2300

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 7, JULY 1993

Fast Fault-Tolerant Digital Convolution Using a
Polynomial Residue Number System

Paul E. Beckmann, Member, IEEE, and Bruce R. Musicus, Member, IEEE

Abstract—We describe a fault-tolerant convolution algorithm
which is an extension of residue number system fault-tolerance
schemes applied to polynomial rings. The algorithm is suitable
for implementation on multiprocessor systems and is able to
concurrently mask processor failures. We develop a fast algo-
rithm based on long division for detecting and correcting mul-
tiple processor failures. We then select moduli polynomials that
yield an efficient and robust FFT-based algorithm. For this im-
plementation, we study single fault detection and correction,
and apply a generalized likelihood ratio test to optimally detect
system failures in the presence of computational noise.

The coding scheme which is presented is capable of protect-
ing over 90% of the computation involved in convolution. Parts
not covered by our scheme are assumed to be protected via
triple modular redundancy. This hybrid approach is able to
detect and correct any single system failure with as little as 70%
overhead, compared with 200% needed for a system fully pro-
tected via modular redundancy.

I. INTRODUCTION

CONVOLUTION is an important operation used in
many digital signal processing applications. It is the
basis of digital filtering and correlation, and performing
convolution is often the most computationally intensive
step of an algorithm. Extremely high throughput convo-
lution systems use multiprocessor configurations [1].
Computation is distributed over several processors, and
each computes a portion of the result. Unfortunately, the
large amount of hardware in multiprocessor systems in-
creases the likelihood that a soft or hard failure will occur
and corrupt the result. Thus some degree of fault toler-
ance is desirable in these systems.

The traditional approach to fault tolerance is modular
redundancy (MR) [2], [3]. In this technique, several iden-
tical copies of the system operate in parallel using the
same data, and their outputs are compared with voter cir-
cuitry. If no errors have occurred, all outputs will agree
exactly. Otherwise, if an error has occurred, the faulty

Manuscript received March 26, 1991; revised July 31, 1992. The asso-
ciate editor coordinating the review of this paper and approving it for pub-
lication was Dr. Pierre Duhamel. This work was supported in part by a
Rockwell Doctoral Fellowship, in part by Draper Laboratory, Inc., under
Grant DL-H-418472, and in part by the Advanced Research Projects
Agency monitored by ONR under Grant N0O014-89-J-1489.

P. E. Beckmann was with the Research Laboratory of Electronics, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139. He is now with
the Bose Corporation, Framingham, MA 01701.

B. R. Musicus is with the Research Laboratory of Electronics, Massa-
chusetts Institute of Technology, Cambridge, MA 02139 and Bolt, Bera-
nek, & Newman, Cambridge, MA 02138.

IEEE Log Number 9208844,

module can be easily identified and the correct output de-
termined. MR is a very general technique and can be ap-
plied to any computational task. Unfortunately, it does
not take advantage of the specific structure of a problem
and requires a large amount of hardware overhead (200%
for single error correction). Also, when compared to bi-
nary error-correcting codes, MR provides less protection
relative to the overhead needed.

Recently, an alternative method of protecting signal
processing operations called algorithm-based fault-toler-
ance (ABFT) has emerged [4]. High level arithmetic codes
are used to encode entire sequences or arrays of data,
rather than individual samples. Algorithms are modified
to operate on this encoded data. ABFT has been success-
fully applied to matrix operations [5], FFT’s [6], and has
been generalized to include all linear signal processing
operations [7], [8]. In ABFT schemes, a high level arith-
metic code protects the majority of computation, while
MR protects parts not covered by the code. This hybrid
scheme yields robust systems at a significantly lower cost
than fully redundant implementations.

Protection of convolution operations has been previ-
ously studied by Redinbo [9]. He applies generalized
cyclic error-correcting codes with known minimum dis-
tance properties [10]. These codes are basically BCH
codes defined over the fields of real or complex numbers.
Redundancy is incorporated by premultiplying sequences
by a generator polynomial. The resulting code is system-
atic and separate, with parity symbols being processed in
an independent channel. The main limitation of this work
is that the error detecting and correcting properties of gen-
eralized cyclic codes dictate that direct evaluation of con-
volution be used. Fast algorithms, such as the FFT, may
not be employed.

This paper presents a novel, fault-tolerant convolution
algorithm which is based on a polynomial residue number
system (RNS). As in integer RNS schemes, computation
is decomposed into independent residue channels and re-
dundancy incorporated by adding extra residue channels.
This decomposition yields an algorithm which is compu-
tationally equivalent to the Winograd convolution algo-
rithm (WCA), and its parallel structure makes it ideally
suited for multiprocessor implementations. Furthermore,
and most importantly, our fault-tolerant algorithm has the
same underlying structure as fast convolution algorithms
which are based on polynomial residue number systems,
and our algorithm is fast and efficient as well. We also

1053-587X/93$03.00 © 1993 IEEE

BECKMANN AND MUSICUS: FAST FAULT-TOLERANT DIGITAL CONVOLUTION

optimally handle the effects of computational noise by de-
tecting and correcting errors with a generalized likelihood
ratio test.

The derivation of the fast fault-tolerant algorithm is
done in several steps, and its practicality becomes evident
only at the very end. In Section II we present background
material in polynomial rings and summarize the WCA.
Then in Section III we add redundancy to the WCA and
present a fault detection and correction scheme which can
handle muitiple processor failures. The derivation is very
general, and yields a wide variety of implementations.
Section IV focuses on single error correction, and we
choose moduli such that the algorithm may be computed
efficiently with FFT’s. In Section V we apply a general-
ized likelihood ratio test to deal with computational noise
inaccuracies, and in Section VI discuss the efficiency of
our algorithm. We conclude with Section VII, where we
summarize this paper’s contributions.

II. WINOGRAD CONVOLUTION ALGORITHM

In this section we describe the fundamentals of the
Winograd convolution algorithm which forms the basis of
our fault-tolerant algorithm. The operation we are inter-
ested in protecting is the linear convolution of two finite
length data sequences. Let a[n] and b[n] be P-point se-
quences which are nonzero for 0 < n < P — 1. The
linear convolution, denoted by a[n] * b[n], results in a Q
= 2P — 1 point sequence c[n] as follows:

clnl = Zjoa[i]b[n -]

for n=0,---,0— 1. n

A key idea we exploit is to represent individual samples
as elements of a field and entire sequences as elements of
a polynomial ring [11]. Let F be a field and denote by
F[x] the set of polynomials with coefficients in F. F[x] is
a ring under the operations of polynomial addition and
multiplication, and is called the ring of polynomials in x
over F. We represent the sequence a [n] by the polynomial

P-1

ax) = _2]0 alilx’)

and represent b[n] and c[n] by b(x) and c(x) in a similar
fashion. The degree of polynomial a(x), denoted by deg
a(x), refers to the highest power of x in a (x).

Let M(x) be an element of F[x], and denote by
F[x] /M (x) the set of polynomials in F [x] with degree less
than deg M (x). F[x]/M(x) is a ring under normal poly-
nomial addition and multiplication modulo M (x). The di-
vision algorithm for polynomials guarantees the unique-
ness of the modulo operation [12]. We use the notation
r(x) = {a(x))y, to represent the remainder when a (x)
is divided by M (x). M(x) is called the modulus and r(x)
is called the residue.

It is well known [13] that the polynomial product c(x)
= a(x)b(x) is equivalent to the linear convolution in (1).

2301

Furthermore, the product can be computed in the finite
degree polynomial ring F[x] /M (x) by choosing an M (x)
such that deg M(x) > deg c(x). The modulo operation
will not affect the result and a linear convolution will still
be computed.

A polynomial residue number system (RNS) {13] is an
isomorphic representation of the finite degree polynomial
ring F[x] /M (x). It decomposes a large ring into a direct
sum of several smaller rings. To define a polynomial RNS
isomorphic to F[x]}/M (x), we first factor M (x) into N rel-
atively prime polynomials,

M(x) = m(x)my(x) -+ my(x) ©)

where each my(x) is a member of F[x]/M(x). Then, it
can be shown that the direct sum of rings F[x]/m(x) X
X F[x]/my(x) is isomorphic to F[x]/M(x). The
mapping from a(x) € F[x]/M(x) to its direct sum repre-
sentation is accomplished by computing the N residues

for k=1,---,N (4

where a;(x) € F[x]/m,(x). We denote this isomorphism
by

@ (x) = £a (@)Y

a(x) = {a;(x), ay(x), * + -, ay(x)}. (5)

The inverse mapping from a set of residues {a,(x), a,(x),
-, ay(®)} to a(x) € F[x]/M(x) is computed by the
Chinese remainder theorem (CRT) for polynomials:

N
a®) = 2 (@) D@ minMi(6) ©)
where
M
M) = 29 ™
my (x)

and Dy (x) is chosen such that
<Mk(x)Dk(x)>mk(x) = 1. (8)

The isomorphism between F[x]/M(x) and its direct
sum allows us to perform computation in F[x] /M (x) by
operations in each of the smaller rings F[x]/m(x),
-+ +, F[x]/my(x). The isomorphism holds for both ring
operations. Let a(x) and b (x) be members of F[x] /M (x)
with residue representations,

) aN(x)}
and b(x) = {bl(x)’ T, bN(x)} (9)

a(x) = {a\(x), -+

The residue representation of the sum {(a(x) + b(x)>p
or product {a(x)b(x))y, can be computed by N inde-
pendent residue additions or multiplications:

(a®) £ by = {a;(0) + bk,

t aN(x) + bN(x)} (10)
(a(x)b(x))M(,‘) = {(al(x)bl(x)>m|(x|s
Tty (aN(x)bN(x)>mN(x)}- (11)

2302

A polynomial RNS is the basis of the Winograd con-
volution algorithm (WCA). We have already discussed
the main steps involved, and we summarize them here for
clarity. To compute the linear convolution c(x) =
a(x)b(x), choose an M (x) such that deg M (x) > deg c (x).
Define an RNS by factoring M (x) into N coprime poly-
nomials. (Both of these steps are done off-line.) Then,
given the sequences a(x) and b (x), compute the two sets
of residues (9). Perform the residue multiplications in each
of the smaller rings (11), and then reconstruct using the
CRT (6). The WCA thus computes a long convoution us-
ing N simpler polynomial products in independent residue
channels.

Convolving two sequences of length P using direct con-
volution (1) requires O (P?) operations. If we use the
WCA instead and choose the moduli polynomials care-
fully, then convolution can be computed with as little as
O (P log, P) operations. The savings over direct convo-
lution can be substantial.

III. FAULT-TOLERANT SYSTEM

In this section we incorporate redundancy in the WCA
to yield a robust algorithm. The WCA is mapped onto a
multiprocessor architecture and a suitable error model is
derived. Then an algorithm for detecting and correcting
multiple processor failures is presented.

We add redundancy to the WCA by adding extra resi-
due channels and constraining the length of the convolu-
tion. We start with 2 Q-point linear convolution computed
using N moduli, and add C extra moduli My, ,(x), - - - ,
my + c(x). These moduli must be coprime to each other
and to the original N moduli. Since N + C residues are
used, computation is isomorphic to the larger ring
Flx]/M*(x) where M*(x) = IOY*C m(x). In
Flx]/M " (x) a convolution of length Q* = LY2E deg
m(x) could be computed. However, we restrict the
lengths of the input sequences such that the result has
length Q < T}'_, deg m, (x). Only a portion of the allow-
able output length is used and the 0" — Q high order
coefficients of the result should be zero.

A. Multiprocessor Architecture

We distribute computation of the WCA in a multipro-
cessor system such that one residue is corrupted per pro-
cessor failure. We accomplish this by performing the
computation needed for each residue channel on a sepa-
rate, independent processor. Thus, we assume that N +
C processors are available, and assign to the kth processor
the computation of the kth input residues

a(x) = {a (X)) my (12)

br(x) = (b (X)) pyx) (13)
as well as the kth residue product
@) = (@ () b (X)) g - (14)

Our approach can only protect against errors in the first
two steps of the WCA. To ensure proper computation of

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 41, NO. 7, JULY 1993

the CRT reconstruction and error detection and correc-
tion, we assume that triple modular redundancy (TMR) is
used in these steps. This hybrid approach is practical since
the bulk of computation occurs during the first two steps
of the WCA. A diagram of the overall system architecture
is shown in Fig. 1.

Our chief concern is guarding against failures in the N
+ C residue processors, and so we assume that data I/0
and interprocessor communication are reliable. These
functions can be protected using standard techniques such
as binary error-correcting codes or triplicated buses. We
declare that a processor has failed when it does not com-
pute the correct result given its input. This model covers
a wide range of possible processor failures including tran-
sient single bit arithmetic errors as well as complete pro-
cessor failure. We also assume that when a processor fails,
it corrupts only the computation assigned to it, and does
not affect the communication network or any other pro-
cessor. With this model, one residue will be corrupted per
processor failure.

We denote the outputs of the processors by z, (x), and
assume that A failures occur in processors {k;, - * - , k,}.
The processor output will have value

G (x) + ¢ (x) for k=ky, -,k
7% (x) =
¢ (x)
where ¢, (x) is the net effect of the failure in channel k;,
and deg ¢, (x) < deg my (x). Using this set of residues,

the outputs of the reliable CRT step is
N+C

(15)
else

20 = L AL0ODf D muMi © (16)
where now
M =M1W a7
my(x)
and Dy (x) is chosen such that
(DY OOMF X))oy = 1. (18)

Substituting (15) into (16) gives
A
() = c(x) + Zl (b1, (D ()Y e Mi () (19)

and we see that processor failures affect the result in an
additive manner.

B. Fault Detection and Correction

We now develop an algorithm that detects and corrects
multiple processor failures by examining the result z (x).
The algorithm is complicated by the fact that we must
determine the exact number and location of failed proces-
sors. Let D be the largest nonnegative integer satisfying

M*) for every set of
deg [“] = @ D unique moduli
my(x) - e oy, (x) {mh(x)’ cee mlp(x)}-
(20

BECKMANN AND MUSICUS: FAST FAULT-TOLERANT DIGITAL CONVOLUTION 2303

Processor 1

rjr —
a(x) T/ <>m 1(x) Multiply z;(x)
Modulo
——— b;x)
m;(x)
b(x) \ <'>m, (x) :
a(x) Processor 2
2
<'>m 2(x) ——/| Multply 2,(%)
Modulo
B LN =)
| m3(x) |~ Reliable CRT
— and Error
* Detection and j\> c(x)
. * Correction
L
.
Prosor N+C
anyc(%) :
<'>mN+c(x) /| Multiply | QZy.c(®)
Modulo
<_> M my.c(x)
w(Myycle) ——
Protected by Polynomial RNS Protected
by TMR
Fig. 1. Robust multiprocessor architecture used to compute convolutions. Computation is first divided into N + C residue

operations, each of which is computed by an independent processor. The outputs of these processors are fed to a reliable system
which computes the CRT reconstruction and performs error detection and correction.

D measures the amount of redundancy present in the
polynomial RNS. It serves the same purpose as the min-
imum distance of a binary error-correcting code. To
change a valid set of residues into another valid set, at
least D + 1 residues must be modified. The specific value
of D depends on the redundant moduli my . ;(x), - - ,
my ; c(x). If the degrees of the redundant moduli are all
greater than or equal to the degrees of the original N mod-
uli,

i=1,--,C
deg my ,;(x) = deg m;(x) for
j=1, -, N
21

then D = C.

The properties of a polynomial RNS with a given value
of D are described in the following two theorems which
are proved in Appendix A.

Theorem 1: Fault Detection

Let D satisfy (20). Then

a) If no failures occur (A = 0), then deg z(x) < Q and
the correct convolution is ¢ (x) = z(x).

b) If between 1 and D failures occur (1 <
then deg z(x) = Q.

Theorem 2: Fault Correction

Decompose D as D = « + (8 for some integers o = 8
= 0. Assume that no more than « processors can fail at
any time. Then:

a) We can reliably distinguish when 3 or fewer errors
occur from the case when between 8 + 1 and « failures
occur.

b) If 8 or fewer failures occur, we can correct them by
examining z (x).

A < D),

The decomposition D = o + 3 presented in Theorem
2 is not arbitrary, but determines the error detecting and
correcting ability of the code. « is the maximum number
of simultaneous processor failures which we will attempt
to detect, while 3 is the maximum number we will attempt
to correct. Since a failure must be detected in order to be
corrected, o must be greater than or equal to 8. A key
issue is that we must make an assumption about the max-
imum number of simultaneous processor failures which
can occur. Then we add sufficient redundancy to attain a
desired level of protection. For example, suppose that we

2304 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 7, JULY 1993

anticipate at most two processors failing at one time. Then
we could do any of the following:

1) Detect up to two processor failures, but correct none
ofthem (D =2, a =2, 8 = 0).

2) Detect up to two processor failures. If one processor
failed, we can determine this and correct the result (D =
3,a=2,8=1).

3) Detect and correct up to two processor failures (D
=4, a=2,8=2).

The minimum redundancy needed for single fault de-
tection is D = 1, and this can be accomplished by C = 1
extra modulus which satisfies

deg my . 1(x) = deg m;(x) for i=1,---,N.

(22)

For single fault detection and correction we need D = 2,
and this can be satisfied by C = 2 extra moduli satisfying

deg my . (x), deg my.,(x) = deg m; (x)
, N.

In general, with C extra moduli satisfying (21), we can
simultaneously detect and correct at most | C/ 2| faults,
where | C/2] is the largest integer not greater than C /2.
This result is equivalent to the error detecting and cor-
recting ability of a distance C + 1 binary error-correcting
code [14].

Theorem 2 ensures that errors may be corrected but does
not state how to perform the actual error correction. This
is given in the following theorem which determines the
exact number and location of the faulty processors, and
during this process, corrects the output. The proof of this
theorem is also given in Appendix A.

Theorem 3: Faulr Correction Algorithm

Suppose the moduli satisfy the conditions (20) and as-
sume that A < « failures occurred in processors {k,,
*+ -, ky}. Then:

for i=1, - -- (23)

1) Given the (possibly faulty) residues Z;(x), use a re-
liably implemented CRT to reconstruct the corre-
sponding sequence z (k).

2) If deg z(x) < Q then no fault has occurred, so ¢ (x)

= z(x). STOP.
3) Otherwise a fault has occurred.
Forp=1,---,8
For all possible sets of p processors
Isji<p " <j,=N+C
Compute r;, .. = (z(x))M;_ e
+
whereM.Jr”. (X)) = M .
St m(x) * - my (x)
If deg r;, ... ;,(x) < Q, then the p proces-
sors {ji, * - -, j,} have failed, and c(x) =

i, @) is the correct convolution.

4) If all the polynomials Ty, jg®) have degree =Q,
then 8 + 1 to « faults occurred, and this cannot be
corrected. STOP.

This algorithm essentially does an exhaustive search of
all possible combinations of failed processors. It begins
by checking if no processors failed by testing if deg z(x)
< Q. If so, then ¢(x) = z(x) is the correct result. Oth-
erwise, it begins with p = 1 and checks if the error was
caused by a single processor failure. If not, then all pos-
sible two processor failures are checked (p = 2). This
continues until p = 3. If no set of residues which explains
the fault can be found, then by Theorem 2 we know that
between 3 + 1 and « faults occurred, and this cannot be
corrected. Testing for multiple failures in this manner
guarantees that only faulty processors will be corrected.

The algorithm can be implemented quickly if we rec-
ognize that only the high order coefficients of the remain-
der (those of degree = Q) must be computed before test-
ing if deg r;, ... @) < Q. If any of these coefficients
are nonzero, then we abort the division and test the next
set of processors. Once we find {j,, - - - . jp} such that
the high order coefficients are all zero, we know that pro-
cessors {j;, - - -, j,} have failed. To obtain the correct
result, we complete the division. This procedure requires
roughly (O — Q) /Q as much computation as performing
all divisions completely.

Even with this fast fault correction algorithm, checking
for multiple processor failures can be computationally ex-
pensive. The procedure in Theorem 3 essentially does an
exhaustive search of all possible combinations of failed
processors. Checking for 8 or fewer failures requires a
total of

N+ o)
= 4)
i=1 l:(N + C - l)'
separate polynomial divisions. This is reasonable only for
small values of 8.

If exact arithmetic is used, then the above procedure is
sufficient. However, if any rounding or truncation occurs
during computation, the high order coefficients of
Tir,- - - .j,(x) will never be exactly zero, and our fault test
needs to be modified. This is done in Section V.

The error detection and correction techniques that are
described in this section are similar to those used in in-
teger RNS [15]. However, we perform arithmetic in
polynomial rings, rather than in integer rings. Encoding
entire sequences with a polynomial RNS has several ad-
vantages over low-level single sample encoding using an
integer RNS. First, off-the-shelf fixed or floating point
arithmetic units may be used since computation is per-
formed in the complex field. Integer residue number sys-
tems, on the other hand, require nonstandard finite ring
arithmetic units. They have great difficulty with rounding
operations, and have limited dynamic range. Second, and
most importantly, in polynomial rings the choice of mod-
uli constrains the length of convolution that can be per-
formed, but not the dynamic range of the sample values.
Since the length is specified in advance, overflow can be
avoided.

BECKMANN AND MUSICUS: FAST FAULT-TOLERANT DIGITAL CONVOLUTION

IV. Fast FFT-BASED ALGORITHM

In this section we present a specific set of moduli which
allows each step of the algorithm to be implemented ef-
ficiently. We show that when mapped onto a 2-D array,
our algorithm is computationally equivalent to computing
the convolution using a Cooley-Tukey FFT with two ad-
ditional rows.

A. FFT Moduli

Computation is reduced if we use sparse polynomials
as moduli. This simplifies computing the residues and
performing the residue multiplications. Also,
MJT_ ..;,@) will be sparse, simplifying error detection
and correction.

Suppose the samples to be convolved are elements of
the field of complex numbers. Also assume that a[n] and
b[n] have lengths such that the maximum length of the
convolution is a composite Q = NR for integers N and R.
Then a particularly elegant choice for the moduli is as
follows:

m(x) = x® — wy¢c? for k=1,--- ,N+C
(25)

where Wy, = exp [j(2x/N + C)] is the (N + C)th
root of unity. Note that m, (x) can be written as the prod-
uct of R first-order factors:
R-1
m) = I @ — w00 oy 26
i=
where S = (N + C)R. From this expansion it can be seen
that the my (x) have no roots in common, and are thus co-
prime. Also note that
N+C
M*t(x) = kH. m(x) = x5 — 1. Q@7
Our method computes ¢ (x) modulo M * (x) which corre-
sponds to S-point circular convolution. Hence, to achieve
fault-tolerance, we have embedded a Q = NR point linear
convolution in an § = (N + C)R point circular convo-
lution.

We will assume that at most a single processor can fail
at any one time, and add redundancy such that this failure
can be reliably detected and corrected. We thus require 3
> 1 and o = 3. To minimize redundancy, we choose «
= B = 1 and therefore D = 2. Since our moduli are all
of the same degree, we need two extra moduli to achieve
this level of redundancy. We will assume that C = 2
throughout the rest of this section.

B. Algorithm Description

We now describe in detail the steps involved in a fault-
tolerant convolution algorithm which uses the moduli
shown in (25). We describe the steps in terms of poly-
nomial operations and as operations on two-dimensional
arrays. The latter description reveals the relationship be-

2305

tween our fault-tolerant algorithm and standard convolu-
tion algorithms. This relationship will be discussed in
Section IV-C.
We map the sequence a[n] onto a 2-D array as follows:
0 <n

] f N+1
aijn,, n =q[nmR + n or
[l 2] [l 2 <n <R 1

(28)

IA

where n, is the row index and n, is the column index.
Note that since a [n] does not occupy the entire array, we
zero pad it to length S. We compute the residues a; [n] via
operations on a[n, ny] and place the residues in the 2-D
array

l<k=N+2

0<=sn=R-1

IA

Alk, n] = a;[n] for (29)

The arrays b [n,, ny], c[ny, nyl, z[n,, ;] and Bk, n}, C[k,
n}, Zk, n} are similarly defined. We also use the follow-
ing array representation of the remainder r;(x) which is
used during error detection and correction:

0
for 0
l<j<N+2

30

IA
A

n N

A

rifny, mo] = r;[nR + ny) n, =R-1

Note that 7;[n,, n,] has N + 1 rows while the other arrays
have N + 2 rows.

1) Computation of Residues: The first step of the al-
gorithm is to compute the residues g, (x). Since the moduli
my (x) are sparse polynomials, each coefficient of a residue
polynomial is the sum of only N + 2 terms,

R-1 N+1
a(x) = ZO x" 120 Wwy% Vg + IR
P <

for 1 <k<N+2 a3
or in array notation,
N+1
Atk n] = 2 Wyt Vall, n)
for 1 < k=< N+ 2. (32)

For each n, this equation is recognized as an N + 2 point
DFT along the column a[-, n]. Similar operations are
used to compute the residue array B[k, n].

2) Residue Multiplications: The second step of the al-
gorithm is to perform the residue multiplications z;(x) =
() b (X) Yo fOork = 1,2, -+, N + 2. In general,
it is difficult to efficiently compute convolution modulo
an arbitrary polynomial. However, the special moduli (25)
allow the products to be computed by circular convolu-
tions through a simple transformation as follows. First

2306

premultiply a;[n] and b, [n] by a phase shift,

G[n] = a[mMWs* " & Ak, n] = ALk, n) w5« n

bilnl = b[n]Ws*~"" & Blk, n] = Bk, myws%~n,
(33)

Then convolve these new residues using an R-point cir-
cular convolution,

Z(x) =[G X b (X)) r_

k12
R-1
ZIk, nl = % ALk, i1Blk, (n ~ idg). (34)
Finally postmultiply to obtain the desired product resi-
dues

aln] = 2 WE™"" & Zk, n] = Zk, nyw§ =",
(35)

Many efficient circular convolution algorithms exist [16]
and any one could be used to compute (34). A logical
choice would be to use an FFT-based algorithm by taking
R-point FFT’s of each row, multiplying point by point,
and then taking inverse R-point FFT’s,

Zlk, '] = FFTR' [FFT4[A[k, *1] - FFT; [Bk, -1]].
(36)

3) CRT Reconstruction: The next step in our algo-
rithm is to reconstruct the polynomial z(x) using all N +
2 residues. By assumption, this operation is computed re-
liably. It can be shown that for moduli (25), each poly-
nomial M, (x) is sparse, with only one out of every R
coefficients being nonzero,

M+ (X) N+1 ~ i i
M{(x) = s = 2 WEIPERR 37)
Also, the D/ (x) are constants,
1 (k-
Df(x) = ———= Wy ", (38)

N+ 2

Since deg z,(x) < R, the CRT reconstruction is formed
from nonoverlapped, shifted, and scaled combinations of
the z; (x). We find that

N+2 N+1
— iR i(k—1)
= w
(@ = gs B 2w Wi
k13
N+2
z[ny, ny] = X Zlk, WD (39)

N+ 2 k=1

This is similar to (32) and is recognized as N + 2 point
inverse DFT’s along each column Z[-, n,].

4) Fast Fault Detection and Correction: If deg z(x) <
Q then no fault has occurred, and we are done, c(x) =
z(x). This corresponds to the last two rows of zlny, ny)]

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 7, JULY 1993

being zero. If there are nonzero entries in the last two
rows, then a fault ¢, (x) has occurred in some processor
q. To locate the fault we must divide z (x) by each Mf x)
in turn, and check the leading R coefficients of the re-
mainder 7;(x) = {z(x)) M e

For this special choice of moduli, there is an even faster
fault detection technique. It can be shown that an error
¢, [n,] linearly perturbs each row of the output,

Gg-1m

clny, m] + 22— ¢ [n,]

N+ 2
for ny =0,--- N-—-1
z[ny, my) =
(g—Iym
EEERIE

\ for n;, = N,N + 1. (40)

This reveals an alternative, simpler method of locating the
fault. Instead of computing and testing N + C residues,
we may use the correlation between nonzero samples of
z[N, ny]) and z[N + 1, n,] to quickly identify ¢,

N+ 2
G = <r0und [2‘ ARG (Z[N + 1, ny]
ks

: Z*[N, nzl):|> +1
N+2

where ARG (x) refers to the principal value, or angle, of
the complex quantity x. Note that this approach is sensi-
tive to computational noise which may corrupt the corre-
lation and lead to incorrect fault diagnoses. This problem
becomes more severe as |¢,[n,]| decreases since small
perturbations greatly affect ARG (z[N + 1. n]Z* [N, n,]).
A more intelligent approach to estimating § is to use all
the samples in rows z[N, -] and z[N + 1, -] rather than
just two samples. This approach is pursued in detail in
Section V.

(41

C. Algorithm Summary

The computational steps involved in the FFT-based al-
gorithm are summarized in Fig. 2. Close examination re-
veals that this procedure is similar to computing convo-
lution using Cooley-Tukey FFT’s [16] of length (N +
2)R. If Cooley-Tukey FFT’s were used, we would first
arrange the data into rows of 2-D matrices. Then compute
the FFT of each column, multiply the array by twiddle
factors, take an FFT of each row, and multiply these row
FFT’s. Then inverse FFT each row, multiply by twiddle
factors, and inverse FFT each column. The only differ-
ence between a Cooley-Tukey FFT and our algorithm is
that the initial column FFT’s must be replaced with DFT’s
which compute each sample independently. This is nec-
essary because the computation in each row must be done
independently by a separate processor, and column FET’s
would violate this partitioning of computation. Thus each
processor must be loaded with the input sequences aln]
and b[n], and will evaluate only the single sample of each

BECKMANN AND MUSICUS: FAST FAULT-TOLERANT DIGITAL CONVOLUTION

Protected
Computation

2307

CRT
Reconstruction

TMR
Protected
Computation

Fig. 2. Computational steps involved in fault-tolerant FFT-based algorithm. The example shown is of an 8-point convolution
computed by four 4-point convolutions.

column DFT that it needs. FFT’s are not efficient under
these circumstances. In the CRT, however, the distribu-
tion of computation is not critical to the functioning of the
algorithm since the CRT is computed reliably using TMR.
Thus the N + 2 residue processors output all their data to
the CRT processors, which then use column FFT’s to
compute z(x).

Added insight can be gained by studying two extreme
cases. First, when N = 1, operation is analogous to TMR.
We compute an R-point convolution using three inde-
pendent R-point convolutions. Another interesting case
occurs when R = 1. Then m,(x) = (x — Wx%;7 ") and
a;(x) and b, (x) are constants equal to the value of the
Fourier transforms of a [n] and b [n] at frequency 27 (k —
1) /(N + 2). This is equivalent to computing convolution
by having each processor multiply a single DFT compo-
nent. Adding two samples to the length of the convolution
allows an error in any DFT component to be detected and
corrected. This is similar to a method proposed by Wolf
to protect communication channels from impulse noise
[17]. He encodes sequences using DFT’s and adds extra
DFT coefficients for redundancy.

V. GENERALIZED LIKELIHOOD RATIO TEST

If infinite precision arithmetic is used with no rounding,
then all computation will be exact and the fault detection/
correction procedure discussed in Section IV-B4 would be
sufficient. Unfortunately, processors must use fixed or
floating point approximations to the complex numbers,
and rounding and truncation errors occur. In this section
we discuss how to distinguish between these small devia-
tions and actual processor failures in an optimal manner.

A similar problem is addressed in [18], [19] in which

A/D converter failures are diagnosed in the presence of
quantization noise. A stochastic model of system behav-
ior is developed, and converter failures detected and cor-
rected using a generalized likelihood ratio test (GLRT).
The GLRT determines the most likely converter failure
and estimates the output using all available data. We ap-
ply a similar technique to the problem of diagnosing pro-
cessor failures in our FFT-based algorithm.

We begin with (40) and add an extra term €[n,, n,] to
model the net effect of computational noise on each sam-
ple of the result,

(g—=Dm
N+2

s +
clny, ny} N + 2

o, [n] + elny, m}
for n, =0,:---,N—1
zlny, my] = b
q— 1n
Wyio

N+2
\ for ny =N,N+ 1.

@glml + elny, nyl

(42)

Let z, ¢, and ¢, represent the arrays z[n;, ny], ¢[ny, n,J,
and ¢,[n,], respectively. We choose a set of hypotheses
to model the behavior of our system. Let H,, represent the
hypothesis that all processors are functioning properly,
and let H, represent the hypothesis of a failure in the gth
processor, where ¢ = 1, + -+ | N + 2. Also define P,
and P, as the a priori probabilities of these events and
assume that they are independent of data and fault.

Our basic approach is to compute the likelihood (prob-
ability) of observing the output z assuming that each hy-
pothesis is true. The hypothesis with largest likelihood is
most probable, and serves as our fault diagnosis. Unfor-

2308

tunately, the likelihoods depend on the correct output ¢
and on the fault ¢,, if any, which are unknown. We there-
fore use a GLRT to jointly estimate the likelihoods and
unknown parameters.

Define L, to be the log likelihood of z and H, condi-
tioned on ¢, maximized over all possible correct outputs
c,

L, = max log p(z, Hy|c)
<

max log p(z| H,, ¢) + log P,. @3
We employ log likelihoods rather than probabilities since
they can be solved more easily. Both methods are equiv-
alent since the logarithm is a monotonically increasing
function. Similarly, define L, as the log likelihood of z
and H, conditioned on ¢ and ¢,, with ¢ and ¢, set to their
most likely values,

L, = max log p(z, H,| ¢, ,)
¢, Pq

= max log p(z| H,, ¢, ¢,) + log P,. 44
C.¢q
We will compute L, and L,forgq=1,---,N+ Cand

pick the largest. The largest likelihood corresponds to the
most likely failure hypothesis given the observed data z.
Also, the values ¢ and ¢ which maximize the likelihoods
serve as estimates of the correct output and error.

The solution of the likelihood equations depends heav-
ily on the probability distribution of the computational
noise and cannot be solved in general. However, since
€[ny, ny] is the accumulated effect of many rounding op-
erations, it is reasonable to model it as white, zero-mean
Gaussian noise with variance 2. We will also assume that
€[ny, n,] is independent of signal and fault,

plelny, mlle, ¢,) = p(eln,, ny]) = N, o?). (45)

We assume that the processors are uniform and have
equal probability of failure. The GLRT is solved in Ap-
pendix B and it reduces to the following simple form. First
compute the constant

, P
Ly = 40l log <P—:>

This serves as a threshold which decides between H, and
all other hypotheses. Next, estimate the most likely failed
processor given the observed data,

(46)

N+ 2
q = <I‘0ur1d {* ARG (pN+],N):|> + 1 (47)
27 N+2

where p; ; is the total correlation between the ith and jth
rows of z[n, n,],

R-1
2 zli, mlz* L), m).

nm=

pij = (48)

Then compute the log likelihood of a failure in processor
q’
’ §g—t
Ly =pyn+ Pysiver + 2Re (.DN,N+|W;5+2))- (49)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 7, JULY 1993

Compare L, with the threshold L. If L; is smaller, we
declare that no processor has failed and ascribe the devia-
tion to computational noise. The estimate of the output,
¢[n,, ny], then equals

A zlny, ny] forn, =0, --- ,N—1
C[n,,n2] =
0 forn, = N, N + 1.

(50)

Otherwise, if L, is greater than L%, we declare that pro-
cessor § has failed. We correct the output by first esti-
mating the error

N

+ 2 .
5 [zIN, n Wy @y DN

+ zIN + 1,] Wiy PN+ D]

&q [na] =

(51)

and then subtracting a phase shifted copy of this estimate
from z[n,, n,],

;:,]—21)111

PPN

zln, ny] — N+ ALY

élny, np] = forn, =0, --- ,N—1 (52)

0 forn, =N,N + 1.

This method improves performance over the simple
method (41) because a total of 2R samples are used to
identify the faulty processor instead of only two samples.
It yields a more accurate estimate of ¢,[n,] by reducing
computational noise through averaging. The GLRT re-
quires little additional computation; roughly 3R multipli-
cations are needed to compute the correlations and roughly
3R + NR to correct the fault.

With a GLRT, error detection depends on the value of
random computational noise, and therefore errors may not
always be reliably detected. High noise levels can cause
false alarms and small errors can go undetected. In prac-
tice, however, this is not a serious problem since all large
errors are properly detected, and during a false alarm, the
error estimate $q[n2] is generally quite small, and the im-
properly applied error correction does not corrupt the out-
put significantly.

The numerical value of the decision threshold Lj de-
pends on the statistics of the computational noise which
we modeled as Gaussian random variables. In practice,
the distribution of the computational noise depends heav-
ily on details of the implementation (arithmetic precision,
values of N and R, FFT routines used) and a Gaussian
model may be inappropriate. Also note, if floating point
arithmetic is used, then the actual computational noise
may be correlated with the data, and it may be necessary
to scale the threshold according to the magnitude of the
input sequences [20]. It is best to use computer simula-
tions to choose a threshold that achieves the desired false
alarm probability.

When a faulty processor is detected, the fault is cor-
rected and then several alternative courses of action may

BECKMANN AND MUSICUS: FAST FAULT-TOLERANT DIGITAL CONVOLUTION

be taken. The processor may be monitored to see if the
error disappears. If so, then the fault was only transient
and normal operation can continue. If the error persists,
the faulty processor can be shutdown and the system re-
configured as an N + 1 processor error detecting system.
Alternatively, a standby processor might be switched in
to replace the faulty processor.

VI. FAULT-TOLERANCE OVERHEAD

In this section we discuss the efficiency and fault cov-
erage of the single error-correcting FFT-based system
discussed in the previous section. We compare an unpro-
tected NR-point convolution computed by a standard FFT-
based algorithm, with a fault-tolerant NR-point convolu-
tion which is embedded in an (N + 2)R-point circular
convolution. Our analysis focuses on how the polynomial
RNS protects the computation involved in convolution and
does not take into account the additional hardware and
processing required for reliable interprocessor communi-
cation and I/0. We examine two quantities: overhead and
coverage. Overhead is defined as the percentage of extra
computation needed for fault tolerance relative to the un-
protected algorithm. Coverage is the percentage of total
computation protected by the polynomial RNS (the re-
maining computation is protected via TMR).

We divide the FFT-based algorithm into four steps.
During step 1, we compute the residue arrays A4 [k, n,] and
B[k, n,]. Processor k computes row k of these arrays us-
ing DFT’s as discussed in Section IV-C. In step 2, the
residues are convolved using R-point FFT’s. Step 3 is the
CRT reconstruction using N + 2 point column FFT’s.
During step 4, error detection and correction are per-
formed. Note that steps 3 and 4 are protected via TMR,
and we will weight the computation required for these
steps accordingly.

For simplicity, when considering the computational
complexity of an algorithm, we count only the number of
multiplications involved. This is a reasonable approxi-
mation, since for most FFT algorithms, the total number
of operations is proportional to the number of multipli-
cations. Let M, M,, M, and M, be the number of mul-
tiplications in each step. Also, let M, be the total number
of multiplications in a standard unprotected NR-point con-
volution computed with FFT’s. Using these definitions,
our performance measures may be written as

M + My, + 3(M; + M)
M,

u

overhead = 1 (53)

M, + M,
M + M, + My + M,

coverage = (54)

As part of our calculations we must compare the num-
ber of multiplications in N and N + 2 point FFT’s. This
is difficult to do for arbitrary values of N and so we make
a rough approximation. We assume that an L-point FFT
requires 2L log, L multiplications [16], even though L may
not be a power of 2. The majority of multiplications occur

2309
TABLE I
OVERHEAD OF FFT-BASED ALGORITHM
R

64 256 1024

4 195% 174 % 161%

8 93% 82% 74%

N+2 16 86% 74% 65%

32 117% 100% 88%

64 192% 165% 145%

in the FFT’s, and we ignore twiddle and transform coef-
ficient multiplications. With these assumptions we obtain

M, = 2R(N + 2)° (55)
M, = 6R(N + 2) log, R (56)
M; = 2R(N + 2) log, (N + 2) (57)
M, =~ 6R + RN (58)
M, ~ 6RN log, (RN). (59)

Using these approximations, we evaluated our mea-
sures for several values of N and R and the results are
shown in Tables I and II. A good reference with which to
compare the calculated overheads is that required by a
MR system offering a similar level of fault protection. A
single error-correcting MR system requires triplication,
that is, 200% overhead. Our method, on the other hand,
achieves this level of fault tolerance with as little as 70%
overhead, a substantial savings. We find that overhead
varies strongly with N and reaches a minimum at N + 2
= 16. Two separate factors contribute to this behavior.
First, if N is small, the two additional row convolutions
make up a sizable portion of the total computation, and
thus the overhead is high. Second, when N is large, the
DFT’s in step 1 require significant amounts of computa-
tion since the number of operations involved grows as (N
+ 2)°. Efficient operation occurs between these two ex-
tremes.

We also find that the polynomial RNS protects the ma-
jority of computation, as demonstrated by the high cov-
erage values in Table II. In most instances, over 90% of
the computation occurs in the residue channels. Thus, the
bulk of computation is covered by the low cost arithmetic
code, while only the remaining 10% need be protected by
more expensive MR.

VII. CoNCLUSION

In this paper we presented a new approach to protecting
linear convolution which was considerably cheaper than
traditional methods based on modular redundancy. Our
algorithm used a polynomial residue number system
(RNS), which is the underlying structure of the Winograd
convolution algorithm. Computation is decomposed into
independent, parallel residue channels, and redundancy
incorporated by adding extra residue channels. Analogous
to integer RNS fault-tolerance schemes, single errors can

2310
TABLE I
FAULT COVERAGE OF FFT-BASED ALGORITHM
R
64 256 1024
4 88% 90% 92%
8 87% 90% 91%
N+2 16 88% 90% 91%
32 90% 91% 92%
64 93% 93% 94%

be detected by adding one extra modulus, and corrected
using two extra moduli. However, we do not encounter
many of the problems associated with integer RNS.

We derived conditions on the redundant moduli such
that a desired level of fault-tolerance may be achieved,
and presented an algorithm for detecting and correcting
multiple processor failures. Importantly, we presented a
specific set of moduli polynomials which yielded an effi-
cient FFT-based algorithm. The effects of computational
noise were handled using a generalized likelihood ratio
test, and the resulting fault detection/correction algorithm
was both fast and accurate.

The parallel nature of our algorithm makes it ideal for
implementation on a multiprocessor system. We distrib-
ute computation such that each residue channel is com-
puted by a separate processor. The low cost polynomial
RNS coding scheme is able to protect the bulk of com-
putation, roughly 90%, while the remaining 10% is pro-
tected via more expensive triple modular redundancy. This
hybrid approach yields a system fully protected against
any single failure at a cost significantly lower than a fully
redundant implementation. We are able to achieve this
level of reliability with only 70% overhead, compared
with 200% needed for triple modular redundancy.

Variations of our scheme are possible which allow a
wider range of operations to be protected. Addition and
subtraction of polynomials can also be protected, and we
are not limited to protecting individual ring operations,
but can protect several with a single residue encoding and
a single error test. The ony requirement is that the length
of the final result be constrained. Errors may be detected
and corrected in the same manner.

APPENDIX A
PROOF OF THEOREMS

This Appendix contains proofs of the theorems which
were presented in Section I1I-B. We assume throughout
that \ failures occur in processors {k,, - - * , k\} and that
the outputs of the residue processors have value (15). The
result of the reliable CRT reconstruction will then be (19).
We also assume that the moduli satisfy (20) for some value
of D,andthat D = a + Bfora = 8 = 0.

If no errors have occurred, N = 0, then z(x) = c(x) and
thus deg z(x) < Q. Fhis proves Theorem la. To prove
1b, we use the following lemma:

Lemma I: Let ¢,,(x) # 0, + + -, ¢,(x) # 0 be any set

.IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 7, JULY 1993

of 1 = N < D polynomials with deg ¢,,(x) < deg
my,(x). Then:

A
deg [; (b1, () D (@) M, (x)] =0 (60)

Proof of Lemma 1: Let
by, (X) = by, () D)Y o

Since deg ¢y, (x) < deg my,(x) and ¢, (x) + 0, and since
D¢ (x) and my,(x) are coprime, we know that ¢,,(x) # 0.
Then

A
2 b (M (x)

= {—ML [Be, () m(x) -+ My, ()
m,(x) * -+ my, (X)
+ &'kz(x)mk.(x)mkg(x) crom(x) + o
+ G)M (x) - myy (0], (61)

The first term on the right-hand side has degree =(Q by
(20). The second term cannot be zero because it cannot
be evenly divided by any of the polynomials my,(x),
+, my, (x). Thus the degree of the right-hand side is
= and Lemma 1 is true. |
Since Lemma 1 is true, we know that the error term in
(19) will always have degree = Q. Since deg c(x) < Q,
Z(x) must have degree = Q if between 1 and D failures
occur. This proves Theorem 1.]
Theorem 2 is contained in Theorem 3, and thus proving
Theorem 3 is sufficient. We rely upon the following
lemma:
Lemma 2: Assume that A < « errors occur in proces-
sors {ky, ©+ -, k. Let {j,, - -+, j,} be any set of p
processors with p < 3. Then

deg Kz mr. .l <@ ifand only if

{k]’ e 7k}\} c {j]7 trt 7jp}
where
M*(x)
M. .., = .
e mj(x) - - my, (x)

Proof of Lemma 2: Let r,...,(x) =
(z(x))Mij_ L We prove this lemma in two parts. First,
we show that deg r;, ... , @) = Qif {k;, -+, k} ¢
{ji, = .Jp}. Then, we show that deg 7, .. L) <0

if {kl’ T, k)\} - {jls e ’jp}'
Using (61), write the result of the reliable CRT recon-
struction in the form

M (x)

zx) = clx) + W

¢) (62)

My (x)

where ®(x) # 0 and ®(x) is coprime to my(x), - - - ,
my, (x). Then, using the division algorithm for polyno-

BECKMANN AND MUSICUS: FAST FAULT-TOLERANT DIGITAL CONVOLUTION 2311

mials, write this as

M™*(x)
R e e A
where Q(x) and r;, ... ; (x) are the quotient and remain-

der when z(x) is divided by M, ..
i O s k) =
< min (X, p), and suppose {ji, - - - ,j,} U {k;, -,
k} ={n, ---,n} wheres < X\ + p. Let {j;, - - -,
J;—r} = {jlﬂ T ’jp} - {ml’ T mr} represent the
indices of {j, * -+ , j,} which do not appear in {k;,
+++, ky}. Similarly, let {k;, - - -, kn_,} = {kyy -0,

-.jy®). Suppose {ji,
my, ** -, m} where r

ky} — {m,, - - -, m,}. Equating (62) and (63) gives
c@x) = ry... ()
M’ (x)
= [m} [Qymg(x) - - - mg (%)
- @m0 - - - my, (0] (64)

Since A < aand p < 3, we know that s < D. Therefore
by (20), the first term on the right-hand side has degree
=Q. V\[hen TR N S AR U I ’jp}’ then {k;,
+++, ky_,} will be nonempty. Then, since ®(x) is co-
prime to my, (x), * - , my,(x), the second term on the
right-hand side cannot be zero. Thus the right-hand side

has degree =Q and deg 7y, ... ;,(x) = Qif {k;, - - -, k\}
(Z {jla e ’jp}‘
Now assume that {k;, - - -, K} C {ji. - . j,}.
Begin with (62) and expand the second term
A
1) =) + 2 G (M (). (65)
Now take the residue when this is divided by
Mj-:-‘ Ce. ,jp(x),
rj[,- .. ,jp(x) = (C(x)>M/T,')
A
+ LB OMEDy (e (66)
Since deg Mji... , (x) > deg c(v), @t =

c(x). Also, since Mj; ... ; (x) divides M; (x),

(G OME@dyy (=0 fori=1,-++ X\

The above equation then reduces to

i - (%) = (). (67)
Thus r;, ... ;,(x) = c(x) and deg r;, ... ; (x) < Q when
{ki, - - -, kY C {ji, - - -, Jp}. This proves Lemma 2.

O

To show that the procedure in Theorem 3 works prop-
erly, we consider two cases. First assume that no failures
occurred, A = 0. Then by Theorem 1, z(x) = ¢(x) and
deg z(x) < @, and the procedure would stop in step 1.
Second assume that A < « errors occurred. Lemma 2
guarantees that deg r;, ... ;,(x) = Qif {ky, +++ .k} ¢
{j1» =+, Jjp}- Since we are checking all possible com-

binations of p processors, starting with p = 1 and contin-
uing until p = B, deg r;, ... ;,(x) will be less than Q if
and only if N = B, p = A and {j,
“++ ,jpp = {ki, -+, k\}. Then by Lemma 2, c¢(x) =
7 ..., (x) is the correct solution. Otherwise, if 8 + 1 <
N < « failures occurred, then {k;, - - - , b} & {Ji,
-+, jp} and we continue to step 4. This set of faults is
uncorrectable. |

APPENDIX B
SOLUTION OF LIKELIHOOD EQUATIONS

In this Appendix we solve the likelihood equations dis-
cussed in Section V. We begin with (43) and (44) and
model computational noise as a zero mean Gaussian ran-
dom process (45). With this assumption, the likelihoods
become

- 1 N+1 R:‘l
L= mcax T mngo n}:o |2l o]
- clny, ”2]|2jl (68)
| Nrb R
Lq B Ti}f L’q B ZTEmE::o nzz=:0 zlm, ml
(g=-1m 2
—clny, m] — ﬁz_ d’q[":] } (69)
where 7, and 7, are constants,
ns = log P, — 1 S log 2wo?) (70)
n, = log P, — 5 Slog 27a?)). (71)

We start by maximizing L, over ¢ to obtain ¢[ny, ny],
an estimate of the output given that H, is true. Since ¢ [n,,
n,] is zero for rows N and N + 1, (68) can be rewritten
as

c [m=0nm=

| No R
L, = maxln)k ~3 2{ 2 ZO |z[ny, ny)

N+l R—-1I
- C[H], n2]|2 + mZ::N nzZ:O |Z[n|’ n2]|2}}‘

(72)
Maximizing over ¢ we obtain
. z[ny, nsl for n, =0, - ,N—1
elny, o] =
0 for ny = N, N + 1.
(73)

Substituting ¢{n,, ny] into (72) yields the likelihood that
hypothesis H, is true,

N+1 R-1

2 2 |zlny,)%

20'3 n=Nm=0

1
L, =7, 74)

2312

Computing L, is more difficult since we must estimate
both ¢ and ¢,. Maximizing (69) over ¢ we obtain

g—Dm
zlny,) — N—Nl%%[nz]
€rlm, ma] = for my=1,--- ,N~1

0 for ny = N, N + 1. (75)

(Note that we call this é[n,, n,] to emphasize that it is an
intermediate step in the maximization process, and not the
final estimate of the correct output.) Substituting
¢[ny, ny] into (69), the log likelihood function becomes

1 N+t R-1
L, = rr;aqx [nq - 2762'“:,\,"2:0 s zZ[ny, n]
(q—zl)nl 2
N
- N—:_Z%["z]] (76)

Maximizing over ¢, and keeping in mind that complex
quantities are involved, we obtain

o N+2 —(o—
bqlna] = T2 [zIN, nwy'd; OV

+ 2N + 1,) Wy, V™0 (717)

The error estimate abq [n;] is formed by averaging the last
two rows of z[n,, n,] with appropriate phase shifts and a
scale factor of N + 2. Substituting $q {n,] for ¢,[n,] in
(75) gives the estimate of the correct output,

(g— Dn
e
zlny, ny] — ——N”jr 5 %qlnal
c[nl,n2]= for n=1---,N—1

0 for ny = N, N + 1. (78)

Finally, substituting (78) and (77) into (69), and after
some algebra, we obtain the likelihood of hypothesis H,,,

1 N+1 R—1
L,=19,—-— :
9 T’q 203 mZ::N nzgo 'Z[n], ”2]|
1 R-1
S b 2,
207 (V1 27 2 | ulall 79

The likelihood equations can be further simplified by
assuming that the failure probabilities P, are the same for
qg=1, -+, N+ 2, and by using relative likelihoods
defined by

N+1

1
L = 4aZ[Lk -7+ 797 "E)N

R-1

RINE G nzﬂ. (80)
The likelihoods then reduce to

, P
Ly = 402 log =

P, (81)

and

g—1)
Ly =pvnt+ onveine1 +2Re (PN,NHW,\(,I”

(82)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 7, JULY 1993

where p; ; is the total correlation between the ith and jth
rows of z[n,, n,] and is defined in (48).

We can simplify the hypothesis testing procedure by
solving directly for the value of ¢ which maximizes (82)
rather than computing each L. This yields

N+ 2
G = <rour|d [ﬁ ARG (pN+,VN)}> + 1. . (83)
2T N+2

Our fault test then proceeds as follows. First, compute the
constant L. Then compute § and L; using (8.) and (82).
If Ly > L;, we declare that no processor has failed and
ascribe the nonzero samples in rows z[N, -] and
zZ[N + 1, ‘] to computational noise. Otherwise, we de-
clare that processor § has failed and correct the fault using
(77) and (78).

REFERENCES

(1] D. Chin, J. Passe, F. Bernard, H. Taylor, and S. Knight, ‘‘The
Princeton engine: A real-time video system simulator,”’ JEEE Trans.
Consumer Electron., vol. 34, pp. 285-297, May 1988.

[21 D. A. Rennels, ‘‘Fault-tolerant computing—concepts and exam-
ples,”” IEEE Trans. Comput., vol. C-33, pp. 1116-1129, Dec. 1984.

[3]1 J. von Neuman, Probabilistic Logics and the Synthesis of Reliable
Organisms from Unreliable Components. Princeton University
Press, 1956, pp. 43-98.

[4] J. A. Abraham, *‘Fault-tolerance techniques for highly parallel signal
processing architectures,’” Proc. SPIE Int. Soc. Opt. Eng., vol. 614,
pp. 49-65, 1986.

[5] J.-Y. Jou and J. A. Abraham, ‘‘Fault-tolerant matrix arithmetic and

signal processing on highly concurrent computing structures,”’ Proc.

IEEE, vol. 74, pp. 732-741, May 1986.

J.-Y.Jouand J. A. Abraham, *‘Fault-tolerant FFT networks,’” JEEE

Trans. Comput., vol. 37, pp. 548-561, May 1988.

W. S. Song and B. R. Musicus, ‘‘Fault-tolerant architecture for a

parallel digital signal processing machine,"” in Proc. 1987 IEEE In.

Conf. Comput. Design: VLSI in Comput. and Processors, Oct. 1987,

pp. 385-390.

[8] W. S. Song, “‘A fault-tolerant multiprocessor architecture for digital
signal processing applications,”” Ph.D. dissertation, M.1.T., Jan.
1989.

[91 G. R. Redinbo, **System level reliability in convolution computa-
tions,'" IEEE Trans. Acoust.. Speech, Signal Processing, vol. .7, pp-
1241-1252, Aug. 1989.

{10} T. G. Marshall, Jr., **Coding of real number sequences for error cor-
rection: A digital signal processing problem,’’ /EEE J. Select. Areas
Commun., vol. SAC-2, pp. . 81-.92, Mar. 1984.

[117 J. H. McClellan and C. M. Rader, Number Theory in Digital Signal
Processing. Englewood-Cliffs, NJ: Prentice-Hall, 1979.

[12} 1. N. Herstein, Topics in Algebra. New York: Wiley, 1975.

6

-

[7

[1.1 R. E. Blahut, Fast Algorithms for Digital Signal Processing. Read-
ing, MA: Addison-Wesley, 1985.
[14] R. E. Blahut, Theory and Practice of Error Control Codes. Read-

ing, MA: Addison-Wesley, 1984.

[15] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor,
Residue Number System Arithmetic: Modern Applications in Digital
Signal Processing. New York: IEEE Press, 1986.

[16] C. S. Burrus, DFT/FFT and Convolution Algorithms.
Wiley Interscience, 1985.

[17] J. K. Wolf, ‘‘Redundancy, the discrete Fourier transform, and im-
pulse noise cancellation,”” IEEE Trans. Commun., vol. COM-. 1, pp.
458-461, Mar. 198. .

[18] P. E. Beckmann and B. R. Musicus. ‘‘Fault-tolerant round-robin
A/D converter systems."” IEEE Trans. Circuits Syst., vol. .8, pp.
1420-1429, Dec. 1991.

[19] P. E. Beckmann and B. R. Musicus, ‘‘Fault-tolerant round-robin
A/D converter systems,”” RLE-Tech Rep. 561, M.I.T., Cambridge.
MA, Dec. 1990.

[20] A. V. Oppenheim and C. J. Weinstein, ‘*Effects of finite register
length in digital filtering and the fast Fourier transform,’” Proc. IEEE,
vol. 8, pp. 957-976, Aug. 1972.

New York:

BECKMANN AND MUSICUS: FAST FAULT-TOLERANT DIGITAL CONVOLUTION

Paul E. Beckmann (S’90-M'92) received the
S.B. and S.M. degrees in electrical engineering in
1989, and the Ph.D. degree in 1992, all from the
Massachusetts Institute of Technology, Cam-
bridge.

He held a Rockwell Doctoral Fellowship from
1989 to 1992 while working in the M.1.T. Digital
Signal Processing Group. Currently, he is a Re-
search Engineer with Bose Corporation, Fra-
mingham, MA. His main area of research is in
signal processing algorithms and architectures for

consumer and professional audio products.

2313

Bruce R. Musicus (S°77-M’78) received the S.B.
degree from Harvard in 1975, the M.S. and E.E.
degrees from M.I.T. in 1979, and the Ph.D. de-
gree from M.I.T. in 1982.

He was an Associate Professor of Electrical En-
gineering and Computer Science at M.I.T., work-
ing in the areas of signal processing algorithms
and architectures. He has taught courses both at
M.I.T. and in industry on topics such as real-time
computer systems, digital computer design, digi-
tal signal processing, and recursive filtering. Cur-

rently he is at Bolt, Beranek & Newman, working on sonar system design,
signal processing, and speech recognition.

