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Multirate systems and filterbanks have traditionally played an
important role in source coding and compression for contemporary
communication applications, and many of the key design issues in
such applications have been extensively explored. In this paper,
we review recent developments on the comparatively less explored
role of multirate filterbanks and wavelets in channel coding and
modulation for some important classes of channels. Some represen-
tative examples of emerging potential applications are described.
One involves the use of highly dispersive, broadband multirate
systems for wireless multiuser communication in the presence of
fading due to time-varying multipath. Another is the wavelet-
based diversity strategy referred to as “fractal modulation™ for
use with unpredictable communication links and in broadcast
applications with user-selectable quality of service. A final example
involves multitone (multicarrier) modulation systems based on
multirate filterbanks and fast lapped transforms for use on chan-
nels subject to severe intersymbol and narrowband interference.
Collectively, these constitute intriguing, interrelated paradigms
within an increasingly broad and active area of research.

1. INTRODUCTION

A central problem within communication theory concerns
how to efficiently transmit information-bearing signals over
unreliable channels. Depending on the application, the
signals of interest may be continuous-time waveforms or
discrete-time sequences, and they may be continuous in
amplitude or discrete-valued. Examples include speech,
image, and video signals, as well as various kinds of
inherently digital data.

The communications problem is frequently partitioned
into two subproblems—source coding and channel coding.
Shannon’s celebrated source-channel separation theorem

Manuscript received June 1, 1995; revised January 15, 1996. This
work has been supported in part by the Advanced Research Projects
Agency monitored by ONR under Contract Number N00014-93-1-0686,
the National Science Foundation under Grant MIP-9502885, and in part
by the Office of Naval Research under Grant N0014-95-1-0834.

The author is with the Department of Electrical Engineering and Com-
puter Science, and the Research Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge, MA 02139 USA.

Publisher Item Identifier S 0018-9219(96)03001-0.

ensures that for some important classes .of channels these
problems can be addressed independently without loss of
performance [1]. However, even when such partitioning
cannot be justified in terms of the separation theorem, the
approach is often popular for a variety .of other reasons,
among which are tractability of system design and robust-
ness of the resulting system to errors in source and channel
modeling.

In a variety of respects, the source -and channel coding
problems can be viewed as duals of one another, and this
leads to important relationships between the approaches
used to address these problems in practice.

Source coding is concerned with developing a maximally
compact (i.e., redundancy-free) representation for the infor-
mation to be conveyed. Typically, a digital representation
is sought, in the form of a discrete-valued sequence such
as a bit stream. In many cases, some degree of distortion is
allowed in the representation, and in this case, the objective
is to develop a maximally compact description of the source
subject to a constraint on the maximum allowable distortion
[2]. Source coding has been a strong and fruitful application
focus for much of the current development of multirate
signal processing and wavelet theory [3]-[5].

The channel coding that follows source coding is de-
signed to reintroduce—in a controlled manner—a pre-
scribed level of redundancy back into the source.coded:
stream to mitigate the anticipated effects of the channel,
and best performance is achieved when the redundancy
is tailored to the specific characteristics of the channel.
Although channel coding and modulation applications have
received comparatively less attention to date, multirate
signal processing and wavelet theory also have an im-
portant complementary role to play in this aspect of the
communications problem.

This paper considers three classes of important commu-
nication channels and examines promising paradigms for

exploiting multirate filter bank and wavelet representations
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in developing systems for reliable transmission over such
channels. It is important to emphasize at the outset that
this paper does not attempt a comprehensive survey of the
existing literature, which would be an overly ambitious
undertaking given the rapid pace at which developments
in this emerging area are taking place. Rather, as a more
modest goal, the paper focuses on three specific but repre-
sentative examples of some promising recent developments,
and explores their interconnections.

The paper is organized as follows. First, Section II con-
siders the problem of multiuser communication over wire-
less channels subject to fading due to time-varying multi-
path propagation. For these channels, we examine a novel
multirate modulation scheme referred to as spread-signature
code division multiple access (CDMA), which is an effec-
tive strategy for combating the effects of fading in such
environments. As we will see, interestingly, the multirate
systems that arise this application have radically different
characteristics than those used in source coding applica-
tions. We will also see that spread-signature CDMA can
be adapted for use in single-user systems, yielding very
efficient implementations of a technique referred to as
spread-response precoding.

Next, Section III considers the problem of reliable com-
munication over a class of noisy channels whose key
characteristic is that the channel is open for some finite
but unknown time interval, during which it has some finite
but unknown bandwidth. Such models are useful for a
range of wireless and secure communications applications,
as well as for broadcast applications in which information
is being transmitted to receivers whose front ends have
differing bandwidths and processing capabilities. For such
channels, a wavelet-based paradigm referred to as “fractal
modulation” is examined. This technique, which involves
embedding an information stream into a self-similar wave-
form so that it is present on all time scales, provides a novel
and efficient form of diversity for such applications.

Finally, Section IV explores the role of multirate filter-
banks and fast lapped transforms in developing efficient
multitone modulation schemes for communication over se-
vere intersymbol interference channels and in the presence
of strong narrowband interference. As we will see, the
resulting schemes, referred to as “lapped multitone modu-
lation,” are highly practicable and provide some important
advantages over alternative approaches that make them
compelling candidates for use in a variety of emerging
high-speed data transmission applications.

II. SPREAD-SIGNATURE CDMA

This section focuses on the problem of efficient com-
munication over radio frequency channels. Such channels
are used in a host of existing and emerging wireless
communications applications ranging from digital mobile
radio and indoor personal wireless systems, to digital audio
and television broadcasting systems.

In these wireless environments, a transmitted signal gen-
erally travels along multiple paths en route to a receiver due

to reflections off natural and man-made physical objects,
and the results are superimposed at the receiver antenna.
This phenomenon is referred to as multipath propagation
and can result in attenuation of the signal when the in-
dividual paths combine destructively. This attenuation is
often severe—fades in signal-to-noise ratio (SNR) of 35
dB or more are not unusual. Depending on the bandwidth
of the system, all frequencies may fade in unison, which
is termed frequency nonselective or flat fading, or it can
be frequency selective. In indoor channels, for example,
frequency selective fading is encountered when bandwidths
significantly greater than 10 MHz are used. When, in
addition, the transmitter and/or receiver are in motion as
is typical in cellular telephony applications, this multipath
fading is time-varying. This will be the case we consider.

It is also important to note that wireless communication
systems can also be subject to other forms of interference.
For example, there may be hostile jamming in a military
application, or unintentional jamming due to cochannel
interference. Depending on its source, this interference may
be narrowband or broadband, or impulsive, and in some
cases can be the predominant form of noise particularly in
multiuser systems.

Diversity techniques are typically used to mitigate the
effects of fading during data transmission and can take a
variety of forms [6], [7]. For example the use of spec-
trum in excess of what would ordinarily be required for
transmission is a form of spectral diversity that is widely
exploited in spread-spectrum systems [8], [9]. Likewise, the
use of antenna arrays at the transmitters and/or receivers of
wireless systems provides valuable spatial diversity [6], [7].

This section describes multirate signal processing tech-
niques that can be used either alone or in combination with
traditional error correction coding to provide computation-
ally efficient forms of temporal diversity in a multiuser
environment [10], [11]. The result can be viewed as a
CDMA system [9] with some rather special characteristics
[12].

A. Channel Model

Although there are a range of other application contexts,
for the purposes of illustration we will focus on a cellular
multiple-access scenario in which each cell contains a
single base station (“cell site”) and a number of mobiles
(“subscribers™). In such systems, both forward link (base-to-
mobile) and reverse link (mobile-to-base) communication is
required, but takes place on separate (i.e., noninterfering)
channels. Although the systems we examine are applicable
for both links, for simplicity of exposition we focus on the
reverse link, which is typically more challenging due to the
uncoordinated nature of the transmissions.

Consider a single cell of the system, in which there
are M users all sharing some total fixed bandwidth. As
a reasonable equivalent discrete-time baseband model for
the passband communication channel between the mobiles
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Fig. 1. General multiuser fading channel model, where a[n; k]
denotes the randomly time-varying linear kernel corresponding to
the mth user.

and the base unit, the received signal takes the form
M—1
il =" S amnik] ymln — k) +wn]. D
m=0 k

In general, the randomly time-varying kernels’ a,,[n; &]
capture the effects of multipath fading due to both fluctua-
tions in the media and the relative motions of transmitters
and receivers in the system, as well as the effects of
asynchronism among the users’ transmissions. Meanwhile,
wln] captures. both receiver noise and any sources of
interference not otherwise taken into account. This channel
model is depicted in Fig. 1.

When the complex-valued kernels can be modeled as
zero-mean and Gaussian, the result is a Rayleigh fading
channel [7]. For frequency selective channels, the time-
variant frequency response

Am(win] = 3 amfn; Kle=3*
k

has a magnitude that varies as a function of w for each n.
For frequency nonselective (flat fading) channels, A, (w;n)
is independent of w. Moreover, for reverse link transmis-
sion, the kernels of the individual mobile-to-base channels
can be modeled as statistically independent provided there
is reasonable physical separation between mobiles. Finally,
in a typical application the transmitters do not have knowl-
edge of the channel kernels a, [n; k] or their statistics, while
the receiver obtains reliable estimates of these quantities via
trained or blind channel identification algorithms.

B. Orthogonal Multiuser Modulation
and Spread Signatures -

In multiple access systems, a common way to separate
users is via a modulation process of the following form. The
coded symbol stream of the mth user, which we denote by
2 [1], is modulated onto a unique signature sequence (i.e.,
discrete-time transmit pulse shape) A, [1] to produce y.,[n]

! The kernel a,»[n; k] is the response at time n of the mth user’s channel
to a unit sample at time n — k.
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Xp[n]—= A M |—>{ h,[n] F—y,.[n]

Fig. 2. Modulation of the the mth user’s coded symbol stream
Z,»[n] onto a signature sequence A, [n] for transmission.

which is transmitted within the total available bandwidth.
Fig. 2 depicts this process, which consists of upsampling
(i.e., zero insertion) by a factor M, followed by linear
time-invariant filtering with the signature sequence, i.e.,

Ymln] = > Zmlk] hnln — kM]. 2)
k

A useful mathematical framework for representing sets of
signature sequences arises out.of multirate system theory.
To begin, we first express the signature set as a vector
sequence, i.e., ' -

T
hln] = [hl[n] ha[n] haeln]l . 3)

When each of the component signatures h,,[n] has only
finitely many nonzero values, the signature set is said to
have finite spread. Specifically, when

hln] =0, n<0,n>N

we say that the signature set has spread N.

A natural requirement of such systems is that in the
absence of fading, and with perfect synchronism among
users, there be no intersymbol interference either within a
user’s stream or among users. This is equivalent to requiring
that the signature sets satisfy certain orthogonality condi-
tions—specifically, that the signature sequences together
with all translates by integer multiple of M constitute an
orthonormal basis. The orthogonality condition is

> k- nME [k~ mM] = 8n—-mlI @)
k

where I denotes the identity matrix of appropriate size and
where 6[n] denotes the unit sample, viz.,

Al n=0._
6ln} = {07 otherwise.

The corresponding completeness condition for this or-
thonormal set can be expressed as

ST KT ~ kM] hfm — kM]
=" hiln — kM] hifm ~ kM]
kyt

=8[n—m]. - 5

Orthogonal modulation is desirable from a variety of per-
spectives, and simplifies receiver design.

For M > 2, we can infer from multirate filter bank theory
that a rich collection of signature sets satisfy (4) and (5),

2The superscript T denotes transposition.
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even when we restrict our attention to signatures with finite-
spread. This can be conveniently seen in the frequency
domain. To develop frequency domain perspectives, we
express the set of Fourier transforms corresponding to (3)
in the form

+oo .
H(w)= Y hn]e7on

n=—oo

£ [Hi(w) Ha(w) Hy (). (6

This representation leads to the so-called polyphase fac-
torization

H(w) = Q(Mw) Aw) 0]

where Q(w) is referred to as the polyphase matrix and A(w)
is the Fourier transform of the delay chain of order M, i.e.,
T

8[n] = {E[n] §[n —1] §n — M +1]

when
Aw) =1 e~Jw L. e-J’w(M—l)]T'

For a signature set to be orthonormal, it is necessary
and sufficient that the associated polyphase matrix be
paraunitary—i.e., that it satisfies, for all w

Qw) Q'(w) =1I. 8)

From his perspective, choosing a signature set is equivalent
to choosing a paraunitary matrix.

Several basic and widely used multiple-access strate-
gies fit naturally within this framework, For example, the
polyphase matrix corresponding to time-division multiple-
access (TDMA) systems is

Qw) =1

while that corresponding to ideal frequency-division
multiple-access (FDMA) systems has (£, {)th element

QW) = @2 RIM - g<y<r. (9)

In contrast, for discrete Fourier transform (DFT) based
multiplexing, (which we will discuss further in the context
of Section IV) @(w) is the inverse of the DFT matrix, i.e.,

[Q(w)]k,l - ej27rkl/M. (10)

The same modulation framework can also be used to
represent a variety CDMA systems that are of particular
interest for use in fading environments. For example, for
a direct-sequence spread spectrum CDMA system using
Hadamard sequences as signatures, the polyphase matrix is

Qw)=E (11)

where E is the Hadamard matrix of appropriate dimension.’

3Recall that the Hadamard matrix of dimension M, viz., & A1, Where
M 1is a power of two, is defined recursively: for M = 2,4, --

(L]

= A [EM/?. =)
V2 [Bmp2 —EMy2

where &1 = 1.

Table 1  Nonzero Taps of the Length N = 8 Maximally Spread
Signature Sequences in a Two User (M = 2) System

n=] 0 1 2 3 4 5 6 1
V8ho[n] | +1 +1 +1 -1 41 +1 —1 +1
V8hin] | +1 +1 +1 -1 -1 -1 +1 -1

In traditional CDMA systems like that corresponding to
(11), the signature sequences h.,[n] used in the modulation
(2) have length equal to the intersymbol period (upsampling
rate) M. In this way the signatures are used in a nonover-
lapping manner for consecutive symbols of any particular
user. However, we focus on the case in which the signatures
have a length N that is significantly greater than M, so that
signatures are used in highly lapped manner. This case is
referred to as “spread-signature CDMA” [10]. Note that for
such systems the polyphase matrix Q(w) depends explicitly
on w. More generally, for arbitrary modulation schemes
Q(w) is independent of w if and only if the signature set
is not spread (ie., N = M).

The key motivation for using longer signature sequence
lengths N for a given symbol rate 1/M is that this leads
to a greater temporal diversity benefit in time-varying
fading. In particular, the spread of a signature determines
the temporal extent over which a symbol is transmitted
(independent of the symbol rate). The longer this symbol
duration the better the immunity to fades within the symbol
interval. However, the symbol duration N cannot be chosen
arbitrarily; system delay constraints generally limit the
values of N that can be used in practice. From these per-
spectives, the best signatures in these applications have their
energy spread as uniformly as possible over their length
while simultaneously preserving orthogonality. When sig-
nature sequences are antipodal (i.e., hy[n] = £N~1/2),
the corresponding signature sets are said to be “maximally-
spread.” Such signature sets are also extremely attractive in
terms of computational efficiency and numerical stability.

A class of maximally spread signature sets of this type is
developed and tabulated in [10] for a range of values of M
and N. As an example, for M = 2 and N = 8 the nonzero
taps of ho[n] and h;[n] are given in Table 1.

As discussed in [10], these signature sets are, rather
interestingly, closely related to a number of orthogonal
systems developed independently in a variety of other fields
for wide ranging applications. For example, they are closely
related to sequences constructed by Golay [14], [15], Turyn
[16], Taki et al. [17], and Tseng and Liu [18]. Similar
constructions appear in the work of both Shapiro [19] and
later Rudin [20].

It is important to emphasize that these multirate systems
have characteristics that are markedly different from those
in source coding applications: maximally spread signature
sets are localized in neither time nor frequency. In fact, the
constituent signatures are fully broadband. As an illustration
of this, Fig. 3 depicts the energy density | H,.(w)|? for the

. signature corresponding to m = 0 for the case M = 2

4More recently, other issues associated with the design of CDMA
systems based on multirate systems have been discussed in [13].
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Fig. 3. Magnitude of the frequency response of the lowest filter
in a spread multirate filterbank of dimension M = 2 and length
N = 1024.

and N = 1024. Such thorough spreading in both time and
frequency provides a highly effective form of combined
temporal and spectral diversity for combating fading in
wireless communication applications.

It is also worth noting that such spreading is also at-
tractive for a range of secure communication applications,
including low probability of intercept (LPI) transmission.
Indeed, due to the strong overlap between signatures for
consecutive symbols, the transmitted sequences Yy, [n] will
be quasi-Gaussian even when the symbol streams z, [r] are
discrete-valued. Moreover, due to the spectral characteris-
tics of the signatures as reflected in Fig. 3, the transmitted
sequences will be effectively white as well. Hence, spread-
signature transmissions have characteristics much like white
Gaussian noise in some important respects.

C. Spread-Signature CDMA Receivers
and System Characteristics

A key feature of spread-signature CDMA is that high
performance can be achieved even when relatively low
complexity receivers are used. For example, in [10] a
three-stage receiver is considered for recovering the mth
transmitted message. The front end of this receiver is
depicted in Fig. 4. First, the received data r[n] is processed
by a linear equalizer according to

Jmln] =" bo[n; k] rln — k] (12)

where b, [n; k] is the kernel of the equalizer. In the second
stage, the equalized data is demodulated from the corre-
sponding signature sequence via a discrete-time matched-
filter and downsample operation, viz.,

Emln] = Gmlk] hmlk — Mn]. (13)
k

The final stage of the message recovery, which is not
depicted in Fig. 4, consists of decoding the demodulated
stream £, [n] to recover the transmitted symbols.

590

Smln] ' '
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Fig. 4. Receiver structure for extracting the symbol strear of the
mih user. The first stage is equalization, producing 9y, [n], while
the second stage is demodulation, producing £, [n|. A final stage
(not shown) is decoding.

In general, the composite system consisting of mod-
ulation, the channel, equalization, and demodulation has
some appealing characteristics that simplify decoding. In
particular, provided the channel is ergodic and given suf-
ficiently long signature sequences, then for a broad class
of equalizers the original coded symbol stream effectively
“sees” the average characteristics of the fading channel. As
a consequence, the set of original coupled fading channels
in the multiuser system is effectively transformed into a set
of decoupled simple additive white noise channels.

More specifically, if the z,,[n] is a white symbol stream
then :

Em[n] & vp,z‘m[n] + O [n] (14)

where the accuracy of the approximation increases with the
signature length. In (14), pis a (complex-valued) constant
and the v, [n] are mutually uncorrelated, zero-mean, quasi-
Gaussian white noise sequences that are uncorrelated with
the streams ., [n]. Furthermore, the variance of the noise
U, [n] takes the form

var um[n] = oorsy + st + Ohar (15)

As (15) reflects, the equivalent noise consists of three
components. The first is due the original noise w[n] in the
system after being processed by the equalizer and thus is
proportional to the original noise power. The second is due
to intersymbol interference (ISI), i.e., interference between
the symbols in the mth user’s stream that is induced by the
fading process. Finally, the third term is due to multiple-
access (i.e., interuser) interference (MAI) resulting from the
effects of fading in the channel and asynchronism among
users. Note that the ISI term is proportional to the user’s
transmit power and that the MAI term is proportional
to a linear combination of the transmit powers of all
the others users. Hence, the overall noise power in the
equivalent mode] has a dependence on signal power, which
distinguishes this channel from the usual additive white
Gaussian noise channel. I

As an aside, it is important to point out that in the pre-
ceding discussion the average transmit power of the various
users are the relevant quantities in computing the equivalent
noise power. In particular, the smaller the fraction of time
a user is active (i.e., transmitting symbols) the smaller the
corresponding average transmit power will be (for a fixed
symbol energy). That reduced activity levels directly and
dynamically translate into signal-to-noise/interference ratio
(SNIR) enhancement is an extremely attractive feature of
CDMA systems in general and spread-signature CDMA
systems in particular.
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Fig. 5. Bit error probability as a function of SNR per bit for
uncoded quadrature phase-shift keying (QPSK) on reverse link
with infinitely many users. The successively lower solid curves
correspond to the performance of spread-signature CDMA with
processing gains of p = 1, 7, 13, 19. For comparison, the
successively lower dashed curves correspond to the performance
of conventional CDMA with the same series of processing gains.

The particular choice of equalizer has a substantial effect
on the overall normalized SNIR

2
= 1] _ 16)

3 3 3
Noise T Pist t Ohar

For frequency-selective slow fading channels, the SNIR
(16) is maximized when the time-variant frequency re-
sponse of the equalizer is [10]

Ar (w;n]

1
1 E an(w:n
Mk=1 k( ’ ]

where ., (w;n] is the SNR at time n and frequency
w of mth user in the original channel. It is interesting
to note that with this SNIR-maximizing equalizer, &,,[n]
is, coincidentally, a minimum mean-square error linear
estimate of x[n]. In principle, this property can be exploited
in implementation since it suggests that adaptive equaliz-
ers based on least-mean-square (LMS) or recursive least-
squares (RLS) algorithms can be used in practice. Note, too,
that the numerator of (17) is a conventional matched filter
(i.e., RAKE receiver [6]), so that the denominator can be
viewed as an additional compensation stage that takes into
account the special characteristics of the equivalent noise
in this context, as discussed earlier. Moreover, for reverse
link transmission involving a large number of users, this
additional compensation can generally be omitted.

The appeal of the “Rayleigh-to-Gaussian” channel trans-
formation implied by (14) is that it suggests substan-
tially simpler decoding algorithms can be used effectively
in spread-signature CDMA receivers. In particular, from
the perspective of the coded symbol stream the channel
“looks” in effect like an ideal additive white Gaussian
noise channel, suggesting that any of the many codes
designed for this channel can be highly effective in this

B(w;n] a7

y

xo[n]——N ™

holn]

xpn]—s ™™ > h[n]

yin]

xppin]— T™M hpglnl]

Fig. 6. Orthogonal multiplexing of substreams for single-user
spread-response precoding systems.

application. For example, if trellis coded modulation is used
to generate the symbol stream, then the corresponding soft-
decision Viterbi decoder that is appropriate for maximum
likelihood sequence detection in additive white Gaussian
noise channels can be used.

Spread-signature CDMA systems can, in fact, be quite
effective even without the use of additional coding. In
this case, simple symbol-by-symbol decisions are often
adequate as a decoder. As in conventional CDMA systems,
excess bandwidth (beyond what is needed to support the
bit rate) can be used in this scenario as a computationally
inexpensive alternative to coding [10]. This bandwidth
expansion translates into a spread-spectrum processing gain
that boosts SNIR and, in turn, reduces bit error rate.
Fig. 5 compares bit error rate for spread-signature and
conventional CDMA when both are used with bandwidth
expansion but no coding. The substantial advantage in
using spread-signature CDMA over conventional CDMA
in such specifically uncoded systems is due to the fact that
the longer symbol durations in the former are much more
effective at mitigating the effects of fading.

D. Single-User Systems and Spread-Response Precoding

In single-user wireless systems, spread-signature CDMA
techniques lead to an efficient generalization of the “spread-
response precoding” concept developed in [11] and closely
related to a class of smearing techniques described by
Wittneben [21].

Before proceeding, it is important to appreciate that
the design of single-user systems involves some special
challenges. In particular, for M = 1 the modulation is
equivalent to prefiltering the symbol stream with a linear
time-invariant (LTT) filter whose unit-sample response is the
“signature sequence” fig[n]. This prefiltering is referred to
as spread-response precoding. In this case, the orthogonality
conditions (4) and (5) are equivalent to requiring that
ho[n] be an allpass filter. However, nontrivial finite-length
allpass filters do not exist [22]. As a result, [11] and [21]
relax the strict allpass requirement and attempt to develop
quasi-orthogonal prefilters with reasonable spreading char-
acteristics.

In such applications, substantially better performance is
achieved by exploiting the orthogonal, maximally spread
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Fig. 7. Bit error probabilities using uncoded QPSK on the
Rayleigh fading channel with maximally-spread precoders. The
top solid curve corresponds to the performance without precoding
(N' = 1), while the bottom solid curve indicates the performance
bound corresponding to an infinite-length (delay) precoder
(N'" — o0). The successively lower solid curves between
these two extremes represent the performance obtained using
finite-spread precoders with delay parameters N' = 2, 4, 8, 16,
32, 64, and 128, respectively. The dashed curve is the bit error
rate curve for an ideal Gaussian channel, for comparison.

systems corresponding to M > 2. This is accomplished
as follows: the symbol stream z[n] to be transmitted is
transformed into a set of M parallel substreams

@mn] = z[|n/M|M + m] as)

via a serial-to-parallel converter, then these substreams
are processed as if they corresponded to distinct users
in a multiuser system. Specifically, the substreams are
upsampled, modulated, and multiplexed as depicted in
Fig. 6. In effect, this corresponds to replacing the LTI
precoder with a more general linear periodically time-
varying (LPTV) precoder. A suitable receiver is that de-
scribed for-the corresponding M -user system, and can be
similarly optimized for maximum SNIR in the equivalent
channel. Comparisons between the results of [11] and [10]

~ reflect that for a given delay constraint, using maximally-
spread LPTV precoders instead of LTI precoders leads
to a significant reduction in bit error rate and reduces
computational requirements dramatically.

Fig. 7 shows the bit error rate performance on single user
fading channels using maximally-spread precoders of the
type described in this section without coding. The delay
constraint is expressed in terms of the normalized length N’
which is a measure of the spread of the precoder relative
to the coherence time of the fading.

As a final comment, it is worth emphasizing that these
spread-response precoding techniques are more widely ap-
plicable for combating a variety of other channel effects as
well. For example, smearing techniques have traditionally
been used as a method for combating noise, interference,
and jamming that is inherently impulsive in nature, and
which would otherwise severely corrupt certain symbols
in the transmission and leave others unaffected [23], [24].
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Fig. 8. Channel model for fractal modulation applications.

Spread-response precoding using maximally spread pre-
coders constitutes an effective, computationally efficient
method for mitigating the effects of these degradations as
well. It is also worth noting that spread-response precoding
techniques have even more distant potential applications,
for example in implementing robust quantization strategies
of the type developed in [25].

HI. FRACTAL MODULATION

In this section, we consider a very different channel that
arises in a number of digital communications applications.
As we will see, efficient linear modulation strategies based
on multirate systems can also be developed for this channel.
However, multirate signal processing is used in a much
different way in this case. In particular, we examine a
wavelet-based “fractal modulation” paradigm that has been
proposed as a novel diversity strategy for communication
over a particular class of unreliable channels [26], [27].
Attractively, implementations of fractal modulation make
efficient use of iterated multirate filterbanks. In the follow-
ing development we assume a basic familiarity with wavelet
representations and multiresolution analysis; -excellent in-
troductions to these concepts can be found in [28] and

t4].

A. Channel Model

The particular channel of interest has the characteristic
that it is “open” for some time interval 7', during which
it has a particular bandwidth W and SNR. This rather
basic channel model is a fairly general one for a variety
of settings, and in particular it can be used to capture
both characteristics of the transmission medium and con-
straints inherent in one or more receivers in broadcast
applications. When the noise characteristics are additive,
the overall channel model is as depicted in Fig. 8, where
z(t) represents the noise process.

When either the bandwidth or duration parameters of
the channel are known a priori at the transmitter and
receiver, there are many well-established methodologies for
designing an efficient and reliable communication system.
However, the focus in this section will be on the case
in which both the bandwidth and duration parameters are
either unknown or not available to the transmitter. This
case, by contrast, has received comparatively less attention
in-the communications literature, although it arises rather
naturally in a range of both point-to-point, multiple access,
and broadcast communication scenarios. As one example,
it can be a used in a variety jammed and meteor-burst
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channels used for covert and LPI communication. As a
second example, it can be used for broadcast applications
in which information is being transmitted to a number
of receivers having different front-end bandwidths and
different processing rate capabilities.

In designing a modulation strategy for transmitting a
finite-length symbol sequence g¢[n] over such channels,
it is natural to impose the following set of performance
requirements;

1) Given a duration-bandwidth product 7' x W that
exceeds some threshold, we must be able to transmit
q[n] without error in the absence of noise, i.e., z(t) =
0. .

2) Given increasing duration-bandwidth product in ex-
cess of this threshold, we must be able to transmit g[n]
with increasing fidelity in the presence of noise. Fur-
thermore, in the limit of infinite duration-bandwidth
product, perfect transmission should be achievable at
any finite SNR.

The first of these requirements implies that it must be
possible to recover g[n] using arbitrarily little receiver
bandwidth given sufficient duration, or alternatively, from
an arbitrarily short duration segment given sufficient band-
width. The second requirement implies that it must be
possible to obtain better estimates of g¢[n] the longer a
particular receiver is able to listen, or the greater the
bandwidth it has available.

To meet these requirements, the modulation must contain
a very special and unusual form of diversity. In particular,
the system must operate efficiently over a broad range
of rate-bandwidth combinations® using a fixed transmitter
configuration, and this in turn requires that the information
be embedded in the transmitted waveform on multiple
time scales. A rather natural approach to achieving these
objectives arises out of the concept of embedding the data to
be transmitted into a homogeneous signal. Since the concept
of fractal modulation is based on this idea, we briefly
summarize the characteristics of homogeneous signals and
describe their wavelet representations.

B. Homogeneous Signals and Wavelet Representations

A homogeneous signal x(t) is a self-similar signal satis-
fying the deterministic scale-invariance property

z(t) = a~Fz(at) 19)

for a > 0. While the set of functions satisfying (19) for all
a > 0 is rather limited [29], a comparatively richer class
of signals is obtained by requiring that (19) be satisfied
only for values of a that are integer powers of two. The
homogeneous signals in this broader class then satisfy the
dyadic self-similarity property

2(t) = 27 FH g(2kt) (20

5Note that for finite-length messages, the duration constraint T" on the
channel translates into a rate constraint R, and as a result it is often more
natural to phrase the constraints in terms of rate-to-bandwidth ratio R/ W
rather than the duration-bandwidth product T' x W.

for all integers k. This is the class of interest for fractal
modulation applications.

Homogeneous signals are inherently well suited as mod-
ulating waveforms for use on the channels described in
Section HI-A. Indeed, as a consequence of their intrinsic
self-similarity, these waveforms have the property that
an arbitrarily short duration time-segment is sufficient to
recover the entire waveform, and hence the embedded infor-
mation, given adequate bandwidth. Likewise an arbitrarily
low-bandwidth approximation to the waveform is sufficient
to recover the undistorted waveform, and again the em-
bedded information, given adequate duration. Furthermore,
homogeneous waveforms have fractal characteristics akin
to those of the 1/f family of random processes [30].

Attractively, homogeneous signals also have efficient,
wavelet-based representations that can be exploited in the
development of practical systems. These representations
arise out of the special relationship among wavelet coeffi-
cients for signals obeying the dyadic self-similarity property
(20).

The expansion of an arbitrary. signal 2(t) in an orthonor-
mal wavelet basis takes the form

oty =Y > aer(t) (212)
+oo
= / 2y (2) (1b)

where the orthonormal wavelet basis functions are related,
as usual, according to '

Y (t) = 272t — n)

with ¢(¢) denoting the basic wavelet, and where m and n
are the dilation and translation indexes, respectively.

When z(t) is, specifically, a homogeneous signal, it
follows from (21b) that the wavelet coefficients take the
form

oy =57, 22)
where
B = 22H+1, (23)
Denoting z2 by g[n], (21a) then becomes®

a(t) =" 3" BTl (1), (24)

From (24) it is apparent that z(t) is completely specified
in terms of g[n], and as a result ¢[n] is referred to as the
generating sequence for the homogeneous signal z(t). The
associated time-frequency portrait of a homogeneous signal,
expressed in terms of the generating sequence, is depicted in
Fig. 9. For purposes of illustration, the signal in this figure
has degree H = —1/2 (i.e., # = 1, which corresponds
to the case in which ¢[n] is scaled by the same amplitude

6 As developed in [26], it is generally necessary to impose some mild
technical restrictions on the class of wavelet bases for the representation

to be well-behaved. In practice, it suffices for the wavelet ¥(t) to have at
least [H + 1] vanishing moments.
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Fig. 9. The time-frequency portrait of a homogeneous signal.

factor in each octave band. The partitioning in such time-
frequency portraits is of course idealized; in general, there
is both spectral and temporal overlap between cells.
Homogeneous signals have several important character-
istics in common with the 1/f family of fractal random
processes. In fact, homogeneous signals can be viewed as
the deterministic counterparts of 1/f processes, which are
processes that obey the self-similarity relation (19) in a
probabilistic sense. The class of 1/ f processes are so named
because they have a generalized power spectrum of the form

1

25
Likewise, when the generating sequence g[n] has finite
power, the corresponding homogeneous signal also have
a time-averaged power spectrum of the form (25). In
addition, such homogeneous signals typically have a fractal
structure similar to that of 1/f processes. Indeed, the
Hausdorff-Besicovitch dimensions [31] of both are the
same. These characteristics further the appeal of homoge-
neous signals as candidates for use in LPI communication
applications.

However, it is important to stress that there are aiso
important differences between homogeneous signals and
1/f processes. For example, a typical sample function of
a 1/f process does not satisfy (20) but its autocerrelation
function does. In turn, while the wavelet coefficients of
homogeneous signals are identical from scale to scale to
within an amplitade factor as (22) reflects, the wavelet
coefficients of 1/f processes have only the same second-
order statistics from scale to scale to within an amplitude
factor [30]. In fact, the wavelet coefficients =7 from a 1/f
process are effectively uncorrelated with the scale-to-scale
variance progression

var z;' o< f7™.

1) Discrete-Time Algorithms for Homogeneous Signals: As
Fig. 9 reflects, synthesizing homogeneous signals can be
accomplished by replicating a generating sequence ¢[n] at

594

each scale in the representation (24) via an expansion in
terms of an orthonormal wavelet basis. In such expansions, °
the detail signals in the associated multiresolution synthesis,
ie.,

Dp{a(t)} =Y ayi(t) = B2 qlnly(t)

are simply time-dilated versions of one another, to within an
amplitude factor. More generally, multiresolution synthesis
leads naturally to efficient discrete-time constructions for
homogeneous signals via the discrete wavelet transform
(DWT). In turn, these algorithms play an important role in
the development of practical communication systems based
on homogeneous signals.

These algorithms arise out of a representation for -a
homogeneous signal in terms of what is referred to as
a characteristic sequence p[n]. This sequence is defined
via p[n] = a2, where in general the coefficients a™
characterize the signal approximation at resolution-2™. This
approximation takes the form

Ao} = argr )

where the orthonormal basis functions are expressed in
terms of the associated scaling function ¢(¢) according to

¢ (t) = 272 ¢(2™t — ).

Since the coefficients a,' are obtained via projections .
of z(t) onto the ¢*(¢), the homogeneity of z(¢) implies
that they are identical at all scales to within an amplitude
factor, i.e.,

alt = 7™ 2ad = 7™ ?p[n). (26)

Hence, p[n] characterizes arbitrarily fine approximations
to z(t), and, in turn, (%) itself.

The characteristic sequence p[n] can be obtained from
the generating sequence g[n] via an iterative discrete-time
algorithm, expressed in terms of the conjugate quadrature
filter (CQF} pair associated with the wavelet. basis. In
particular, denoting the approximation to p[n] at the sth
iteration by pll[n], the algorithm is

P[] =0 @
P[] = Y23 {hln — 2k]pP[K] + gln — 2k]q[k]}
k (27b)

where h[n] and g[n] are the unit sample responses of the
CQF pair, i.e.,

+o0
Wl = [ g0 ) o,

+oo
sinl= [ k0o s

This recursive upsample-filter-merge algorithm, depicted
in Fig. 10, can be interpreted as repeatedly modulating ¢[n]
with the appropriate gain into successively lower octave

PROCEEDINGS OF THE IEEE, VOL. 84, NO. 4, . APRIL 1996



e plilpgg—e] } 2 hin]

e p[‘*’l[n] ..........

gin] — + 2 gin] quln]

Fig. 10. Iterative algorithm for the synthesis of the characteristic
sequence p[n] of a homogeneous signal z(t) from its generating
sequence g[n]. The notation pll[n] denotes the value of p[n] at
the th iteration.

bands of the frequency interval 0 < |w| < 7. Note that the
precomputable quantity

g.[n] = gln — 2k]q(k]
k

represents the sequence ¢[n] modulated into essentially the
upper half band of frequencies.

C. Fractal Modulation Transmitter

The results of the preceding section suggest an efficient
means for embedding a symbol stream g[n] into a homo-
geneous waveform z(¢)—in particular, it suffices to use
g[n] as a generating sequence for z(¢). This synthesis is
the essence of fractal modulation, and in practice g[n] is
modulated into a finite number of contiguous octave-width
frequency bands.

The fractal modulation transmitter can be implemented
in a computationally efficient manner using the discrete-
time algorithms of Section III-B1). In particular, after
obtaining p™1[n] from g¢[n] using M iterations of the
synthesis algorithm (27), the result is mapped into the
associated continuous-time waveform by modulating with
the appropriate scaling function, i.e.,

a(t) = Zp[Ml [n]M (t) = Zle] [n]2M $(2Mt — n).

Finite-length messages are accommodated most effi-
ciently by modulating their periodic extensions g[n mod L]
thereby generating a transmitted waveform

s(t) =YY B %q[n mod LY (t).
‘When

a=[do) a - (-]

denotes the data vector, the time-frequency portrait asso-
ciated with this signal is shown in Fig. 11. This leads
naturally to a strategy for data transmission on a block-
by-block basis.

The parameter H in fractal modulation controls the
relative power distribution among frequency bands and,
hence, the overall transmitted power spectrum, which takes
the form (25). Consequently, the selection of H is important
when we consider the presence of additive noise in the
channel.

"\ lab | Tl { (ol | o) { (o { Lol | ] {lad |l | fal ) ()| q)

lql | [q]]} [q] | [q]) [al | [q]

[al [a]l [al i

Fig. 11. A portion of the time-frequency portrait of the trans-
mitted signal for fractal modulation of a finite-length data vector

q.

For traditional additive stationary Gaussian noise chan-
nels of known bandwidth, the appropriate spectral shaping
of the transmitted signal is governed by a “water-pouring”
procedure [32], [33], which is also the method by which
the capacity of such channels is computed [1]. Using this
procedure, which also plays a key role in the applications
discussed in Section IV, the available signal power is
distributed in such a way that proportionally more power
is located at frequencies where the noise power is smaller.

When the available bandwidth is variable or unknown,
which is the scenario of interest in this application, the
water-pouring approach leads to poor worst-case perfor-
mance. In these cases, it is preferable to distribute power
according to a spectral-matching rule that maintains an SNR
that. is independent of frequency. This leads to a system
whose performance is uniform with variations in bandwidth
and, in addition, is attractive for LPI communication. Since
as discussed earlier homogeneous signals and 1/f noises
both have power spectra of the form (25), the spectral-
matching rule suggests that fractal modulation may be
naturally suited to channels with additive 1/ f noise whose
degree H is the same as that of the transmitted signal. Such
1/f noise arises in an extremely wide range of physical
systems, and classical stationary white noise corresponds
to the special case in which H = —1/2. More generally,
the class of 1/f noises include many nonstationary noises
exhibiting long-term statistical dependence among samples
[301, [34]7

D. Fractal Modulation Receiver and Performance

For transmission of finite-length messages composed of
M-ary symbols in the presence of white (or more generally
1/f) Gaussian noise, efficient maximum likelihood (mini-
mum probability-of-error) receivers can be developed [26].
Such receivers exploit processing in the wavelet coefficient

7To perform spectral matching in 1/f noise channels, it is typically
necessary in practice to measure H based on observation of the noise

 process. For this purpose, the robust and efficient parameter estimation

algorithms for 1/ f processes developed in [35] and [30] can be used.
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domain. Accordingly, the first stage of recéiver extracts the
wavelet coefficients r7* of the received waveform r(¢) using
the DWT. These coefficients take the form

™ = B"™%gln mod L]+ 2™ (28)

where the 2" are the wavelet coefficients of the noise
process z(t).

The duration-bandwidth characteristics of the channel
in general affect which observation coefficients 77" may
be accessed and, hence, the available redundancy. If the
channel is bandlimited to 2Mv Hz for some integer My, this
precludes access to the coefficients at scales corresponding
to m > My. Simultaneously, the duration-constraint in
the channel results in a minimum allowable decoding
rate of 2ML symbols/sec for some integer My, which
precludes access to the coefficients at scales corresponding
to m < Mrg. As a result, the collection of coefficients
available at the receiver correspond to the set of indexes

My <m < My (292)
0<n<L2m M 1 (29b)

where L is the length of the message g[n]. This means
that the available number of noisy measurements of the
message is ‘

My .
K= Z oMMy _ oMy—My+1 _ 1 (30)
m=Mp,

Exploiting the fact, as discussed earlier, that the wavelet
coefficients of the noise are effectively uncorrelated, a
sufficient statistics for the detection of the symbol g[n] is

My gm—Mp _3

tn] = Z g/ Z TrykL: €28}

m=Mp, k=0

Like the transmitter, the receiver has a computationally
efficient, hierarchical implementation based on the DWT.
With r(¢) bandlimited to resolution 2v , it may be sampled
at rate 2™V, then successively filtered and downsampled
to level m = My according to the usual wavelet de-
composition tree. To produce the sufficient statistic £[n],
at each level m the terms from the detail sequence 77
corresponding to the same value of the g[n] are collected
together, weighted by the factor 4™/2, and accumulated
with the weighted 77 from previous stages.

For  binary antipodal signaling  (¢[n] €
{+VE;,~vEy}), the performance of the scheme
is as depicted in Fig. 12, where bit error rate is shown as
a function of the receiver rate-to-bandwidth ratio B/W
and SNR. It is important to keep in mind that a receiver
can select the R/W operating point dynamically since
the transmitter configuration is fixed. In a broadcast
application, each receiver can select its own R/W
operating point and, in principle, achieve the performance
reflected in Fig. 12. In this way a receiver with a slower
processor speed can decode the message as reliably as
one with a faster processor provided it waits longer (i.e.,

uses a lower rate). Or a slower processor can decode the -
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Fig. 12. Bit-error performance of fractal modulation with binary
data. Solid lines indicate the performance of fractal modulation,
while dashed lines indicate the performance baseline discussed
in the text. (a) Bit-ertor probability Pr(e) as a function of
rate/bandwidth ratio R/W at 0 dB SNR. (b) Bit-error probability
Pr(e) as a function of SNR at R/W = 0.125 symbols/s/Hz.

message at the same rate as the faster processor, and accept
the resulting lower fidelity in message recovery. Again,
attractively, these trade-offs can be made dynamically.

As a baseline, Fig. 12 also shows the performance of a
simple amplitude modulation scheme using time diversity
in the form of repetition coding. Receivers in this system
must all operate a particular common rate and bandwidth
that is determined by the transmitter configuration. Hence,
for this scheme different values of R/W correspond to dif-
ferent transmitter configurations. Further results from more
extensive simulation and evaluation of fractal modulation
have been described by Ptasinski and Fellman [37].

In summary, fractal modulation can be viewed as an
intriguing “scale-diversity” paradigm that has potentially at-
tractive features for data transmission in a number of secure
communication and broadcast communication contexts. The
essence of fractal modulation involves dividing the avail-
able transmit spectrum into multiple, adjacent, octave-
spaced bands, and modulating periodic extensions of the
symbol stream into these bands at the corresponding rates.
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IV. LAPPED MULTITONE MODULATION

Fractal modulation can be viewed as a special form
of a class of techniques broadly referred to as multitone
modulation. In this section, we examine more traditional
forms of multitone modulation and focus on some promis-
ing, recently proposed implementations based on efficient
multirate filterbank structures. The resulting schemes can
significantly enhance performance on channels that arise
in a number of important emerging applications [38]. The
channels of interest in this section, which we discuss
next, often suffer from severe intersymbol and narrowband
interference.

A. Channel Model

The equivalent discrete-time baseband model of the pass-
band channel of interest takes the form

r[n] = Zy[k] aln — k] + win] (32)

where y(n] is the transmitted signal, a[n] is the unit-sample
response of the equivalent channel, and wn] captures both
the receiver noise and other forms of interference in the
system. In contrast to the scenario explored in Section II,
here we consider a scenario in which both the receiver and
the transmitter know the channel response a[n], and noise
and interference statistics. In applications where detailed
channel characteristics are not known a priori, they can
often be measured at the receiver and passed back to the
transmitter through a feedback path. Such paths naturally
exist in, e.g., a variety of two-way (full-duplex) point-to-
point links.

The severe intersymbol interference (ISI) case, which is
of primary interest, corresponds to a situation in which a[n]
has its energy dispersed over a wide temporal extent, or
equivalently, in which corresponding frequency response

Aw) =Y aln] e7der

n

exhibits large fluctuations over the frequency band. As (32)
reflects, in this case each received sample 7[n] contains,
in addition to y[n], interference from a large number of
neighboring samples y[k], k # n, in the transmission.

The process w(n] captures both classical stationary
white Gaussian receiver (thermal) noise and a- variety
of other forms of interference. These may include a
number of narrowband interferers, so that the power
spectrum of w[n] contains spikes (i.e., concentrations of
power) at several frequencies. Under our assumptions the
receiver and transmitter have knowledge of the receiver
noise power spectral density and that of the narrowband
interference—specifically, the location and strength of these
interferers. In addition, w([n] may contain components
due to crosstalk, i.e., colored interference from other
poorly shielded physical communication channels in close
geographic proximity [39]. Finally, w(n] may contain an
impulsive noise component—broadband noise that consists

of short bursts of energy (clicks) randomly dispersed in-

Xmln]

ft orthogonal
coder : multiplexer yinj

Fig. 13. A multitone system transmitter structure.

bit serial/parallel
stream converter

time. For this component, the transmitter and receiver
know the contribution of this noise to the power spectrum.
However, generally the transmitter is unable to predict the
actual arrival times of the clicks.

B. Applications of Multitone Modulation

Examples of channels with the kinds of characteris-
tics described in Section IV-A and for which multitone
transmission is attractive, arise in a number of important
emerging applications.

One example involves asymmetric digital subscriber line
(ADSL) systems. These systems have been proposed as
a means for providing, among over services, video-on-
demand to homes over the existing twisted pair copper
wiring currently used to provide telephone service. For ex-
ample, one ADSL format is designed to accommodate—in
addition to the existing telephone service—the simultaneous
transmission of four compressed 1.5 Mb/s video signals as
well as a 384 kb/s full duplex (bidirectional) data signal.
To support these data rates on a single twisted copper pair
requires that very large (MHz) bandwidths be used, and
even higher bandwidths are envisioned for future very high-
speed digital subscriber lines (VHDSL). When used over
such broad frequency ranges, twisted copper pairs exhibit
many of the serious impairments included in the channel
model of Section IV-A.

Another example involves proposed hybrid fiber-coax
(HFC) networks—expansions of the the existing cable
television (CATYV) distribution network to provide addi-
tional two-way communication services [40]. These in-
clude traditional telecommunications services for voice
communication, video teleconferencing, and voiceband data
transmission, and well as high-speed data communication
services at rates exceeding 1.5 Mb/s. In the new system,
upstream transmission (i.e., from the home) will take place
in the 5~40 MHz band, while downstream transmission (i.e.,
to the home), including television services, will take place
in the 50-750 MHz band. Our channel model also captures
the salient characteristics of this network. For instance,
the predominant impairment in the upstream channel is
severe narrowband interference referred to as “ingress”
noise, which is caused by radio frequency emissions—both
natural and man-made—and so-called funneling effects due
to the network architecture.

Finally, the channel model of Section IV-A is a reason-
able one for a variety of frequency-selective radio frequency
channels whose characteristics are relatively stable (i.e., do
not vary with time, or do so, at most, very slowly) [41].
Many of these channels are also subject to jamming-—either
unintentional or hostile—which can be captured by the
narrowband interference component of the model. Further-
more, there are a number of applications of these channels
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that can meet the requirement that the transmitter have
access to the channel characteristics; these include, among
others, point-to-point links and wireless local area networks
(LAN’s).

C. Communication over ISI and Colored Noise Channels

Before examining multitone modulation, we begin with
some bagsic issues associated with designing systems for
data transmission over channels of the form (32).

First, efficient communication over such channels re-
quires a transmitted signal y[n| have a suitably designed
power spectrum. Specifically, as shown by Gallager [1],
power must be distributed according-to the general water-
pouring procedure mentioned in Section III-C. With &,
denoting the available signal power and Sy, (w) the power
spectrum of the combined noise and interference, the key
to this procedure involves viewing the normalized noise
power density Sy (w)/|A(w)|? as the bottom of a bowl
into which power is “poured” until the power budget is
met.

This result, which is obtained as the solution to a con-
strained optimization problem, corresponds to the transmit-
ted signal y[n] having a power spectrum

Sawan (W)
Syy (W) = max <0, A— = ) (33)
) AP
where the “water level” X is a Lagrange multiplier chosen
such that

1 X
5o | Su(w)dw=E. (34)

-7

Evidently, the water-pouring algorithm will avoid allo-
cating power to portions of the frequency spectrum where
the noise or interference levels are high, such as in the
vicinity of the narrowband interferers, and to portions of
the spectrum where the channel is severely attenuated.

There are a variety of ways to design systems for achiev-
ing this transmit spectrum. For example, one approach
begins with a basic pulse amplitude modulation (PAM)
system, with or without coding, to produce an M-ary
symbol stream z[n]. A conceptually simple method for
obtaining the desired transmit spectrum for y[n] involves
.convolving z[n] with the unit-sample response h[n] of a
suitable LTI preemphasis filter, i.e.,

yln] = aln] * hin).

Note that for the kinds of channels we have discussed, the
water-pouring procedure can lead to a preemphasis filter
unit-sample response h[n] that is rather long. This, in turn,
contributes to delay in the system.

When preemphasis filtering is used, the received signal
can be expressed in the form .

r[n] = a'[n] * z[n] + w[n] (35)

where a'[n] is the unit-sample response of the effective
channel, i.e.,

a'[n] = a[n] = Aln).

For this ISI channel, maximum likelihood sequence de-
tection can be used at the receiver to recover the transmitted
symbol stream with minimum probability of error. [42].
However, the computational complexity of such receivers is
prohibitive in practice. Instead, more typically, the received
signal is first equalized to compensate for a'[n], then
decoded. Linear equalization, which involves convolving
r[n] in (35) with a suitably chosen unit-sample response
b[n], is computationally attractive but generally leads to
excessive noise enhancement on such channels. Instead,
(nonlinear) decision feedback equalizers (DFE’s) are often
used. In this case, performance is further improved when
the feedback portion of this receiver is implemented as
Tomlinson~-Harashima precoding in the transmitter [39].
With this approach, the spectral shaping is implemented
as part of the (nonlinear) precoder. )

The general strategy described above, when used in
conjunction with trellis coded modulation, forms the basis
of the current voiceband modem standard V.34 [43]. In fact,
these systems can more generally achieve rates arbitrarily
close to channel capacity [44], [45]. However, the voice- -
band modem operates over a low bandwidth channel with
relatively mild impairments. For some severe intersymbol
and narrowband interference channels, the multitone sys-
tems we describe next can also achieve rates arbitrarily
close to capacity while at the same time offering other
advantages including lower complexity implementations.

D. Multitone Modulation

Basic passband PAM as described in the previous section
is sometimes referred to as a single-tone system, owing
to the fact that a single carrier frequency is used with
the modulation. Multitone modulation is a generalization
whereby the original channel is divided into a number
of orthogonal subchannels. With this system, in effect
a set of PAM systems is used on separate carrier fre-
quencies [32]. As a result, multitone modulation is also
referred to as multicarrier or multichannel modulation,
and sometimes orthogonal frequency division multiplexing
(OFDM). Early proposed implementations of multitone
modulation, such as those of Chang [46] and Saltzberg
[47], were inherently continuous-time in nature. However,
discrete-time implementations based on the DFT were
later proposed by Weinstein and Ebert [48] and Hirosaki
[49]. Now discrete-time implementations are used almost
exclusively, a recent example of which is the discrete
multitone transmission (DMT) system that was chosen as
the ANSI T1E1.4 standard for ADSL data transmission
[501.

A typical transmitter for multitone modulation is as
depicted in Fig. 13. From the original bit stream, M sym-
bol substreams z,,[n| are generated via serial-to-parallel
conversion and encoding, then the resulting substreams
are modulated and multiplexed to obtain y[n], which is
transmitted as a PAM signal. The geheral multiplexer
structure is same as that used for the spread-response
precoder discussed in Section II-D and depicted in Fig. 6.
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As in the case of spread-response precoding discussed
in Section II-D, the discrete-time transmit pulse shapes®
hm[n] are generally chosen to satisfy the constraints (4)
and (5), so that the modulation corresponding to Fig. 6 is
orthogonal. Design issues will be discussed in more detail
in Section IV-G. However, we comment in advance that the
factors governing the design of the k., [n] in this application
are very different from those in spread-response precoding
systems. In fact, as we will see, for this application it will be
important that the system of Fig. 6 correspond to a multirate
filter synthesis bank with good frequency localization of the
type required in more traditional 'subband coding and time-
to frequency-division transmultiplexing applications [59].

When such filters are used, an attractive feature and
strong motivation for the use of multitone modulation is
the comparative ease with which both transmit spectrum
shaping and equalization can be often be performed. We
explore these issues separately in the sections that follow.

E. Transmit Spectrum Shaping with Multitone Modulation

With multitone modulation it is comparatively easy to
shape the transmit spectrum according to the water-pouring
prescription dictated by capacity calculations. In effect, the
available power is simply distributed among the subchan-
nels according to a simple discretized version of the water-
pouring algorithm—specifically, averages of the normalized
noise power density Sy, (w)/|A(w)|? within each subchan-
nel are used. Having determined the available power, the
symbol sets for each subchannel are designed accordingly.
For example, for uncoded systems on additive colored
Gaussian noise channels, Kalet [33] described a strategy
for optimizing the water-pouring and constellation design
S0 as to obtain the minimum bit error rate subject to the
constraint that this rate be the same for all subchannels that
are used. More generally, coding can be used efficiently in
conjunction with the modulation to achieve rates closer to
capacity [51]. ’

It is important to emphasize that with water-pouring,
depending on the total available transmit power and the
channel characteristics, certain subchannels may not be
used at all. For example, as intuition might suggest, sub-
channels occupied by strong narrowband interferers are
often not allocated any signal power. This provides strong
motivation for using multitone systems on channels subject
to this kind of interference. Indeed, to avoid excessive
degradation of performance, single-tone systems used in
such scenarios would require high-performance notch fil-
tering in the transmitter to eliminate such interferers, and
this filtering can be significantly more difficult to implement
than the corresponding multitone system.

F. Equalization in Multitone Systems

In multitone systems, equalization can also be signif-
icantly simpler than in single-tone systems, as we now

8To avoid potential confusion with the systems of Section II, we will
avoid referring to the k., [n] as signature sequences in this application.
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Fig. 14. A multitone system receiver structure.
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Fig. 15. The demultiplexer structure for a multitone system.

explore. The overall receiver structure we discuss is de-
picted in Fig. 14. .

We begin by noting that because of the orthogonality of
the modulation, ISI is avoided on simple additive noise
channels when demultiplexing of the form depicted in
Fig. 15 is used. This is the multirate filter analysis bank
corresponding to the synthesis bank in Fig. 6. ,

When, more generally, the channel is of the form (32),
then ISI interference is generally introduced. In muititone
systems, this interference manifests itself in two forms. One
is interchannel interference, which is interference between
symbols being transmitted on separate subchannels—i.e.,
between z,,[n] and z,,[n’] for m # m’. The other is
intrachannel interference, which is interference between
different symbols being transmitted on the same subchan-
nel—i.e., between 2., [n] and z,,[n’] for n # n”.

When ideal bandpass filters are used, so that, consistent
with (9), we have

CHp(w) = VM mz/M < |w| < (m+H7w/M 36)
0 elsewhere in jw| < 7

interchannel interference is eliminated. However, intrachan-
nel interference remains as a consequence of the fact that
the frequency response of the channel is not flat over the
subchannel mn/M < |w| < (m + 1)n/M. However,
for channels with reasonably smooth frequency responses,
frequency variations over the subchannel bandwidth are
milder than over the full channel bandwidth, and thus the
IST within individual subchannels is generally substantiaily
less severe than would be experienced using a single-
tone system over the full channel bandwidth. Moreover, by
increasing the number of subchannels M, this intrachannel
interference can, in principle, be made arbitrarily small.
However, as we will discuss shortly, other considerations
generally limit values of M that can be used practice.

In some cases M can be made large enough that no
additional equalization is necessary. In other cases, residual
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intrachannel interference is compensated using equalization
at each of the subchannel outputs 9,,[n] after demul-
tiplexing, as shown in Fig. 14. And, as also depicted
in Fig. 14, in some implementations this postdemodula-
tion equalization is combined with some predemodulation
equalization applied directly to r[n] [50] [38]. The role
of the pre-demodulation equalizer is generally to achieve
some shortening of the effective channel response, allowing
simpler post-demodulation equalizers to be used in a system
with a moderate numbers of subchannels M.

Of course, ideal filters of the form (36) are not realizable.
In practice, finite-length filters satisfying the orthogonality
constraints (4) and (5) are used, as we will discuss further
in Section IV-G. For such systems, the closer the filter
frequency responses are to the ideal bandpass character-
istic, the lower the interchannel interference. Likewise, the
shorter the filter lengths, the lower the overall system delay.
However, system delay is also effectively proportional to
the number of subchannels M, so that large numbers of
subchannels can be impractical. As a result, a fundamental
trade-off is involved: large M simplifies equalization but
at the cost of delay. Moreover, the more the severe ISI (in
terms of variation in the frequency response), the larger A/
must be to maintain a given level of performance. It should
be stressed that similar tradeoffs also apply in single-tone
systems, though controlling this tradeoff is often easier in
multitone systems.

It is also useful to note that the longer symbol dura-
tions that result from choosing larger values of M have
some significant side benefits. In particular, this temporal
spreading of symbol energy is a byproduct that is useful
for eliminating impulsive noise. From this perspective, such
systems achieve some of the benefits of the spread-response
precoding discussed in Section II-D. However, it is worth
noting that when impulsive noise is the predominant chan-
nel impairment, the spread-response precoding techniques
provide, in an appropriate sense, optimum immunity for a
given delay. More generally, one can also control such im-
munity by changing the filter lengths independently of M,
and in fact using spread-response techniques in conjunction
with multitone systems may be useful in applications where
impulsive noise is a dominant impairment.

G. Multitone Subchannel Filter Design

As in the case of spread-response and spread-signature
systems, designing the frequency response vector (6) so
that the overall modulation is orthogonal is equivalent to
choosing a suitable paraunitary polyphase matrix Q(w) in
). -

Until relatively recently, most practical implementations
of multitone modulation have used DFT-based multiplexing
[52], [50]. For these systems, the associated polyphase
matrix is given by (10), and the effective transmit pulses
hm[n] are short: all have length N equal to the number
of subchannels M. This property is reflected in the fact
that @Q(w) does not depend on w for such systems. As a
consequence, there is no temporal overlap between transmit
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pulses used to modulate symbols on a given subchannel.
More specifically, there is no overlap between the pulses
hm[n—kM)] and hp, [n~ k' M], which are used to modulate
Zmlk] and 2., [k'], respectively, for k # k'.°

This absence of lapping, combined with the special struc-.
ture of the DFT pulses, can facilitate equalization of finite
impulse response (FIR) channels, particularly when guard
bands in the form of “cyclic extensions” are used immedi-
ately following the orthogonal multiplexing in Fig. 13 [53],
[52], [39]. In particular, this procedure can be used to ensure
there is no ISI—either interchannel or intrachannel—in
the overall multitone system, and is efficient when the
channel response is shorter than the symbol duration M.
On more general infinite impulse response (IIR) channels,
ISI cannot be strictly eliminated through the use of such
guard bands, but can be substantially reduced. In either
case, the effectiveness of cyclic extensions increases with
the number of subchannels M that are used.

A weakness of DFT-based multitone systems is the
large spectral overlap between the frequency responses
H,,(w) of the filters corresponding. to the different sub-
channels. In general, this can lead to substantial leakage
of power between subchannels and induce significant inter-
channel interference. On channels with severe intersymbol
and narrowband interference, systems with better spectral
separation of the subchannels can offer some important
advantages. :

An efficient multitone system for achieving this improved
spectral separation is described by Sandberg and Tzannes
[38]. In their system, this separation is achieved by allowing
the filters A,,[n] to have lengths significantly longer than
M while still preserving orthogonality. In turn, this results
in the transmit pulses being used in an overlapped manner.
This lapped multitone modulation concept is referred to
by Sandberg and Tzannes both as “overlapped discrete
multitone modulation” and discrete wavelet multitone mod-
ulation (DWMT). For these systems, efficient equalizer
structures can be developed to reduce the remaining ISI
[38].

Computational complexity is an important design issue
for multitone systems. Indeed; an attractive feature of DFT-
based multitone systems is the fact that computationally
efficient implementations can be developed using the fast
Fourier transform (FFT) algorithm. Similarly, in designing
practical lapped multitone systems, we generally restrict
attention to orthogonal multiplexers with fast algorithms.
From this perspective, natural candidates for the multirate
filterbanks that implement the modulation are the extended
lapped transforms (ELT’s) developed by Malvar [3], [54],
which provide near optimal channel separation and, at the
same time, have extremely efficient implementations in
terms of computational complexity. The ELT is a family
of orthogonal filterbanks parameterized by the overlap
parameter k£ that determines the length of the constituent

9There is, however, obviously complete overlap between the effective
transmit pulses of synchronous symbols in different subchannels, which
is the case corresponding to k = k'.
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Fig. 16. Subchannel frequency response magnitudes for a pair of
adjacent channels in an M = 8 channel multitone system. Top:
lapped multitone with overlap factor of ¥ = 8 symbols. Middle:
lapped multitone with overlap factor of k = 4 symbols. Bottom:
nonlapped system based on the DFT with comparable channel
spacing.

unit-sample responses; specifically, the filters have length
N = kM0

As suggested earlier, strong subchannel separation is
extremely attractive from the point of view of narrowband
interference rejection. Indeed, better frequency separation
among the subchannels results in less leakage of narrow-
band interference into adjacent subchannels. Because fewer
subchannels are contaminated by the interference, increased
rates can be obtained.

The use of ELT’s provides a convenient mechanism
for trading off delay for narrowband interference rejection
without changing the number of subchannels M. For exam-
ple, as shown in Fig. 16, for multicarrier modulation based
on DFT (i.e., DMT), the peak sidelobe is 13 dB down,
while for lapped multitone modulation using ELT’s, the
peak sidelobe is more than 35 dB down for an overlap
factor of Kk = 4 symbols, and more than 50 dB down
for an overlap factor of £k = 8 symbols. Note that typical
implementations of multitone modulation use a much larger
number of channels than is reflected in Fig. 16. However,
systems corresponding to larger values of M exhibit similar
mainlobe and sidelobe behavior.

The reduced sidelobes apparent in Fig. 16 translate into
a significant improvement in narrowband interference sup-
pression. As an illustration of this, Fig. 17 depicts how
this spectral containment dramatically reduces leakage of
power from a narrowband interferer into adjacent subchan-
nels. Note that relatively few neighboring subchannels are
impacted when lapped multitone modulation is used, while
for nonlapped DMT systems, the interference significantly
contaminates even rather distant subchannels.

H. Variations on the Multitone Theme

Our examination of multitone modulation has focused
on some specific classes of these systems. However, other

10The special case k = 2 also corresponds to what is also referred to
as the modulated lapped transform (MLT) [55].

L 1

. .
45 50 55 60 65
subchannel index

Fig. 17. SNIR levels in the subchannels of a M = 64 channel
multitone system when a narrowband interferer is present at the
center frequency of subchannel 32 and the background noise is 70
dB below this interferer. The solid and dashed curves correspond
to lapped multitone with overlap factors of Xk = 8 and k = 4
symbols, respectively. The lower dash-dotted curve corresponds to
a DFT-based nonlapped system with comparable channel spacing.

types of multitone systems have also attracted attention for
various applications.

One example is the class of vector coding systems
developed by Kasturia et al. [56]. These systems can
be viewed as generalized nonlapped multitone modulation
strategies in which the subchannel design (i.e., the h.,[n])
is optimized. In particular, the unitary multiplexer matrix
Q is designed to partition the channel into an independent
set of parallel ISI-free channels. The optimal transmit
pulses shapes in this case correspond to the eigenvectors
of the channel covariance matrix.!! These optimizations
are attractive from the point of view of performance, but
do not necessarily lead to implementations having fast
algorithms. Generalizations of vector coding to lapped
multitone systems may also offer analogous advantages,
and represents one of many interesting directions for further
research. : :

Another generalization of multitone modulation is the
class of nonuniform multitone systems. The subchannels
of these systems do not all have the same bandwidth
and therefore support different symbol rates. An example
is the multitone scheme based on octave-bandwidth sub-
channels developed in [57]. This scheme is well suited to
channels whose frequency response, noise, and interference
characteristics are most naturally viewed on a logarithmic
frequency scale. One example, which is explored in [57],
is that where the noise process is fractal with 1/ f spectral
characteristics of the type discussed in Section III-C. More
generally, the fractal modulation paradigm developed in
Section III can be viewed as special case of this scheme
in which a common symbol stream is transmitted in each
of the subchannels to obtain a form of diversity in scale.

11n fact, vector coding can be viewed, in an appropriate sense, as the
channel coding counterpart of the Karhunen—Loéve transform in source
coding.
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Subchannel designs can also be obtained using other
wavelet packet based structures. In turn, these may have
interesting applications beyond the scope of this section.
For example, versions of such systems may prove useful in
frequency-hopped spread spectrum communication systems
for secure transmission, or for multiple-access communica-
tions; preliminary work in the latter area is described in
[58].

V. CONCLUDING REMARKS

The aim of this paper has been to provide an introduc-
tion to some promising potential applications of multirate
systems, filterbanks, and wavelets in channel coding and
‘modulation for contemporary communication systems. The
development focussed on an examination of three represen-
tative examples of recently proposed techniques: spread-
signature CDMA and spread-response precoding, fractal
modulation, and lapped multitone modulation. Collectively,
these examples suggest the tremendous breadth of emerging
potential applications in the communications area.

Indeed, the continuing evolution of multirate signal pro-
cessing and wavelet theory, combined with the explo-
sive growth in the communications industry, make this
a particularly fertile and timely area of research. From
this perspective, it is hoped that this paper sheds some
insight into some of the rich problems, interesting issues,
and exciting opportunities that lie ahead. Rather than a
retrospective. on a mature topic, it is hoped that the paper
serves as a catalyst for stimulating increased activity in a
rapidly evolving area of research.
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