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ABSTRACT

In the context of FFT-based maximum-likelihood (ML) de-
tection of a complex sinusoid in noise, we consider the re-
sult of terminating the FFT at an intermediate stage of
computation and applying the ML detection strategy to its
unfinished results. We show that detection performance in-
creases monotonically with the number of FFT stages com-
pleted, converging ultimately to that of the exact ML detec-
tor. The receiver operating characteristic associated with
the completion of each FFT stage is derived. This enables
the calculation of the minimum number of FFT stages that
must be completed in order for desired detection and false
alarm probabilities to be obtained.

1. INTRODUCTION

There is currently a growing interest in approximate digital
signal processing techniques that are characterized by the
fact that their intermediate results represent successive ap-
proximations to some desired solution. The improvement
in solution quality from one intermediate result to the next
may be viewed as a process of incremental refinement [1] [2].
In this paper we demonstrate that, in the context of detect-
ing sinusoids in noise, the FFT possesses the incremental
refinement property. By considering the performance of the
maximum-likelihood (ML) detection strategy applied after
successive FFT stages, we show that the performance of the
resulting suboptimal detector improves incrementally, con-
verging ultimately to that of the exact ML detector. This
leads to important consequences such as the fact that for
a wide range of SNR values at the input of the FFT, high
probabilities of detection are obtained without the necessity
of going to the last stage of the FFT.

We begin by describing the traditional F¥FT-based ap-
proach to ML detection and the analysis of its performance.
Next, we consider the data obtained at intermediate stages
of the FFT in the context of ML detection and show that
at each successive stage of computation the effective SNR
is doubled while the number of channels which could con-
tain signal energy is halved. Compact expressions for the
probability of detection, probability of false alarm, and the
receiver operating characteristic (ROC) are then derived.
We conclude with an illustration of how these performance
results can be applied to the problem of selecting the min-
imum number of FFT stages that must be completed in
order to achieve a desired level of detector performance.
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2. FFT-BASED ML DETECTION

The detection of a complex sinusoid of unknown frequency
and phase in additive white Gaussian noise (WGN) can
be formulated as a decision D between the two alternative
hypotheses:

Hy : z(n) = w(n), €
Hy : z(n) = s(n) + w(n),

where z(n) is the received data sequence, observed for n =
0,1,...,N —1, w(n) is the white noise process, and s(n) is
the sinusoid whose detection is desired. The hypothesis H.,
represents the case when only white noise is present, and
H, is the signal-present hypothesis.

We consider the detection of complex sinusoids of the
form

s(n) = VES T n=0,1,. ,N-1, ()

where E is the signal power (which is known), [ is an un-
known integral frequency index in the range 0 <I < N -1,
and ¢ is the unknown phase with possible values 0 < ¢ <
27. The complex-valued noise process w(n) with power
spectral density No/2 can be defined as

w(n) = q(n) + jr(n), n=0,1,...,N—1, (3)

where g(n) and r(n) are both real-valued WGN processes
with variance No/4.

The ML detector [3] for s(n) consists of a bank of cor-
relators followed by a comparator of their outputs and a
threshold detector. Each correlator can be thought of as
producing at its output the magnitude-squared of the out-
put obtained at time n = N —1 from a filter matched to one
of the possible sinusoidal frequencies. Denoting by C(k) the
output from the correlator associated with frequency index

k, we obtain
N-1 2

Z x(n)e_j%k"

n=0

C(k) =

This output is equivalent to the magnitude-squared of the
N-point DFT of z(n) and is typically implemented using
the FFT algorithm at a significantly reduced computational
cost in comparison with a filter-based implementation.

The ML detection strategy dictates that the output of
these correlators be compared by selecting the maximal
value over all C(k). If this value is greater than a threshold
7, then the sinusoid is determined to be present (i.e. D =
H,;), otherwise it is declared absent (and D = H,). Us-
ing the Neyman-Pearson detection criterion [3], the thresh-
old value is selected so that a fixed false alarm probability
(Pra = Prob[D = H,|H,]) is obtained.
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Figure 1. Incremental refinement detector of sinusoids in noise.

The probability of detection and ROC for this detector
are determined by forming the distribution of the maxi-
mum energy value found across all elements of C'(k) un-
der each input hypothesis [4]. Under hypothesis Hy, the
FFT output consists of N complex-valued random variables
each with real and imaginary parts that are independently
Gaussian-distributed with zero mean and variance N-No/4.
This results in values of C(k) that are independently x>-
distributed with two degrees of freedom. Under hypoth-
esis Hs, the FFT output for k = [ is equal to Nv/Ee/¢
perturbed by a complex-valued noise component with inde-
pendent Gaussian-distributed real and imaginary parts of
zero mean and variance N - No/4. Hence, C(l) is noncentral
x2-distributed with two degrees of freedom and noncentral-
ity parameter N?E. The values of C(k) for k # [ have the
same distribution as for the noise-only case.

In the following section, we derive the distributions ob-
tained for C(k) when only a subset of FE'T stages are com-
pleted. These distributions are then used to obtain the
corresponding detection performance.

3. DATA ANALYSIS FOR FFT STAGES

For applications in which further reduction in computation
is desired, one may consider the result of terminating the
FFT algorithm after an intermediate stage of computation
and using its incomplete results as the basis for detection.
The structure of a detector employing this approach is il-
lustrated in Fig. 1, where we denote by X;(k) the output
of the ith FFT stage and C;(k) is the associated correlator
output.

In this paper, we consider the result of applying this de-
tection strategy when N = 2¥ (for some positive integer v)
and the computation of X;(k) is performed using either the
decimation-in-time (DIT) or the decimation-in-frequency
(DIF) radix-2 FFT [5]. Both of these FF'T algorithms are
comprised of v successive stages of computation, and each
stage performs N/2 parallel “butterfly” operations on the
results of the previous stage (or the input data, in the case
of the first stage).

In order to ascertain the performance of this detector, we
first consider the contents of X;(k) under each of the two
input hypotheses. When only noise is present in the input
sequence, we have X;(k) = Wi(k), where W;(k) denotes
output of the 7th stage of an FFT which has the sequence
w(n) as its input. Due to the linearity of all FF'T operations,
under hypothesis H, we have X;(k) = S;(k)+W;(k), where
S;(k) is the output of the ith stage of an FFT for which
the input sequence is s(n). We proceed in our analysis by
independently considering the contents of S;(k) and W;(k)
at each stage. These results are then used to obtain the

a c=a+e?/Np

o I2IN dm o RN
(a)
a 1 c=a+bhb
b i d=eP/Nig - p)
(b)
Figure 2. The butterfly computation structure used in

the radix-2 (a) decimation-in-time and (b) decimation-in-
frequency FFT.

distribution of Ci(k) under each input hypothesis.

3.1. Signal Data Analysis

At the input to the FFT, the complex sinusoid s(n) con-
sists of N elements of magnitude +E as given in Eq. 2. At
the output of the last stage, Sy(k) contains only a single
non-zero element at k = [, having the value Nv/Ee’®. If we
consider the intermediate results obtained at each interven-
ing stage, moving one stage at a time from the output of
the last stage towards the input, we find that the number of
non-zero elements doubles at each stage and the magnitude
of each of these non-zero elements is successively halved.
This results in Si(k) = 2'vEel% for N/2* different values
of k, and Si(k) = 0 for all other values of k between 0 and
N-1!

Proof of this assertion for both the DIT and DIF radix-2
FFT can be obtained through careful examination of the
FFT structure. That this relationship holds between the
last two FFT stages can be shown using a basic property
of the butterfly computation. For both the DIT and DIF
butterfly operations (shown for reference in Fig. 2), when
¢ = Ae’® and d = 0 (or when ¢ = 0 and d = Ae’?) for
any A and 6, it must be the case that a = Ae’¥/2 and
b= Ae“/Z for some ¢ and A. The values of S,_i(k) must
therefore consist of two elements with the values Nv/Ee/? /2
and Nv/Ee’* /2 for some ¢ and A. The other elements of
Su—1(k) are zero-valued, since a butterfly which is zero at
both of its outputs must also have zero-valued elements at
both of its inputs.

It is a further property of both the DIT and DIF FEFT
structures that each of the two non-zero elements of Sy_1 (k)
lie at the outputs of distinct butterflies. Thus, this same
property holds for each of them, and Sy 2(k) must consist of
exactly 4 non-zero elements, each with magnitude NvE/4.
This behavior, in fact, occurs at every stage? of the radix-2

!The quantities f) are random variables which we need not
characterize for the purposes of this analysis. We also do not
require knowledge of the locations (values of k) of the non-zero
elements of S;(k) at each stage.

2This can be seen informally by tracing all paths in a flow-
graph representation of the radix-2 FFT which lead to a single
output point. A formal proof is given in the appendix.
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FFT. This results in twice as many non-zero elements with
half the magnitude in each preceding FFT stage.

3.2. Noise Data Analysis

As discussed in Sec. 2, when the input sequence to the FFT
is w(n), the output of the last FFT stage, W (k), consists of
N independent complex-valued random variables with real
and imaginary parts that are each independently Gaussian
distributed with zero-mean and variance N - No/4. By solv-
ing the DIT and DIF butterfly equations for their inputs
in terms of there outputs, the elements of W,~1(k) can be
shown to have the same distribution as W, (k), but with the
variance of their real and imaginary parts halved to N-Ny /8.
Following the computation across successive stages, it can
be shown that when ¢ stages have been performed, the val-
ues of W;(k) are independent complex-valued random vari-
ables with Gaussian-distributed real and imaginary parts
each having variance 2172 Ny.

3.3. FFT Stage Distributions

The results of our signal and noise data analysis for inter-
mediate FFT stages can be applied to determine the distri-
bution of C;(k) under each of the two input hypotheses.

In the noise-only case, we have C;(k) = |W;(k)|*>. Based
on the results from Sec. 3.2, the values of Ci(k) for k =
0,1,...,N —1 possess the x? probability distribution with
two degrees of freedom and have the cumulative distribution
function

Po(ai) = (1-e0 (545 ) ) ule)h @

where u(z) is the unit step function.

Under hypothesis H,, considering the contributions to
C;(k) from both S;(k) and W;(k), there exist N/2* elements
with signal plus noise and N — (N/2') elements with noise
only. The elements containing only noise are distributed
according to Eq. (5). The elements with signal and noise
are derived from squaring the magnitude of a deterministic
component with magnitude 2'v/E summed with a complex-
valued noise component with Gaussian-distributed real and
imaginary parts of zero-mean and variance 2°~>Np. This
results in independent non-central x> densities with two
degrees of freedom for these elements of C;(k) and each of
them has the cumulative distribution function

Pyz;i)=1-Q (\/2i+1SNRm, Jiow ) ©
[¢]

where Io(-) is the zeroth-order modified Bessel function
of the first kind, Q(-,-) is Marcum’s @ function (3], and
SNRin = 2E/Ny is the SNR at the input to the detector.

4. SIGNAL DETECTION FROM FFT STAGES

By forming the distribution of the maximum energy value
found across all elements of C;(k) under each input hypoth-
esis [4], we can determine the threshold values required to
obtain a given probability of false alarm, the resulting prob-
ability of detection, and the receiver operating characteris-
tic achieved by applying the ML detection strategy after
any FFT stage.

Application of the ML detector according to the Neyman-
Pearson criterion requires that we obtain the threshold
value which gives the desired probability of false alarm
(Pra). Since the noise distribution depends on 4, so must
the threshold, which we denote by #;. The probability of

producing a false alarm, given that a threshold of #; is ap-

plied, is
s i
Ppa=1-— (1~exp <ﬁ2i—lN0>) . (7)

It follows that a given value of Pr4 is obtained when

mi = ~2"'Noln [1 —1- PFA)”N:| . ®)

The probability of detection Pp (i) obtained when FFT pro-
cessing is terminated after ¢ stages can be derived from the
distribution of C;(k) under hypothesis H,:

7 N-(N/2%)
Pp(i)=1- (1 — exp (-— 21'“11N0))

— m N/2¢
x (1 —Q( 2¢+1SNR;y, 2i-;N0 ) 9)

The receiver operating characteristic is found by substitut-
ing Eq. (8) into Eq. (9):

Po(i) =1— (1 - Ppa)™>"

x (1 _Q <\/2_—+1SN—RH \/—Zln[l - -PFA)l/N]))

(10)

|2

i

[§)

This performance analysis enables us to verify that the
detector performance improves monotonically across stages.
By considering the first derivative of the ROC, taken with
respect to i, and making term-wise comparisons on the in-
finite series expansion [6] of Marcum’s @ function, we ob-
tain that for any input SNR and false alarm probability,
the probability of detection increases monotonically with i.
Since ¢ = v corresponds to performing all FFT stages, the
performance obviously converges to that of the exact ML
detector.

For any fixed input SNR and Pra, the improvement
in Pp(i) between successive FFT stages is non-uniform
across any given FFT algorithm. This is exemplified by
Fig. 3 which shows a typical characteristic for Pp(i) when
Pra & 1. In general, the change in Pp (i) between suc-
cessive stages depends upon two counteracting effects: the
doubling of SNR at the output of the FFT, which increases
the probability of detection, and the halving of the num-
ber of channels containing signal energy, which decreases
it. Since Pp(i) increases monotonically, it follows that the
shape of the Q function, which increases monotonically with
its first parameter, is the primary influence on the change in
detection probability at each stage. In comparison, the re-
duction in the number of channels containing signal energy
is of secondary importance.

5. DISCUSSION

Using the performance analysis derived in the previous sec-
tion, we can determine the number of FFT stages that must
be completed in order to obtain a desired detection per-
formance. Such information provides a sound basis for a
system designer, system operator, or control algorithm to
select the earliest stage at which the FFT calculation can
be terminated while meeting application specific constraints
on the detection and false alarm probabilities.
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Figure 3. Detection probabilities at successive FFT stages
when SNRi, = —6 dB, Pps = 1074, and N = 256.

Input SNR || FFT Stages Needed to
I (dB) H Guarantee Pp > 0.7 —‘
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Table 1. Number of FFT stages that must be performed in
order to guarantee Pp > 0.7 when N = 256 and Pp4 = 1074,

The number of stages needed to obtain a desired detec-
tion probability for any specific input SNR and Pra can
be obtained by evaluating the ROC in Eq. (10) for increas-
ing values of . This is illustrated in Table 1, which lists
for different values of input SNR the minimum number of
FFT stages that must be performed in order to guarantee
a detection probability of 0.7.
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A APPENDIX

In this appendix, we prove that when a complex sinusoid
is analyzed by a radix-2 FFT, each constituent butterfly
has either one non-zero output and two non-zero inputs, or
else all of its inputs and outputs are zero. We first show
that the number of non-zero elements in the output of a
butterfly is bounded below by one-half the number in its
inputs. This bound applies across all butterflies in an FFT
stage. Next, we demonstrate that this bound is met exactly
between successive stages of processing for S;(k). Finally,
we show that if there were a single butterfly with two non-
zero inputs and two non-zero outputs, this bound would
be contradicted by the remaining butterflies of the stage.
Therefore, such a butterfly could not exist, which proves
our claim.

Bound: The total energy in the butterfly outputs ¢ and
d (see Fig. 2) can be easily shown to be related to that in
the inputs a and b by

lel* + 1d]* = 2(lal* + [b]*). (1)

Thus, for any butterfly, the total energy at its outputs is
twice that at its inputs. This implies that for each butter-
fly, if one (or both) of its input values is non-zero, then at
least one of its output points must be non-zero. Applying
this observation across the /N/2 independent butterflies of a
given FFT stage, we obtain that the number of non-zero ele-
ments in the input to stage ¢ can be no fewer than one-half
the number of non-zero elements in its output. Denoting
by {; the number of non-zero elements in S;(k), this can be
written as

fi261-1/2, z'=1,2,...,v. (12)
Applying this inequality across successive stages, we obtain
E26/277, 0<j<i<w (13)

We use i = 0 to represent the FFT for which no stages have
been performed; i.e. So(k) represents the input signal.

Equality: For the complex sinusoidal input given in
Eq. (2), we have [So(k)|* = E forall k =0,1,...,N —1, so
& = N. Considering the output of the final FFT stage (the
DFT of s(n)), we have |S,(I)]> = N?E and |S,(k)]> = 0
for k¥ # I, so & = 1. This implies that the inequality
given in Eq. (13) must hold as an equality and it follows
that Eq. (12) also holds as an equality at each intermedi-
ate stage. Thus, for each < = 0,1,...,v, S;(k) has exactly
& = N/2" non-zero elements.

Contradiction: If there were a butterfly in stage i with
non-zero energy at both of its input and both of its output
elements, then the other (N/2) —1 butterflies must be non-
zero at (N/27%) — 2 of their input elements and also at
(N/2") — 2 of their output elements. Because each of these
other butterflies are governed by Eq. (11), it follows that
Eq. (12) should hold for these (N/2) — 1 butterflies taken
together. However, there are (N/2'"!) — 2 non-zero values

in the inputs to these butterflies and (N/2') — 2 in their
outputs, contradicting Eq. (12).
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