it can work With a forwz?lr_d
(1= P term, ) channel that is a DMC. In this section, we outline modifi-
. (42) cations to our basic iterative coding scheme that allow us to
Furthermore’ th_e expected length of the transmission bEf%(?nove the assumption th@t~ V] is perfectly detectable.
PINT in (17) is To develop the modified scheme, we first constiiet[V]

V. REMOVING THE PERFECTFDETECTION ASSUMPTION

N Bn—1 out of legitimate channel inputs frot’. Let « be an element
p 2 Y E[L] (43) of X defined by
=0
o a = arg max D(qy|x (-|z)[|py) (51)
Hence, the total expected length of the transmission is bounded TCX
according to and then let§*~[N] = (a, ---, a). The encoder uses the
E[L*] < pr + pur. (44) sequence in the same way, communicating the time index

Ap, defined in (10) to the decoder by sendifig [V] at time
The following lemma, which is proven in Appendix D, usesig,, + F+1 and later sending bits describidg The decoder
Subsystem Properties 1 and 2 to upper-bound tests for the presence of this sequence in each new incoming
block of ty samples, using a minimum-probability-of-error

Lemma 4.1:
€ a detectoré,,, of the form

N
pr < < ~ — i N
H(X) - H(X]Y) S E [ avixwile) = [[ py () 52)
And the next lemma, which is proven in Appendix E, uses =1 i=1
Subsystem Property 3 to upper-bouad 0, otherwise.

) +on(IV). (45)
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There is now the possibility that;, returns a0 when 1) Reliability of the Modified Schemet is proven in Ap-
@t~ [N] is sent over the channel (missed detection) or #hat pendix G that Theorem 4.1 continues to hold for the modified
returns al when @'~ [N] is not sent over the channel (falsescheme when a synchronization subsystem can be designed
alarm). Asty increases, the probability of either sort of errowith the following property:
can be shown to be less than”*~ for somes > 0.

We now encounter a dilemma in choosityg: if we accept
that W2 # W whenever a false alarm or missed detecti
occurs, then we need to choosg proportional to N to detection probabilitiesPrs .. and Pup ., respectively, as-

maintain probablhty_of error decaying exponentially/i But sociated with each use @ . by the receiver, satisfies
choosingty proportional toN causes the rate to decrease by N

an asymptotically nonnegligible amount. On the other hand, Praty <on(N7?) (54)
if we choosety = ox(IV), then the probability of error does Pup. 1y < Myp + on(1) (55)
not decrease exponentially iN.

The solution is to choosey = ox(N) but to use feedback for some constanfi/yip < 1.

to detect missed detections and false alarms, allowing the, Appendix F, Subsystem Property 4 is shown to hold for

:ggg?d‘?;g;ototake corrective action. We therefore cho0se o synchronization subsystem design given by (51)~(53).
i

Subsystem Property 4With {tx}3_;, a sequence satis-
o ing txy = on(1), the sequence of detector-sequence pairs
(6¢y, 0PN [N])}3F2; is such that the false-alarm and missed-

ty = [VN] (53) VI. COMPLEXITY

which ensures that the probability of a false alarm or missed!n What follows, we show that the above coding scheme

detection occurring at any time during the transmission dec#R" P€ carried out with time and space complexity that is
to 0 asN — oo. The scheme is then modified as follows. !near in the length of the number of channel inputs used. This

As in the idealized case, the receiver has two modes Igfear time complexity_ is clearly the lowest tir_ne complexity
operation: normal mode and termination-decoding mode. (i €rms of asymptotic order of growth) achievable by any

normal mode, at every timé that is an integer multiple of c0ding scheme.

twn, the receiver tests the most recéegntchannel outputs to see ] )

whethers,,, (V¥ , .,) = 1. The receiver enters termination-A- Time and Space Complexity for the

decoding mode if and only if this condition holds trueTransmitter and Receiver

Once in termination-decoding mode, the receiver decodes eacffo show that the encoder and decoder can be implemented
incoming block to find the message coded in that block. Cowith linear time and space complexities, we show that the
catenating these messages, the receiver stops receiving wi@n constituent subsystems—precoding, source coding, syn-
it is in termination-decoding mode and finds the sequenchronization, and termination coding—can individually be
(0, 1, 0, 1) somewhere in the concatenated message. implemented with linear time and space complexities.

The transmitter knows exactly what the receiver is doing via Precoding and postcoding (precoding inversion) operate
the feedback. Hence, it can exploit the fact that the receivegarly identically to arithmetic source-coding decoders and
always enters termination-decoding mode on detection @ficoders, respectively, for i.i.d. sources. The dominant com-
¢'~[N] by sending the receiver a message regarding psitation required for arithmetic source coding and decoding
detection of*~[N]. In particular, if a false alarm occurs,is the computation of the relevant cdf. Because the cdf can
then the sequence be computed using a recursive algorithm [15], it can easily

be seen that arithmetic coding can be performed with time

(1,0, W, Wi, Wa, Wa, -, Wiy, Wi, 0,1,0,1,0,1,-++) cost that is proportional to the sum of the number of inputs
is transmitted in blocks ofix bits using the termination and outputs under the uniform-cost criterion. Space cost,
coder. The first two elements of the sequernde,0), inform excluding buffering of input and output, can be easily seen
the receiver that a false alarm has occurred and that tioeebe a constant, so the total space cost including buffering
remainder of the sequence is to be regarded as the origirequirements is proportional to the sum of the number of
message. Note that even if some of thesebits blocks are inputs and outputs. Thus the total time cost and total space cost
decoded incorrectly, the receiver eventually sees the sequeassociated with precoding in the transmitter and postcoding in
(0,1, 0, 1) and stops data acquisition. the receiver are linear id.*.

In the case of a missed detection—that is, whEN[N] is The source encoding and decoding subsystems are based
transmitted but not detected by the receiver—the transmitmm Shannon—-Fano source coding, which can also be carried
resends®*~ [N] until it is detected by the receiver. Afterout using the arithmetic source-coding algorithm. Use of
detection, the transmitter sents(Cnp ), G*°) coded inkn-  arithmetic coding again results in the time costs of the source
bit blocks using the termination coder. The sequepi@g,n) encoder and decoder both being linear in the length of their
encodes the numbetyp of missed detections that occurredinputs plus outputs. Space cost is again constant. Therefore,
From this information, the receiver can correctly ascertain thige time complexities and space complexities associated with
value of Ap, + 1. source encoding and decoding are al$g- (L*).

In Fig. 2, a flowchart giving an outline of how the scheme The synchronization subsystem requires that the transmitter
makes use of the synchronization subsystem is shown. send the synchronization sequence and that the decoder test
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Fe[A/t]t—A
Send ®F
YF + Feedback
Mp =0
™y
€ W(‘I’) Send @t
L« £(e) Y* + Feedback
k=0 Termination code
- (Cmp, F,L°, L, =
ke—k+1
Send &
Y « Feedback Cuvp « Cup+1
I |
Termination code
4 (laO)leWI;"')
N0 |
yes
no
A—A+1L
L« trée, YLy
¥ r((¢(L), #(L%), %), A)
1—i1+1
]

Fig. 2. Encoding modified for imperfect detection@fv[N]. The notation ¥} « Feedback” indicates that one sample of feedback is retrieved and stored
in Y}.. Similarly, “Y'* «— Feedback” indicates that samples are retrieved and storedYirf.

for the sequence everg, samples using,. Sending the under the uniform-cost criterion for each time the inner code-
sequence clearly takes a number of operations linednin word and corresponding lengthverification message are sent.

and requireg y buffer registers to store the sequence. Eadhe first term accounts for decoding of the inner code at the
use ofé,, clearly costs time linear iy under the uniform- receiver (which must also be replicated at the transmitter).

cost criterion. Space cost is cleatlyy (). Sinced;,, is used The second term accounts for the computation required for the
fewer thanL* /¢ times, the total time complexity att”bUtab'et_ransmitter to send” or w” and for the receiver to distinguish

to the synchronization subsystem in the receiver is linear e two sequences. For the important case in which IV, we
L*. Each timeé,,, is used, it can reuse its registers, so th ' :

i L= 1/4 :
total space cost is onlfy(¢x). The transmitter must also gaqu\;\:::;edmijr\] i oOO(VSVi e), tﬁzdti::s ;vr;/g ;er::z ?oif?))f (;asr:nbele
perform each of these hypothesis tests to determine the state A pe 9
of the receiver, so it shares the same complexity. use of the mSB coder is nearly proportional to the number
The number of computations required for mSB decodirfg channel inputs used by the cher: Since the total number
depends on the specific inner code used, but is at most of channel uses due to mSB coding is less tlidnthe total
computation due to mSB decoding must alsa’he (L*). The
On(kn?) 4+ O, (v) (56) time complexity of mSB encoding is less than for decoding,
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so it can also be shown to b@..(L*). Space complexity Many issues related to implementation and practical use of the
for the mSB encoder and decoderds, () under both cost scheme remain and are discussed in this section.
criteria, sincec” andw” and the inner codebook, all of which
are composed of discrete-valued sequences, must be stored.
Summarizing, each subsystem can be implemented vvﬁh
time and space complexity thatd; . (L*) under the uniform-  Because our scheme produces variable-length transmissions,
cost criterion, and therefore so can the overall scheme.bitffer overflows are possible. However, for large blocklengths,
follows that, at a fixed rate, the expected number of cormpreliminary experiments suggest that variations in transmission
putations and amount of storage required by the transmittength due to the varying lengths of the precoder and source-
and receiver i€)x (N). More detailed characterizations of thecoder outputs are modest; for example, in an experiment in
behavior of these algorithms on finite-length register digitavhich the sample mean ofp, + I was about 204 500, the

Length Variations

computers are given in [11]. maximum value ofdz,, + F in 100 trials was 206 336, and
the sample standard deviation dfs,, + £ was about 794.
B. Uniform Versus Nonuniform Complexity This behavior is not surprising, because for long blocks, most

of the relevant sequences are “typical” and are compressed

In comparing this scheme to other low-complexity coding) “typical” lengths, which are close to the corresponding

schemes, we find that concatenated codes [16] with Iine&pected length

complexity can also be designed. Specifically, by using COde%\lote that it is possible to design a scheme that uses lossy
t

dev(cjalopled bly Stp(ljel!'nan N [dl7] as outer cgtdgs and utsmg% effectively lossless) precoders and source coders with
randomly selected inner code, one can obtain concatenayg d-length inputs and outputs. This variation of the scheme

codes requiring computations proportional to blocklength W'ﬁg particularly important for analysis in the next section and is

expon_entially decaying prqbability of error at any rate below scribed in detall in [11]. The scheme has the advantages that
capacity. It may be tempting then to conclude that feedbaﬁl‘;eeds no synchronization subsystem and has output length

offers no adv_antaggs In terms 9f _complexny. ._that is more easily characterized analytically.
But there is an important distinction between the linear

complexity of the feedback scheme we have just introduced
and the linear complexity of such a concatenated code.BA Structuring Computation

concatenated coding scheme whose inner code is decodege payve not accounted in the foregoing analyses for the
via exhaustive-search maximum-likelihood decoding requirgs ihat computation may take time. Suppose that we have
more computation per message bit as its operating rate I ompyter that does a fixed number of computations per
creases. That is, at a particular value of the ralethe it of time. In the framework we have described in this
computation per message bit is independent of the numbgpyer it e assume that the precoders and source coders
of message bits. But the computation per message bit (igqyire the full block of input before they can compute their
pends heavily on the rate and increases rapidly and withQyfiots, a computational delay arises between iterations that is
bound as the rate approaches capacity. While the problgm,,tional to the length of the transmission on the previous
can be mitigated by using special inner codes that can h&aiion. If we send information-free filler during the delay,

decoded with more computationally efficient decoders, no sufu, the rate is reduced, because we waste a number of channel
capacity-achieving codes and corresponding decoders aPRABLts proportional taV.

to be known. . _ _ Fortunately, we can structure the computation so that com-
On the other hand, it is straightforward to verify that theation is performed while useful, information-bearing data
feedback scheme we have introduced does not behave in [igqr than information-free filler, is being sent. The technique,
way. The rate of the feedback scheme can be made 10 increggg.h e callinterleaving is described as follows: using the
to capacity by letting//N — 0 and V — oco. Computations gcheme variation mentioned in Section VII-A that uses a fixed-

per input sample need not grow without bound as these W@,k precoder and source codeed-bit message is sent as
limits are approached. There must therefore exist a positiygq s

number U/ _mdependentof the rate /& and the number O.f » Send the first lengtti¥/H(X') block of precoded data.
message bit&v such that the average number of computations

er channel input required for encoding and decoding is less Send the_ secon(_j lengthi/ H(X) block of precoded i

b data. While sending, source code and precode the first

than U for any R below the channel capacity. oS . 5
We say that our feedback scheme hiaéform linear com- Ijr\:éiéX) transmissions. intoN B (X|Y)/H*(X) new

plexity, while the above concatenated scheme is an example of Send theseVH(X|Y)/H?(X) inputs. While sending,

a scheme witmonuniformlinear complexity. The difference .
has important consequences in terms of what rates are actually source code and precode the secoid (LX) transmis-
sions into VH(X|Y)/H?(X) new inputs.

achievable in practice. » Send theseVH(X|Y)/H?(X) inputs. While sending,
etc.
After approximate\2N/I(X; Y') samples have been sent, we
Thus far, we have concerned ourselves with certain fugend the final coded block of data and the verification message.
damental theoretical aspects of the feedback coding scheldete that to support this technique, the computer must be fast

VII. | MPLEMENTATION AND PRACTICAL ISSUES
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enough to procesa channel inputs in the time required tocapacity on non-Gaussian channels such as fading channels
sendnH(X|Y)/H(X) channel inputs. and also allows quantized feedback.

C. Feedback Delay and Noisy Feedback VIIl. CONCLUDING REMARKS

When communicating over large distances, a significantIn this paper, we developed the compressed-error-
delay in feedback may be present. That is, the transmitggncellation framework and used it to develop a coding
at time & may only knowY*—¢ where d is some fixed scheme for DMEs with optimal reliability and minimal
delay. The primary effect of this delay is that at the beginningpmplexity. As an illustration of the broader applicability
of an iteration, the transmitter may not yet have enoudH this framework, in [11] and [19] rich generalizations of
feedback to start the iteration. In this case, the transmitiéd scheme are developed for use on channels with memory,
may send information-free filler data as it waits for feedbacknknown channels, multiple-access channels, and channels
This filler data wastes at mosBxd total channel inputs, with partial feedback. All retain the underlying block-oriented
which is negligible asN — oc. If feedback delays are largestructure of the scheme developed in this paper. As such, one
compared to the desired blocklength, however, one could @eseveral interesting directions for future research would be
a multiplexing strategy whereby one sends another mess&y@loring sequential counterparts to this family of schemes
during the periods that would otherwise be idle. within the compressed-error cancellation framework, and

Noisy feedback can be accommodated by applying erranterpreting the results in relation to Horstein's sequential
correcting coding to the feedback link; a method for doing ssthemes [2].
while maintaining low complexity and overall error probabil-
ities that decay exponentially with blocklength is discussed in APPENDIX A
[11]. PROOF OF SUBSYSTEM PROPERTY 1

To upper-boundE[{(r,(D™))] as in (37), it is useful to
D. Simulation upper-bound,, by a different functiori,,, which is easier to

To verify that our scheme behaves as predicted by o@palyze.
analysis and that the asymptotic performance is approachablg¢emma A.1: Let b; = FZH(i2=") for i = 0, ---, 2", and

in practice, we implemented the scheme and simulated 3., ;. ) denote the indéx of the firsi/-ary expansion digit
performance on a digital computer with finite-length registerg; \wnich = andy differ, i.e., lety : [0, 1)> — N be defined

. To simultane_ously demonstrate that the coding S(_:hemeb§,y(x’ y) = min{k € N: 24 # yyq}- Then defind,, by
viable on continuous-valued channels, we applied it to thé
Gaussian channel. To use the scheme on a continuous-valued . (1, bit1), if b i1 < u < b1
channel, the channel inputs and outputs must be quantized and ln(u) =
the corresponding channel transition probabilities determined.

In a preliminary experiment, we used the fifteen input sym-
bols {7, -6, =5, .-+, 5, 6, 7} and chose an approximately,,nare
Gaussian input distribution with variancé0 as an input
to a discrete-time channel with zero-mean additive white biyit1 =OM-bﬁ({”’bi“)1
Gaussian noise of variange0. We then quantized the output .
to the twenty-one symbols—10, —9, -8, ---, 8, 9, 10}. We (for example, if & = {0, 1}, b; = 0..010011 ---, and
simulated the Gaussian channel to empirically calculate the = 02- 01100101 --- thenbs 4 = 02.011).
channel transition probabilities for this quantized channel, and'hen

’Y(U,, b7), if b; <u< 57‘,7 it+1
Vi=0,1,---,2" ~1  (57)

used this channel model in our coder. With = 10%, and Lo(w) < Ia(w), for all u € [0, 1). (58)
v = 1000, our coder achieved a rafef 0.483. The probability -
of error can be determined to be less tHan F(,/v), where Proof: To prove the lemma, we need only show that

I is the cdf for a unit-variance, zero-mean Gaussian random - - &
variable, which is upper-bounded [18] byp{—1/2}/v/27v. [On- Loa (), Ong- Tn() + MT5) € [bi, bigr)
Comparing this performance with the capacity of the discret\(;vhere Tn(u) — bl

time Gaussian channel with a 0-dB signal-to-noise ratio, To see that this fact holds, first suppose that €
which is 0.50-bit/channel input, our scheme appears vegy bis1). Next, notice that

promising for use with continuous-valued channels and has ‘™" "t '
certain advantages over the scheme of Schalkefjil. [1]. Zmﬂ =0p. bﬁ(f“bf“)]oooo

Namely, our scheme can be easily adapted to achieve rates near
Since b;; starts with the same first(d;, b;+1) digits, any

0The theoretical capacity of this DMC approximation to the Gaussidhlement 'n[b_i:f'f'l’ b_i‘*'l) must also start with the_ same first
channel is 0.493 bit/input. In our simulation, this rate was not approached morél;, b; 1) digits. Since7,, truncatesu only after its M -ary

closely in part because our implementation of the source coder and precog@hansiordiffersfrom that ofb; 0 f +) must also beaqin
used 32- rather than 64-bit integers, which did not allow for sufficient b il BM "£ ) 9

ly . .. .
accurate characterization of the channel transition pmf. This shortcoming S/Q{Hh these digits. HenCﬁQM: Tn(u) > b it1 NeXt' since
easily be remedied with a more sophisticated implementation. u < b;41, the M-ary expansion digit at which first differs
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from b;,, must be smaller than the corresponding digit dflow, let us evaluate the entropy Bf, which is, by definition,
bit1. Therefore0yy. T, (u) + M~ () which corresponds

to 7;,(u) with its last element incremented by one, may at Z pv (v
most equalb;+;. Hence,

1
) log .
veY (U)
To do so, we divide the sum into manageable portions as
[0a7- T (), Oag. T (w) + M T CDY C [B; 41 biga). follows. Consider for now only the leavase V for which

_ Op.v € [b;, biy1), for somei. Define the sets
Next, suppose that € [b;, b; ;+1). First, it is clear that B
O Tn(w) > by, sincew > b;, andug (5 > b; 7, (- Then Vi={veVi0n.ve [?i’ bi1)}
note that Vz+ = {U S V|0]\4.U S [b% i+1, bi+1)}

Biin =000 B T (b ) ey — 1) and _
(M =DM =-1)(M—1)---. (59) Vi ={v eV|0s.v € [bi, biiy1)}
all of which have a countable number of elements. Further
restrict consideration to the leavese V. Let v be the
Ons. T (1) + M~ () element of Vi such thatojf.z./j is the smallest member of
= Ong Ta(w)(M = 1Y(M = 1)(M — 1)+ < bi 521 {0]\4.1}},U6Vi+. Note that/(v;") is also the smallest element of
’ £(vih), although other elements df" may have equal length.
since everyM -ary expansion digit of; is less than or equal to Label the elements of;" according to their lengthand their
the corresponding expansion digitlef; 1. Hence, the lemma jth A-ary-expansion digit. That is, lef>™ be the element of
follows. vV  VF that satisfiest(v; ™) = I and (Opr. 0P ™)y = m. Note

We now prove thatE[l,(F1(S))] < (n + Cr)/H(X) that (b;41)p; is the number oflelements it with length!.
for someC, < oo, where S is defined in (19). SubsystemNow, the probability of a leaf; ™ € V;" can be written as

Therefore,

Property 1 then follows from this bound with the lemma + L
lL,m pV(Ui ) l,m
above. pv(v; ™) = (Oaz. o) ) H ax ((Onz- v ™ )iw))
Consider a device that takes the random proa%;aé(S)m, IXAEM- Y e ) k=(uT)
F)gl(S)m, -+, and traverses af{-ary tree until a leaf is (61)

reached. (And/-ary tree is a tree in which every node hak

children.) We let the stopping rule, which is nonanticipatory
(as a stopping rule must be) and deterministic, define the Iea\ﬂ-:
and hence the tree. An example of how the tree is traversed is i = pv(v)/ax((Onr.v; )[é(b D)
the following: If M = 2, starting from the root of the tree, we

branch to the left if the first process value is zero, and branc
to the right if it is one; now being at a new node, we branch Pr{V eV} <pf <Pr{V eV} /puin.  (62)

to the left if the second process value is zero, and branch1tgjs inequality holds becaugs,. v comes from expanding
the right if it is one; we continue until a leaf is reached. Eacj) ;41 until and including the f|rst dlglt it differs fronb, ;.
value of S leads to a different leaf of the tree. We can th'mﬁ‘herefore if we set the last digit 0f,;. v}, (0ps. v )[Z( 1) to

of V=1, (FX (5)) as the random leaf at which we end, and ()1
of £(V) as the depth of this leaf. It is shown in [20] that ~ 2€r0 to form & numbey, then the intervalg, ¢+ M~ )
includes bothb; ;41 and b;4,. Since

El(V)]=H(V)/H(X). (60) pj' =Pr{0y.V € g ¢+ Mff(v:“)+l)}

because all leaves iW;" have their first{(v;") — 1 elements
gommon. For convenience, let

Hd note that

We now show thatd(V) < n + C, where Cy is in- we arrive at the left half of (62). The right half of (62) holds
dependent ofn, which gives us the desired upper boun@lecausepy (v;) < Pr{V e Vi}. The part of the entropy
El(V)] < (n+ Cr)/H(X). Let contributed by the leaves iH;" can be upper-bounded as

V= {Tn(u)}ue[o,l) c{o,1,---, M~ 1}T Z pv(v) log

, pv(v)
be the set of all leaves of the tree. Since the stopping rule that' ¥’

(bir1)y—1

defines the leaves is deterministic, the probability of a leaf °0 1
. iLm
v € V can be written = Z Z pv(v; ") log ———— (63)
=1 m=0 pV(Ui7 )
pv(v) = PI‘{F)%I(S) S [0]\4.1}, Opp-v+ M_[('”))} 0o (bir)—1
lL,m
which implies that = 2 Z py (")

=ty m=0

£(v) +
1 P
pv (v ax ((Oar-v)pip) | log — +log ———— (64)
H < P pv(vi’ )
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oo (big)p—1

m 1
> D> wwMles ¢
I=e(vty m=0 pi
oo (Birpy
+
2D Z H
I=¢(vy)y m=0 p=g(v])
l 1
ax ((Oar- ™)) Z log T
k’:é('lﬁ’) qX((OJW v; )[k’1)
(65)
1
<Pr{V eV} log —
p;
= 1
MY (1108 ) (66)
=1 Pmin
1
<Pr{VeVillog—— TK 67
< Pr{ Z}<0g Pr{V@W}) + pi K1 (67)

<PV e W}(log ﬁ) 27K, (68)

where K, and K, are chosen appropriately. Equation (65\fv
follows from (61), and inequalities (67) and (68) follow from
(62). The part of the entropy contributed by the leave¥in

can be similarly upper-bounded as

Z pv(v) log

veV,”

1
pv(v)

<Pr{V eV} <10g 27K,

bvev)t

Summing the bounds on the contributions to the entropy from
vV, and V", we can upper-bound the entropy contributed by

the leaves inV; by the sum of the two

1 1
pv(v) log <Pr{VeV }tlog —————
2 e PeV eV}
1
Pr{VeVillog—
TPV eV o p e v

+ 27K, + K,,) (69)
=2""(n+1)+27"(K,, + Kp,)
(70)
where (70) follows from the fact that
P =
Pr{V e V) = VeVl
Pr{VeV } +Pr{V eV}
P +
Pr{V eV} = Hy evi) 227" (72)

Pr{V eV} +Pr{V € Vj'}
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bound, we must know the distribution of the precoder’s output
¢! (the source-coder’s input) conditionéd = n. To find this
distribution, we require the distribution of the precoder’s input
WV, conditioned onL{ = n. Fortunately, because efin (12),

we can assume thait; is, conditioned onL{ = n, uniformly
distributed over the sef0, 1}™. Given such an input, we
asserted in Section llI-Al) that the precodey produces
output that is a stopped sequence of random variables that
are i.i.d. according tayx. Using this characterization of the
precoderr,’s output, we model the source coding of this
precoder's output as follows. LefX;} and {¥i} be as
defined in Section IlI-A2). Letl, = 1,(05.X°°), where

I, is defined as in (23). The precodey,’s output is then
represented by the random variable-length tu,XIén The
transmitter sendstZ» over the channel. The receiver feeds
backY L=, and the transmitter source cod&d~ according to

prw(-m)
j=1

hich results in a stream of bits of Iengﬂgut,n. Because

longXD/X Y;)| +1

bits are used to represelifL”, we can write the expected
value of Loy, » as

> Z Py (812

greyt #leat

Py (§)
Py (P8P (8D
We now prove the following lemma that bounds the length
of E[Lout, n)-

E[ﬁout,n] S 2 + Z pL,,(
=1

P, (@'10) log (73)

and that the entropy of a binary random variable is less thanwe then obtain

Summing over alk™ intervals, we have thal (V') < n+ C
for an appropriate constant, that is independent of. [

APPENDIX B
PROOF OF SUBSYSTEM PROPERTY 2

Subsystem Property 2 gives an upper bound on the expected
lengthE[L{, ;] in terms ofE[L;], which is obtained as follows.
is to first find an upper bound on
E[(%;41)|L¢ = n] in terms of E[L;|L7 = n]. To find such a

Our approach

Lemma B.1:
ElLow,n] < E[LJH(X|Y) + H(Ly) +2. (74)
Proof: We begin by expanding the logarithm in (73) as
og P Py, @10
Py e ()P 50 (BT Py @ lE)p g, (@10
Al
Pour (2
410 P12, G0
Pxi(2Y)
g P10
Py (9
E[Lous n]_2+sz [H(XV, B = 1)

=1
+D(pgui, —llpg) = Doy g, —llps ()]
(75)

H(X'V' L

<2+Zan

+ D(le|Ln:l||le g

w=10

(76)
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Sincel,, is a deterministic stopping rule fdrf(j}, and be- Lemma B.1 immediately implies that
cause{X;} is an i.i.d. process and the channel is memorylessE[g(EiHNLq] < 2+ H(L;|L?) + E[L;| LS| H(X|Y) (88)

we have that for all integers: > 0

Pxttm L, =, Xt PR (772)
PR Bt $1 S PR (77b)
XU S B =t Xy =P v (T76)
From (77), it follows that for all integers. > 0
> pi (ODsr, o)
=1
= pi, OD@sm iz, _illP50) (78)
=1
< I(X™; L) (79)
< H(Ly), (80)
and
z pi, (DH(X'VY, L = 1)
_ & Al
S 3D TN
ol
by, (y 1)
-log l T (81)
Pxe vy, (@ 4D
=3 S p 1, G
=1 zm g™
log Py, \Y @m0
Psem yomy i, (&7 G0
=225, (D D2 D pxp v (Eh G
=1 a’r;*l*il gjml
pi/m (an-;—l)
: log m I (82)
P v ($l+1v yl+1)
5™ L) - (z by, ()m z>)H<f<1|fa>
=1
(83)

<mH(X|V1) - <Z pi.

H(X,|¥1) <Z pi, (Dl+m Pr{L, > m}> (85)
=1

< H(X,|Y1)E[L,].

)H(Xuf/l) (84)

(86)

Inequality (84) follows from the fact that conditioning reduces
entropy and that entropy is posmve (86) follows from wntquhere E
»] and using basic algebra.

out the sum corresponding ﬂﬁ[

which implies, after averaging both sides ovef, that
El(Xiy)] <2+ H(L;) + E[L;]H(X]Y) (89)
<4+log F[L;| + E[L;JH(X]Y) (90)
where (90) follows becaus& (L) < 2 + log E[L] for any
positive, integer-valued random variakle(see, for example,

[21, Corollary 3.12] for a proof).
We may conclude from (90) that fer=0, 1, -- -,

E[L7,,] < E[Li]H(X|Y) +log E[L]
+4+4+2E[log L]+ 2E[[log L7]]  (92)

where the last three terms are due to the encodinds @ind
L7 in ¥,. To express the right-hand side completely in terms
of L;, we first prove the following lemma.

Lemma B.2:For all " € {0, 1}"
Ump(d)) > n/Mx
= _1Og Pmin and

By -1

(92)
where M,
Pmin = min{gx(z) : gx(x) # 0,z € X'}
Proof: The probability of the sequence, (d") must
be less thar2~". The shortest such sequence would consist
entirely of the element o’ with lowest nonzero probability,
giving the sequence probability Fm (@) The lemma then

min

follows. \Y4

This lemma implies thal.y < L;M,, which implies that
we can write

E[L] | S E[L;)H(X|Y) + 5 log E[L;] + 12 + log M.
(93)

That the logarithm is concave and monotonically increasing
completes the proof that Subsystem Property 2 holds. (I

APPENDIX C
PROOF OF SUBSYSTEM PROPERTY 3

To bound the probability of decoding error for the mSB
coding subsystem, we observe that an mSB decoding error
occurs only if the transmitter sends”, and the decoder
mistakes it fore”. Let P, be the probability of this event,
and letP,. be the probability of the reverse error (mistaking
¢ for w”). If ¢ andw” are distinguished with the detector
described in [4], which makeE,.,, very small at the expense
of making P,,,. large (but sufficiently small), then it is shown
in [4] that the choice ot* and w” given in Section III-A3)
yields the bound [4] that
FPew < eXpQ{_V(

Ecw - Ol/(l))}

- 1S defined as in (36).
The average length of the mSB encoder’s outpwan be

(94)

With (80) and (86) holding for all integers > 0, substituting upper- and lower-bounded, respectively, according to

the appropriate quantities into (76) and taking the limit as

m — oo allows us to upper-bounﬂ?[ﬁout,n] according to
E[ffout,n] S 2+H(f’n) +E[ﬁn]H(X1|YA1) (87)
which completes the proof of the lemma. \V4

Ii +l/<7’]< (li +l’)/(1_-Pin_ch) (95)
It can easily be shown thdt,. = 0,(1) and Py, = 0,(1).

If we setv = [aN] andx = [N'/4], then (95) implies
thatn = aN + on(N), which can be used with (94) to arrive



2974 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 7, NOVEMBER 1998

at the inequality which, using elementary algebra, implies that
Pcw < eXpQ{_n(Ecw - ON(]-))}' (96) @ < 1 N+ 07"
N —\HX) (X|Y) N

The probability of errorP. te;m, n for this mSB scheme can

be written : < 1-F ) (107)
1 — F — ByA(pn/Bn)/

RIIPC’IU
Pe,term, N — PP (97) . i ~
i lew + (1= Pin)(1 = Pye) Sincelim, .., A(z)/z =0, andu;; /By — 0o asN — oo,
which is less thanP.,, for sufficiently large values ofv, the lemma follows. O
proving that the property holds.
As a final remark, note that we need not have chosen the APPENDIX E
“inner” code to be a bit-by-bit repetition code, but could have PROOF OF LEMMA 4.2

used a more complex code. The repetition code happens to bgq poundy,;, we first use (92) with (29) to obtain
have very low complexity and is simple to construct. O
L<20(Yp,)+2logty+4log L, 1 +2log My + 16.
APPENDIX D o (108)
PROOF OF LEMMA 4.1 We next boundLg, _; as follows: sinceX from (100) is
N) and also represents a quantity that is finite, it follows

To bounduy, we first use Subsystem Property 1 to conclu%at there is some consta6t such that

that

< 1-F
BE[Li|L]] < (L] + Cx)/H(X). (98) Ma) S —5—z+C (109)

Taking expectations of both sides of this bound and combinig§ that the bound

with (38) in Subsystem Property 2, we find that 1+ F
(38) y perty ElLin] < 22 BlL] + C (110)
E[L;1] SFE[L;)] + ME[L])/H(X) + C-/H(X) (99)
— FE[L] + X(E[Li]) (100) holds. Using (102) with this recursion, we see that
whereF = H(X|Y)/H(X), and(z) = (\(z)+C.)/H(X). ElL] < <ﬂ) N L (111)
Note that\(x)/z — 0 asz — oo and that) is a nonnegative, 2 H(X)
monotonically increasing, concave function oyey oc). where(”’ is a constant. With (18), it follows immediately that
Using the recursion (100), we obtain
E[Lpy 1] £ C" +on(1). (112)
7 ky
E[Li] < F'E[Lo]+ Y F*N(E[Li—1-]). (101)  This inequality in turn implies via (110) thaE[((X s, )] =
k=0 On(1). Assumingty ~ on(IV), which is ensured by Subsys-

Using thatF > 0, thatA\(z) > 0 forall z > 1, thatE[L,] > 1 tem Property 4, we may conclude th&{L] = Ox(log N).
for k = 0, ---, By, and that Sincers = O (NY/*), it follows from (32) that

E[Lo] < (N + Cy)/H(X), (102) E[Bc] =1+ on(1). (113)
we can see that Coupled with the fact thaP. term, v = on(1), the lemma

Ba_1 follows. O
P = E[L;]
; APPENDIX F
1 N+C. By—1 PROOF OF SUBSYSTEM PROPERTY 4
< 1_F < )‘ ) (103) Here, we prove that both false-alarm and missed-detection
=0

probability decay at least exponentially with.

Using that\ is concave ovefl, oo) with the fact thatZ[L;] > To determine the probability of false alarm, suppose that
1for k=0, ---, By, we can bound the second term in (1031, Y2, - -, Y3, are i.i.d. with marginal pmpy-. With §*~ =
according to (a, ---, a), a being defined by (51), we can upper-bound the
probability of false alarm according to

By—1 By—1
> ME[L) SBM( > E[Li]/BN> (104)  pr{s, (Y'¥) =1}

N " N1-F

ytneytn i=1

i=0 i=0 % 1/2
tN XN N (Z)tN N
=By A(unt/By). (105) < Z pyin (Y (p YIx (( ) [ D) (114)
- Pyt (Y
Using (103) and (105), we can write yvey
1/2
b 1 L(N—FO + By (NH/BN)> (106) < Z HPY Y2pyix (vila) (115)

H(X)
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ty V] first transmission of)*~[N] in ugp of (44), the number of
= Z py (k)2 py x (klz;)*/? (116) additionaltransmissions is bounded above by (121). Equation
i=1 \ k=1 (122) follows from exploiting (55). Note that the additional
A (Ep)'™. (117) transmissions due to transmission &fCyp) is on average

a constant and therefore negligible, rass large enough that
By the Schwartz inequalityFy < 1, with equality if and E[B¢] remains as in (113).

only if X andY are independent. The probability of missed Combining the sources of additional channel uses, we obtain

detection can also be bounded above (#)t~. With ¢, (118) as desired. O
defined by (53), Subsystem Property 4 follows. = The probability of error associated witfNV, vx) is char-
APPENDIX G acterized in terms of the probability of error associated with
MODIFIED SCHEME RELIABILITY the scheme under the perfect-detection assumption by the

To find the reliability of the modified scheme, we mus]fcOIIOWIng lemma

find the new expected length and probability of error asso-Lemma G.2:With P. n and F. ;. x denoting the proba-

ciated with the new coding scheme. L&tV, v) denote the bilities of error associated withpyc (N, vn) and&(N, vy ),

modified counterpart tepyc(V, vy) defined in Section IV. respectively,
We have the following lemma that characterizes the length

for the ¢(NV, vy ) in terms of that for the length* under the

perfect-detection assumption: where

Poy n<P.,n+Pp N (123)

LeNmma G.1:With L? denoting the length associated with Ps oy < [AB,] P 1) Pt (= )Py (124)
the C(N, l/]\r) N

E[L}] = E[L*] + on(N). (118) = o (L) Fe,verm, - (125)

) . . . . ] Proof: The modified scheme introduces only one addi-
Proof: The increase in length’ — L* has two sources: . .
. : . tional error event: the event that a false alarm occurs and

false alarms and missed detections of the synchronization oo .
sequence then one of the subsequeM/x termination-coded blocks is

9 ' " o received in error. Since the existence of a false alarm does not

The number of additional transmissiods] due to false - . . o
alarms satisfies affect the probability of error associated with the termination-

coded blocks, we arrive at (124) via the union bound. O

E[AT] £ <% + 1>PFA,tN <E>77N(7‘)(1 +on(1)) SinceP. n = (1+ox(1))P. term, v, Lemma G.2 says that
N " the probability of error is effectively unchanged. Since Lemma
(119) . ?
G.1 says that the expected length is effectively unchanged as

=on(1) (120)  well, Lemmas G.1 and G.2 together imply that the modified
where Pra ¢, IS the probability of false alarm associate cheme attains the error exponent functibaec defined in
with detecting®’~ [N]. (Also recall thatdg,, + 1 is the time heorem 4.1.
at which transmission of the sequence corresponding to the APPENDIX H
Byth iteration of the coding algorithm, and thus indicates PRECODING WITH LINEAR COMPLEXITY

the time at which the symbdl*~[N] is transmitted.) The
reasoning behind (119) is as follows: there are abbwit /¢

opportunities for false alarms in a particular transmissio
If a false alarm occurs, theV source bits to be sent via

the termination coder, where each block ©f bits uses ts — 9 Th dor then finds the | tint |
abouty (r) channel inputs. Equation (120) follows by usin eo;f"th_e ?(b)r—;ﬂ '[0 € precoder Oen inds e_i_c;\r}g_ii sISc?wrva
Subsystem Property 4 with the fact tHajtA rows linearl = [Pa-t - Uy, Oa-UL 0t Uy :

y perty by]9 y that £';(I) C (s, s¢) and then puts out’. The following

with N (Lemma 4.1). . = . .
Next, the number of additional transmissions due to algorithm gives a method for doing these steps efficiently.

Without loss of generality, assume that =
éo, 1, ..., M—1}. Given a sequenc#® € {0, 1}" to precode
with 7, lets = 05. d"+27"Z, whereZ is a random variable
uniformly distributed over0, 1). Then lets, = 0. s, and

missed detections satisfies 1) S = 0,5 =1, R:=11:= L .
tx Paip. ¢ 2) If S, > s, and S, < s, then go to 4). Otherwise, go
LA < 1]34V (121) to 3).
T MDty 3) Compute

Myt (122)

1 — Mup bl,m = bl,mfl + RQX(m - 1)7 for m = 1,2,---, M
which is derived as follows. Suppose we send the stream starting withd; ¢ = S,. Fork =0,1,---, M — 1, if
@'~ [N], 0*~[N], -- -, and the detector does its hypothesis test s € [by &, b, x41), then setl; := &k, R := Rgx(k),
every ¢ty samples. Then the number of times tifat [ V] is Sy = bk, St 1= b1, 1 := 141, break out of the

transmitted before the first detection is a random variable with  loop overk, and go to 2).
mean less thari/(1 — Pun,+, ). Because we counted the 4) Halt, and returnUy, Us, ---, Uj_1).
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Assuming real arithmetic requires a single computation, thig# H. Yamamoto and K. Itoh, “Asymptotic performance of a modified

algorithm has complexity that is linear in the final value of

I — 1, which equalst(m,(s)).

To recoverd™, we need only recover the firgt binary-
expansion digits ofs from =, (d"). To do so, we compute
z = Fy(0p. 7,(d™)). Thens andz share their first. binary-
expansion digits. A convenient formula féf; is

oo ¥k —1 k—1
Fe(w) =) ax(m) ] ax(um)- (126)
k=1 m=0 =1

Because thel/-ary-expansion digits of)y,.w,.(d") are, by
definition, all zero after the first(wx,,(d")) digits, and be-

cause the product term in (126) can be computed recursive[%]

F4(0p.mp(d™)) can be computed with complexity that is
linear in £(m,(d"™)).

Like arithmetic source encoders and decoders, these megih;
ods for precoding and inversion of precoding suffer from

numerical precision problems on finite-precision computer,

(5]

(6]

(7]

(8]

(9

with arbitrary precision (see, for example, [22]), or we mudt3]

use special rescaling methods similar to those that are use(?

carry out arithmetic source encoding and decoding (see,
example, [23]).
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