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ABSTRACT 
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II. RECURSIVE LEAST SQUARES SIGNAL ANALYSIS 

The problem of locating the position of 
individual pulses within a group of overlapping 
pulses can be simplified by preprocessing the date 
to reduce the overlap. This paper proposes the 
use of Recursive Least Squares (RLS) prediction 
for this purpose. The pulse compression perfor- 
mance of two signals derived from the RLS algo- 
rithm is compared using all-pole data with differ- 
ent noise levels, and the effects of zeroes in the 
data and prefiltering are discussed. 

I. INTRODUCTION 

In many areas including RADAR, SONAR, biomed- 
ical and geophysical signal processing, the signal 
to be processed can be represented as a superposi- 
tion of pulses with different time delays and 
the object of the processing is to locate these 
pulses. When the time durations of the individual 
arrivals are sufficiently short and the signal—to— 
noise ratio is high the starting points are easily 
located either visually or with a simple threshold 
detector. However, when the S/N is not high and 
the arrivals overlap, some preprocessing is gen- 
erally required prior to detection. 

In this paper, we propose the use of Recur- 
sive Least Squares (RLS) signal modelling and 
prediction as a preprocessing procedure prior to 
event detection. RLS generates a time—varying 
all-pole model of a growing segment of data by 
recursively updating the model parameters when 
each new data point becomes available. As we 
discuss in the next section, both the time varying 
model coefficients and the prediction error ob- 
tained from RLS analysis are potentially useful 
for event location. These signals contain short 
duration pulses at the same positions as events in 
the data and because these short pulses have less 
overlap they are more easily detected than the 
original arrivals in the input data. 
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As is well known, modelling data as the re- 
sponse of an all—pole system, and linear predic- 
tive analysis are closely related procedures. Th7o 

popular methods for performing these types of 
analysis are the covariance method and the corre- 
lation method (1). Both techniques produce a 

single predictor (or model) which minimizes the 
total squared prediction error over a region of 
interest. The difference between them is that 
the error region to be minimized is infinite for 
the correlation method and finite for the coven— 
ance method. RLS is related to the covariance 
method and it develops the same predictor for 
each point in the data that covariance analysis 
would produce if used on the date up to that 
point. However, unlike the covariance method 
which creates but one predictor for a given seg- 
ment of data and whose error sequence comes from 
using that one fixed predictor over all the data, 
RLS dynamically updates its predictor at each new 
point. Thus, each point in the RLS error is the 
residual of a time varying predictor which is 
optimized for an error region up to and including 
that point (2). 

For a single noise free arrival consistent 
with the all-pole assumption, the RLS prediction 
error will be non—zero at the first point in the 
arrival and zero afterwards. With noise present 
and additional pulse arrivals the signal will no 

longer be all—pole. However, our experience has 
shown that RLS still tends to produce a short 
burst of error and to rapidly change its coeffi- 
cients during the initial pert of each arrival as 
it adjusts for the change in the data. Conse- 

quently, for such data, the PLS prediction error 
has the potential for time compressing the origi- 
nal arrivals. In addition to the prediction 
error for event location we have considered a 
signal derived from the prediction coefficients. 

Specifically, with the prediction coefficients 
denoted as a. [kj where i is the coefficient number 1 
and k is the point for which the predictor was 
optimized, then we define a coefficient change 
signal C[kI as 

C[k] 
/i=l 

a[k] * h[n) 
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where h[n] is a single—pole high—pass filter im- 
pulse response. This derived signal reacts to 

changes in the predictor without excessively 
emphasizing high frequency jitter likely to be 

present due to noise in the data. If one views 
the predictor as lying at some point in a—space, 
then a step change in its position will cause a 
decaying exponential response in Cjk] with a peak 
height equal to the magnitude of the step. 

III. RESULTS 

The procedure outlined above were applied to 
synthetic data generated using the model in Figure 
1. 

h1[nJ 

h2[n] 
S[k] 

GN h3[n] 

A single impulse is applied to three different 
paths with separate delays A. and responses h. [ni. 

These delayed pulses are added to a white Gaussian 
noise sequence to produce the synthetic signal 
s [ki . Three arrivals were used in this work be- 
cause of the physical application of well logging 
which motivated our interest in the problem. The 
initial parameters chosen for s[k] were 

1 
—l A1 

= 50 pts H1 
= 

(l2cos(.O5z 
.5 

—l A2 
= 150 pts H2 

= 
(l—2cos(.0311)z 

.2 

A3 
= 250 pts = 

(l—2cos(.0411)z —l 

S/N = 50 db 

+ (.98)2z2)2 

2 —2 2 + (.99) z 

+ (.99)2z2) 

In Figure 2.is shown the signal, the RLS error 
and the coefficient change signal. Both location 
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signals mark the start of each arrival well al- 
though C[kI appears to be less noisy. Figure 3 
shows the same signal with 30db S/N. The noise 
has totally obscured the first arrival in Etk] and 
the second is barely visible, whereas three events 
are more visible in C[k] and the positions of the 
second and third are accurate. The reason for the 

emphasis of the noise in the RLS error is that the 
error is a whitened version of the input signal. 
The input spectrum has comparatively low amplitude 
at high frequencies so this whitening takes the 
general form of a high boost which emphasizes the 
noise relative to the signal. In contrast, the 
coefficients tend not to respond to the noise be- 
cause of its incoherence and therefore C[k] is 
relatively noise free. 

To determine the sensitivity of the two 
location signals to a small number of zeroes, the 
system functions in the signal generator were 
modified as follows: 

C(kl 

Figure 2: 50 db S/N 12 coefficients 

Ctk] 

Figure 3: 30 db S/N 12 coefficients 

S [kJ 

S [k 
se. 

,h (k) 

h3 [k 

Figure 1: The Data Model 

ELk) 



l9zl of zeroes to the signal and the predictor is Un— 
H = -l 2 —2 2 siDle to work well when the data is not close to 

(l—2cos(.OS1T)z + (.98) z being all—pole. In effect the FIR filter intro- 
duces many closely spaced arrivals into the signal, 
while IIR filters only add a few poles to each 

l—8z1 arrival and therefore IIR filtered data still fits 

H2 
= 

—l 2 —2 2 the all—pole model well. 
(l—2cos(.037t)z + (.99) z 
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As compared with the all—pole case both error 
location signals produce pulses with slightly 

longer tails, but the starting location of the 

events is still clearly visible. 

lee. 

:11 I, 50.0 

E(kj 

C k) 

Figure 4: 50 db S/N 12 coefficients real zeroes 

IV. CONCLUSIONS 

The preliminary conclusion of these investi- 
gations is that at high S/N both location signals 
emphasize the starting point of the arrivals, 
although C[kl appears to be slightly less 'noisy". 
At low S/N the whitening effect of the RLS error 
emphasizes the input noise compared to the signal, 
whereas the coefficient change signal smooths out 
the noise effects and produces slightly more well 
defined events. 

Finally, we have carried out some preliminary 
investigations into the use of low—pass prefilter— 
ing on the data to reduce noise. Our study 
centered on whether such filtering degraded the 
performance of ELS preprocessing, and the results 
thus far suggest that given the choice of FIR and 
IIR (all—pole) filters the IIR filter causes the 
least degradation. We suspect that the reason for 
this is that FIR filters introduce large numbers 
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