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Abstract—We develop energy-efEcient transmission protocols for wire- S~ A %

less networks that exploit spatial diversity created by antenna sharing: - Ya_
coordinated transmission and/or processing by several distributed radios. ' o
We focus on singleuser transmission and examine several possibilities for <
the strategy employed by the assisting radio, or relay, including decod- A AN
ing and forwarding as well as amplifying and forwarding. In each case, S
we develop receivers based upon maximume-likelihood and/or maximum X Relay
signal-to-noise ratio criteria, relate their structures, and compare their
bit-error probability performance by means of analysis and simulations.
We cast singlehop and multihop routing into our framework for compar-
ison purposes. All of our antenna sharing protocols offer diversity gains
over single- and multi-hop transmission, and our results suggest that low-
complexity amplifying and forwarding is energy-effcient in spite of noise
amplifcation at the relay.

Destination

Source

Fig. 1. Example three-radio (sub)network for which relaying protocols, and
especially, antenna sharing, or diversity, protocols can be motivated and
I. INTRODUCTION developed. Indicated are the transmitted signalgnd x;, the received

. . . . . . signalsys, y3, andy4, and the radio separatiods ;.
Relaying information over several point-to-point communi- 59 22 Y3 816 paratiorls

cation links is a basic building block of communication net-
works. Such relaying is utilized in wired and wireless networks . : L
to achieve higher network connectivity (broader coverage), ower requirements for reliable communication can be much
£cient utilization of resources such as power and bandwidtho,wer' ] . ]
better economies of scale in the cost of long-haul transmis- 1€ basic relaying protocols described above are con-
sions (through trafEc aggregation), interoperability among negiructed from the sequential use of point-to-point links, where
works, and more easily manageable, hierarchical network 4he links are essentially viewed at the netwo_rk protoqol layer;
chitectures. however, more general approaches are possible that involve the
In wireless networks, direct transmission between widel oordination ofboth the direct and relayed transmissions, at
separated radios can be very expensive in terms of transnf'?—e nnetwork and lower protocol layers, and correspond to sce-
ted power required for reliable communication. High-poweParios to which the classical relay channel model [1] applies.
transmissions lead to faster battery drain (shorter network lifd} this paper, we develop energy-efcient relaying protocols
as well as increased interference at nearby radios. As alterfig@t create and exploit spatial diversity to combat fading due to
tives to direct transmission, there are two basic and frequentifRultipath propagation, a particularly severe form of interfer-
employed examples of relayed transmission for wireless netl'C€ €xperienced in wireless networks.
works. In cellular settings, for example, networks provide con- To illustrate the main concepts, we consider the simple wire-
nectivity between low-power mobiles by providing local conless network depicted in Fig. 1. We focus specically on trans-
nections to high-power basestations that are relayed via a witgissions from radid, called the source, to radi called the
line basestation network. In sensor networks, and military balestination, with the possibility of employing radicas a re-
tlefeld communication networks in general, the use of wirelintgy. At the physical layer, the destination receives potentially
infrastructure is often precluded and the radios may be subseful signals from all transmitters that are active, and may
stantially power constrained; for these ad-hoc or peer-to-peg@mbine multiple transmissions of the same signal to reduce
networks, transmissions can be relayed wirelessly. As the¥ariations in performance caused by signal fading, a technique
examples suggest, relayed transmission enlists two or more fgferred to broadly as spatial diversity combining [2]. We refer
dios to perform multiple transmissions. The end-to-end tran$? this form of spatial diversity aantenna sharingin con-
missions potentially incur higher delay, but because the inditast to the currently more conventional forms of spatial diver-
vidual transmissions are over shorter distances (in the wirelesi#y [3], because the radios essentially share their antennas and

case), or over high-quality cabling (in the wireline case), thether resources to create a “virtual array” through distributed

transmission and signal processing.

This work has been supported in part by ARL Federated Labs under Cooper- . . . .
ative Agreement No. DAAL01-96-2-0002, and by NSF under Grant No. CCR- After deVElOpmg a mathematical model in Section Il for the

9979363 as well as through an NSF Graduate Research Fellowship. network in Fig. 1, we scratch the surface of the rich set of de-
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sign issues and options that arise in the context of antenna shar- vir-u
ing and relaying for wireless networks. Section Il casts the
basic relaying protocols, referred to as singlehop and multihop
transmission, respectively, into our framework, and explores a
number of possibilities for antenna sharing protocols, in terms
of what signals the source and relay jointly transmit as well
as how the relay and destination jointly process signals. Per-
formance comparisons, and simulation results in Section 1V,
suggest that antenna sharing transmission protocols are capa-
ble of overcoming the noisy channels between the distributed

radio antennas to achieve diversity gain and outperform sighe SNRs are independent exponential random variables with

ignlteer:gztand multihop transmission in a variety of scenarios %fxpected values, | A ] = Ufi ,» £ /Ny,

1]

yin]

w(x-x

Fig. 2. Destination receiver structure.

Il. SYSTEM MODEL IIl. TRANSMISSIONPROTOCOLS

In our model for the three-radio wireless network depicted in Vithin the physical layer framework described in Section 1,

Fig. 1, narrowband transmissions suffer the effects of path |od¢ examine several protoc.ols.that support transmlssm_n be-
and oat fading as arise g, slow-frequency-hop networks. tween the source and destination. Each protocol consists of

Our analysis focuses on the case of slow fading to isolate tifgSource modulation format, a relay processing/modulation

benefts of spatial diversity alone; however, we emphasize %&heme_, a”IP' a de]?tmanop.recelver structurrtla. v-d q
the outset that our results extend naturally to the kinds of highl For simplicity o e_xposmon, we tr_eat coherently-detected,
mobile scenarios in which faster fading is encountered. onstant-modulus binary transmissions, so that the source
Our baseband-equivalent, discrete-time channel model f§AnSMitted signak, [n] is white and takes values, and;

the network in Fig. 1 consists of two subchannels, orthogon\r"d'th equal p_robgblllty. TO enable coherent _dete_ctlon_, 'Fhe re-
in, e.g, adjacent time slots or frequencies. This decompositiofty 21d destination receivers must £rst obtain, via training se-
is necessary because practical limitations in radio implemefY€nces in the protocol headers, accurate estimates of the link
tation prevent the relay from simultaneously transmitting anﬁif?,'ng coefEcients; in seve:NaI scenarlos,hthe destination also
receiving on the same channel. On the £rst subchannel, tHiliZeS an estimate ofy,. We assume these estimates are

source transmits a sequengén|, with average sample energy perfect in our prell_mln_ary a”a'YS'S- .
1, and the relay and destination receive signals All of our destination receiver structures can be imple-

mented as shown in Fig. 2. This “combiner” can be viewed

yaln] = a1.2 V& xi[n] + zn], (1) as ageneralized matched-£lter, or maximum-ratio combiner,
’ suitably modifed to £t the protocol. As we will see, quali-
ys[n] = avs V& xaln] + zsnl, () tative comparisons among the various transmission protocols

. . ) ) p
respectively. On the second subchannel, the relay transmits be made by examining their respective weightandw

a sequences[n], with average sample energy 1, and the a5 well as their mappings(-).
destination receivés A. Singlehop Transmission

yin] = a2.3 \/gxé [n] + Z4[n]. 3) Singlehop transmission, often referred to as singlehop rout-
ing in the ad-hoc networking community [4], consists of direct
Herea; ; captures the effects of path loss and static fading offansmission between the source and destination radios. In this
transmissions from radioto radioj, &; is the transmitted en- case, the source transmitgn], the relay transmits;[n] = 0,
ergy of radioi, and z;[n] and z3[n] model additive receiver j.e, nothing, and the destination processes only (2).
noise and other forms of interference. Minimum probability of error (MPE) detection corresponds
Statistically, we model the fading coefEcients; as zero- to conditional MPE detection for each value of the fading co-
mean, mutually independent complex jointly Gaussian rarsf£cienta; 3. Since the input symbols are equally likely, con-
dom variables with variances;, |, and we model the additive ditional MPE detection corresponds to conditional maximum-
noisesz;[n] and z;[n] as zero-mean, mutually independentjikelihood (ML) detection; this can be implemented by the
white complex jointly Gaussian sequences with variaNge combiner in Fig. 2 with any mapping(-) and weights
We de£ne the signal-to-noise ratio (SNR) in each received sig-

nal asy;; 2 |a; ;|2 & /Np; under the Rayleigh fading model, w— 3is Ve W' =0 )

N’ )
LWe employ the notation(*)"” to distinguish the signals on the second sub- 0

channel from those on the £rst; the fading coefEcients are the same be- . T . .
cause the subchannels are assumed to be adjacent and the fading is =at a&r@ssthe destination 'gnor@% [”] Since the equivalent channel

frequency. is conditionally Gaussian with SN 3, the conditional error

(2]
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probability for singlehop transmission can be obtained frorwhere the £rst term arises from the event that the relay makes

standard Gaussian results [2] a decision error, and the second term arises from the event that
the destination makes a decision error given that the relay does
Psppy, 5 =@ <\/ (1- P)%,g) , (5) not. The result (8) suggests that MPE detectiom¢#] at the
’ relay is preferable. In this case= Psy),, ,, and the average
whereQ(t) = \/%7 ftoo o—52/2s, and is a constant depend- error performance can be approximated for large SNR by [2]
ing upon the modulation format. For example, coherently- Py < ——— + i ’ Ty 9 Tag > 1. )
detected BPSK has = —1, while coherently-detected FSK K75 K7y o

hasp = 0. The average error performance of singlehop trangg
mission, Psy, follows by averaging (5) over the exponential
probability density function foty; 3; the result can be approx-

s we will see in Section IV, this bound is tight in several
regimes of interest.

imated for large (average) SNR by [2] B.2 ML Detection ofx, [n—1]
P 1 _ ) 5 Conditional ML detection ok, [n — 1] at the destination is
SH ™~ K7, 4 LER ) somewhat more involved, but can also be implemented as a

_ _ ~ combiner in the form of Fig. 2. Again, assuming the relay de-
where K is another constant depending upon the modulatiogision process can be modeled as a BSC with crossover prob-
format. For example, coherently-detected BPSK Ras- 4,  ability ¢, some algebra shows that the destination conditional

while coherently detected FSK h&s = 2. ML detector ofx; [n—1] has
B. Multihop Transmission as 3/& —e€)et
_p _ _ o o w=0, W/="222 f)=1 [—Ef(l e } . (20)
The basic wireless relaying protocol qualitatively described No e’ +(1—e)

in Section | is called multi-hop routing in the ad-hoc network-rpe key step in obtaining (10) lies in the expanding the likeli-

ing community [4]. Multi-hop transmission in our framework hoodp(y4|az.3, x1) by averaging over whether or not the relay
can be viewed as cascading singlehop transmission betwg&Ayes a decision errdre.

the source and relay with singlehop transmission between the

relay and destination. Specifcally, the source transraits), p(yslazs, xi =x0) = (1 —€)p(yslazs, 51 = o)
and the relay forms an estimatgn] from (1). The relay trans- +ep(yslass, xi =z1),
mits this estimate as}[n] = X; [n—1]. Finally, the destination
forms an estimat&; [n— 1] of x;[n—1] from (3). The sample
delay accounts for processing and (relative) propagation del
through the relay.

for x = x9, and similarly forz = x;. The results (10) fol-
s after substitution of the conditional Gaussian likelihoods,
taking the log-likelihood ratio, and algebraic simplifcations.

As we will develop, ML detection oki[n] at the relay is Limiting arguments indicate, and Fig. 3 exhibits, that the

preferable. We examine two destination receivers for multihorﬁl?ppmgf (t) in (13). essentia_lly “clilpslj’ its iné) utto ther:/ alues
transmission. The £rst forms ML estimates of the relay’s trans- n[e/(fl = )] flitn IS approxmar:te y linear between t :se ex-
mitted signalxj[n], and is useful for developing average erro remes for smalt. Fore < 1/2, the mappings in (7) and (10)

performance bounds. The second makes ML estimates of tﬁ%ti.Sfyf(t) = O_fort > 0andf(t) <0 for_ ¢ < 0; hence_,
source transmitted sequenggén—1). their symbol estimates for uncoded transmissions will be iden-

tical. Consequently, as we have seen previously, ML detection
B.1 ML Detection ofx}[n] at the relay is preferable, and the average error performance
of this multihop protocol should also be well approximated by
(9). Finally, we observe that as— 1/2, the mappingf(¢) in
I(10) goes td), and if the destination £xes= 0 in the detector,
i.e, it does not explicitly take into account the uncertainty of
the relay decisions, (10) reduces to (7).
a3 4V/Es Although apparently irrelevant for uncoded multihop trans-
w=0, w'= N f@t)=t. (7)  mission, we will see in Section I1I-C that the clipping property
0 of f(t) in (10) is signiEcant in the context of diversity transmis-
If the relay decision process can be modeled as a binargion. More generally, while clipping the matched-£lter output
symmetric channel (BSC) with crossover probabilifepend- may be irrelevant for uncoded transmissions, it is important for
ing upon the SNRy; 2, the conditional error probability in es- coded systems (with symbol-by-symbol detection employed at
timating x; [n—1] at the combiner specifed by (7) can be uppethe relay), because it limits the contribution of any one sym-
bounded by bol’s log-likelihood,e.g, branch metric in a Viterbi algorithm,

to the sum of the log-likelihood.g, path metric in a Viterbi
PMH\"/l,zfﬁ,:s <e+ PSH\’Y2,37 8 algorithm.

Conditional ML detection of}[n] corresponds to the single-
hop ML detector from Section IlI-A, with the rolls of[n—1]
andyj[n] swapped. SpeciEcally, the conditional ML detecto
can be implemented as the combiner in Fig. 2 with

(3]
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15 T T T T T ratio combiner
10+ : : 4 aT 2 gl 12 33.3 52
fm— == w=—"—— w=- , t) =t. 12
A o iR (12)
o kit ] This combiner, though mismatched in general, performs rea-
_ L sonably well for smalk. Similar to the bound in Section IlI-
= 0 y ’ 1 B.1, we can upper bound the average error performance of the
T detector corresponding to (12), again using large SNR approx-
R R ' T imations from [2], by
T g ' Pop < — 4 Fr.2: 7130 V2.3 > 1. (13)
DD > — — — ) ) ’ .
K515 K27%13%3 b2 e 12

Hs -10 -5 0 5 10 15 The £rst term in (13) arises from the event that the relay makes
a decision error, and the second term arises from the event that
Fig. 3. Combiner mapping(¢) from (10). Successively higher dashed curvesthe destination makes a deCISIOh error g|ven_ that the rel(_iy do.es
(for ¢ > 0) correspond te — 10~1,10~2, ... , 10—, respectively. For NOt, corresponding to a conventional transmit antenna diversity
comparison, the solid curve corresponds to the linear mapfitig= t. scenario [3]. This bound is only useful for approximating the
performance of the ML detector (11) in channel environments
for which 7, , is especially largee.g, when the relay is very

close to the source.

C. Diversity Transmission with Decoding Relay

Our £rst diversity transmission protocol combines singleho .

and multihop transmission to create and exploit spatial diveE-2 Maximum SNR Detector

sity. Speci£cally, our protocol for diversity transmission witha  As an alternative design criterion, we determine the receiver

decoding relay consists of the following. The source transmithat maximizes the SNR of the slicer input. To arrive at this

x1[n] to both the relay and destination on the subchannel (lax SNR receiver, we examine the relay decisipg= x; + e,

and (2). The relay forms an estimatexefr] from its received wheree is a random variable capturing the effects of decision

signaly,[n], and transmits this estimate, delayed by one sanerrors. A few calculations yield

ple to account for processing and (relative) propagation delay,

asxs[n] on subchannel (3). As throughout Section I1I-B, we e(xy —xo) if x3 =x9
e(xog—x1) ifx1 =24

assume the relay decision process can be modeled as a BSC E[efx]

with crossover probability, and based upon reasoning similar ) )
to that discussion, we employ ML detection at the relay. o; = €(1 = €)lxy —zo|”
The destination estimateg[n — 1] from both its received Iﬁ?tting % = %1 + Elelq], andé = e — E[e[x], the relay

signals (2) and (3). When suitably combined, the chances or . . S : ;
. gy 7 i o estimatex; = x; + é can be viewed as equally-likely symbols
both signals exhibiting deep fading is reduced; therein lies thqe . .
) . A L . rawn from the constant-magnitude constellation
diversity bene£t. The challenge in this setting is to design a de-
tector that can overcome the effects of uncertainty in the relay i1 =(1—€)zy + e,
decisions and still exploit the available spatial diversity. ~ (14)
To=(1—€)zp+e€xq,
c1l ML 'Dfetectlon oba [n—1] . _ plus an additive noise that is uncorrelated withhaving mean
Combining the results of Section IlI-A and Section 11I-B, zero and variance?. Thus, the two signals received by the
conditional ML detection ok; [n—1] from both (2) and (3) can destination may be written as
be implemented as the combiner in Fig. 2 with

3?2 \/?1 , 3;3\/?2
wW=—", W= , f)=ln|———
No M eet+(1—e)
(11)  observing thatz; — #g) = (1 — 2€) (1 — o), the maximum
SNR destination receiver, a matched-£lter for (15), can be im-
Ig)lemented as the combiner in Fig. 2 with

64—(1_5)@? y3[n—1] = a1 3 V& xa[n—1] + z3[n—1], (15)

yiln] = as3 V& (X[n—1] + é[n—1]) + Z[n].

Here the clipping effect of (¢) in (11) is more important than
it was for uncoded multihop transmission. The nonlinearity i

f(t) increasingly reduces, with increasingthe contribution A VE , 353V (1 2¢)
of the diversity branch through the relay. w= Ny w = l22.5% &5 02 + Ny’ (16)

If the destination assumes the relay decisions are always cor-
rect, then (11) wite — 0 becomes a conventional maximum- )=t

[4]
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Examiningw’ in (16) more closely, we see that it consists ofwhere we allow the gain to depend upon the fading realization
the maximum-ratio combiner weight’ in (12) followed by ;o from the source to the relay. Substituting (20) into (19),

the linear mapping we see that the channel is conditionally Gaussian with SNR
(1 26) that can be manipulated into the forms + v, Where

f(t) = :

=y 17
5ol 11 17

Yeq' =V 25 T V2 Ve - (21)
Fore — 1/2, (17) goes to zero, indicating that the maximunmThe conditional bit-error probability can be readily computed
SNR detector ignores the received sigmaljust as the ML  using standard Gaussian results, yielding
detector def£ned by (11). Like the ML detector, (16) converges
to the maximum-ratio combiner (12) fer— 0. P _ < 1 )
. . . . g = - + Ye . 22
We conclude this section by noting that [5] develops results = 2171271272 @ \/( P) D113 + Vel (22)

similar to (11) and (16) in the context of cellular networks.

Speci£cally, the linear detector in [5] corresponds to the coniote that the conditional error probability (22) exhibits a sum
biner in Fig. 2 with of SNRs as we might expect in a diversity scenario.

Examining (21), we see that
. ars V& r_ a3 VE . A
w= NO ) w *)‘ NO ) f(t) - t’ 'qu < Ymin = min {’71,37 72,3} . (23)

the parameteh is chosen numerically to minimize the condi-Since~; 3 and~; 3 are independent exponential random vari-
tional error probability of this linear detector. ables in our model, their minimum is also exponential with
expected value satisfying
D. Diversity Transmission with Amplifying Relay
——1_=-1, =-1
In the previous section, we explored several destination de- Tmin = 71,3 T 72,3 (24)
tection algorithms assuming the relay employed ML detectio
If we constrain the relay to employ linear processing, am-
plifying, alternative transmission protocols result. We migh
expect this constraint to induce excessive noise ampli£cation,
but, as the simulation results in Section IV suggest, a desti- FDAjyi 512925 = @ (\/(1 —p) s+ Vmin]) (25)
nation ML detector designed for an amplifying relay can be
quite competitive, and perhaps even outperform the transmisSinally, averaging (25) over the exponential density functions
sion protocols from the previous section, when the relay i®r ~; ;, we obtain a lower bound on the average error per-
close to the destination. formance of diversity transmission with an amplifying relay.
Our protocol for diversity transmission with an amplifying Using the large SNR approximations from [2], we obtain
relay consists of the following. The source transmitB:| to
both the relay and destination on the subchannel (1) and (2). Ppa > %
The relay transmits an amplifed (and delayed) version of its K25 3 Vmin
received sequencee., x;[n] = By2[n—1] on the subchannel
(3). To decode symbot, [n— 1], the destination processes its
two received signals

I?jl'nalogous to a parallel combination of resistances in circuit
Eheory. Since)(t) is decreasing im, (23) gives

) 71,31imin > 1 (26)

In addition to the lower bound provided by (26), we can esti-
mate the average error performargg, by computing sample
averages of independent realizations of (22), or by Monte Carlo

ya[n—1] = a1 3 xi[n—1] + z3[n—1], simulation of the system.
, , (18)
y3[n] = a23 6 (ar.2 x1[n—1] + z2[n—1]) + z3[n. IV. PERFORMANCESIMULATIONS

The destination conditional ML detector of[n—1] from (18) To compare performance of the transmission protocols, we
can be implemented as the combiner in Fig. 2 with examine a network with coordinates normalized by the dis-
tanced; 3 between the source and destination radios. In these

we ais V& W = as 5 B ai o VEI coordinates, the source can be locate(Dab), and the desti-

No (a2 3|2 1812 + DN’ (19) nation can be located é&t, 0), without loss of generality. Due
ft) =t to space considerations, we limit our scope to scenarios with

the relay located at/, 0) for I = 0, i.e,, the relay is very close
To satisfy its output power constraint, the relay amplifer cato the source] = 1/2, i.e, the relay is halfway between the

operate at a maximum gain satisfying source and destination; ainds 1, i.e., the relay is very close
to the destination.
182 = & (20) The fading variancesi can be assigned using wireless

fanPE NG path-loss models based on the network geometry [6]; here, we

[5]
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utilize models of the formri_j o d;;’, whered; ; is the dis- 10°
tance from mobilei to mobile j, andv is a constant whose
value, as estimated from £eld experiments, lies in the range  ¢10
3 < v < 5. Due to space considerations, we report results for
v = 4, a value typical of urban environments.

To normalize for the total network energyper transmitted
bit, we setf; = £ for singlehop transmission, aidd = & =
£ /2 for all other transmission protocols. We plot the simulated
average error performance against the singlehop average SNR.
More generally, we can consider power allocations of the form

Average Error Performance
[
O\

T

Single Hop
Multihop

& = af and&; = (1 — a)&, and select the parameterto Div. w/Dec, ML
minimize a variety of network performance criteria. Appropri- Div. w/Dec, max SNF

Div. w/Amp

ate rate or bandwidth normalization of the results is beyond the 5[
scope of this paper. 0

Figs. 4-6 show simulated performance results of the various
transmission protocols for uncoded BPSK transmissioes, Fig. 4. Simulated performance of the transmission protocols fer 4 and
zg = —1 andz; = +1, for relay locationg0.1, 0), (0.5,0), normalized geometries with the relay located@tl, 0), i.e., close to the
and (0.9,0), respectively. The bounds in (9) and (26) are source.
also shown, as dashed and dashed-dotted lines, respectively, o
to demonstrate how well they can approximate system perfor-
mance. Aside from the apparent diversity gains (decrease in
slope on a log scale) for the antenna sharing protocols, mul-
tihop and antenna sharing protocols exhibit power gain (shift
the curve to the left) on the order 8fv — 2) dB for the relay
located halfway between the source and destination. Note that
this power gain is specifc to our path-loss models.

Somewhat surprisingly, diversity transmission with an am-
plifying relay appears to perform comparably, if not better,

5 25

10 15 20
Singlehop Average SNR (dB)

=
o,
o

Single Hop

Average Error Performance
=
o\

than the diversity transmission schemes with a decoding re- 4| Mulinop
lay. Characterizing this relationship more completely in vari- il o D}& wiDec, max SNR.
ous regimes will be addressed in future work. || &~ Div. w/Amp o

. . . 6| 1 1

We note that our results can, in principle, be extended nat- 105 5 10 15 20 25
urally to multiple relays, whether employed serially or in par- Singlehop Average SNR (dB)
allel. While our analysis has been carried out strictly at the
physical |a_yer of the network in Fig. 1 obtaining the gainézig' 5. Simulated performance of the transmission protocols fer 4 and
demonstrated in this paper requires a re-examination of the normalized geometries with the relay located@®, 0), i.e., halfway be-

pap a o tween the source and destination.

network protocol stack, at least through the traditional phys-
ical and medium-access control (MAC) layers, to provide the 10
coordination functions required by our antenna sharing trans-

mission protocols.

i
o,
o,
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