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Abstract—We derive performance limits for two closely re-
lated communication scenarios involving a wireless system with
multiple-element transmitter antenna arrays: a point-to-point
system with partial side information at the transmitter, and a
broadcast system with multiple receivers. In both cases, ideal
beamforming is impossible, leading to an inherently lower achiev-
able performance as the quality of the side information degrades
or as the number of receivers increases. Expected signal-to-
noise ratio (SNR) and mutual information are both considered
as performance measures. In the point-to-point case, we deter-
mine when the transmission strategy should use some form of
beamforming and when it should not. We also show that, when
properly chosen, even a small amount of side information can be
quite valuable. For the broadcast scenario with an SNR criterion,
we find the efficient frontier of operating points and show that
even when the number of receivers is larger than the number of
antenna array elements, significant performance improvements
can be obtained by tailoring the transmission strategy to the
realized channel.

Index Terms—Antenna arrays, fading channels, feedback com-
munication, space–time codes, spatial diversity, wireless commu-
nication.

I. INTRODUCTION

M ULTIPLE-ELEMENT transmitter antenna arrays have
an increasingly important role to play in emerging

wireless communication networks, particularly at base stations
in cellular systems. Indeed, when used in conjunction with ap-
propriately designed signal processing algorithms, such arrays
can dramatically enhance performance.

Transmitter arrays have long been used for beamforming in
radio communications. The potential for using such arrays in
switched diversity schemes similar to those used for receiver
arrays has also been recognized for some time [8], [9]. Beam-
forming methods that rely on accurate channel knowledge
at the transmitter remain an active area of study from both
a communication-theoretic [5] and information-theoretic [19]
perspective. At the other extreme, transmitter arrays may be
used in point-to-point scenarios in which the transmitter has no
knowledge of the channel parameters, or equivalently in broad-
cast scenarios where there are infinitely many recipients [7],
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[20], [26]. The characterization and development of antenna
coding and precoding strategies that approach the fundamental
performance limits of such systems are comparatively recent;
see, e.g., [3], [14], [15], [24], [27], and [28], and references
therein.

In this paper, we characterize the performance limits of
transmitter arrays applied to two related scenarios: a point-to-
point system with partial side information at the transmitter,1

and a broadcast system communicating common informa-
tion to multiple receivers. In our analysis, we focus on
two measures of performance: signal-to-noise ratio (SNR)
and mutual information. While the two metrics are closely
related, they have important differences. SNR characterizes the
performance of typical uncoded systems, while mutual infor-
mation measures the maximum rate of reliable communication
achievable with coded systems (in the absence of delay and
processing constraints).

When the message is intended for a single recipient, a
beamforming2 strategy is optimal [8]. With beamforming,
the transmissions from the different antenna elements
at the base are designed to add coherently at the intended
receiver, yielding an average factor of enhancement of
SNR and a corresponding enhancement of mutual information
over single-element antenna systems [14], [15]. However,
this improvement requires that the transmitter have accurate
knowledge of the parameters of the channel to the intended
recipient, which is difficult to achieve when the parameters
are time-varying. Gains obtained in practice with only partial
information at the transmitter are more modest as a result. In
addition, in broadcast scenarios this factor ofenhancement
cannot be obtained at each receiver even when the parameters
of all channels are perfectly known. This is because it is
generally not possible to simultaneously beamform to multiple
recipients. We explore the degree to which it is possible to
approach the factor of beamforming performance limit in
both the point-to-point and broadcast problems.

An outline of the paper is as follows. Section II describes
the basic modeling assumptions for the channel. Section III
considers the point-to-point scenario with a multiple-element
transmit antenna and a single receive antenna. Achievable
performance is characterized when only partial information

1While this problem has not been explored in any detail to the best of
our knowledge, interestingly, the dual of this scenario—a system with a
single-element transmit antenna and a multiple-element receiver array, with
the channel partially known at the receiver—has. See, for example, [9].

2We assume a narrowband plane wave propagation model in which the
delay spreads at the antenna elements are small compared to the symbol
period.
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about the channel parameters in the form of noisy or quantized
measurements is available at the transmitter. We show that
even limited side information can be quite valuable, and
we suggest useful ways to choose its form. When mutual
information is the performance measure, we show that as
the quality of the side information degrades, the transmitter
should transition from a beamforming strategy to a more
general approach, with the switching point dependent on the
channel SNR.

Section IV develops the complementary problem in which
there are multiple receivers with the associated channel pa-
rameters known at the transmitter. We find the efficient fron-
tier of operation that balances performance at the various
receivers. Among other results, we develop and analyze prac-
tical strategies whose average and worst-case (outage) per-
formance—even when the number of receivers is relatively
large—is significantly better than that of approaches that do
not exploit channel information.

II. SYSTEM AND CHANNEL MODEL

We consider a narrowband system with an-element
transmitter antenna array and receiver antennas. At one
extreme, each of these antennas may be associated with a
distinct receiver. Or, at the other extreme, they may correspond
to an -element suitably spaced antenna array for a single
receiver. Regardless of the number of receivers, we assume a
broadcast scenario in which a common message is transmitted
to all (using potentially different symbols at each of the
antenna elements).

As the associated channel model, the complex baseband
received signal at theth receive antenna is the noisy su-
perposition of the transmitted symbols ,
each attenuated and phase-shifted by a complex coefficient
representing the fading encountered between transmit antenna

and receive antenna, i.e.,

(1)

This fading model can be derived from the effects of multiple
copies of the signal arriving at the receiver at slightly different
times due to reflections off of objects in the transmit path [8],
under the assumption that the delay spread of these arrivals
is less than the symbol duration. Moreover, we consider
Rayleigh fading, whereby the are modeled as zero-mean,
identically distributed circularly symmetric (or “proper” [18])
Gaussian random variables, and assume that all antennas and
the constituent elements are sufficiently spatially separated that
the are all mutually independent. We use to denote the
(common) variance of each of the ’s. Finally, in (1),
at each receiver captures both receiver noise and cochannel
interference, and is modeled as circularly symmetric zero-
mean white Gaussian noise of variance, independent for
each .

For future convenience, we collect the channel parameters
for the th receiver into an -dimensional complex vector ,
i.e.,

(2)

For the special case , we adopt the simpler notation
.

We assume throughout that all channel parametersare
perfectly known at the respective receivers. While unrealistic
in practice (since such parameters generally must be estimated
from the received waveform), this assumption allows us to
isolate the impact on system performance of different degrees
of knowledge about the channel at the transmitter, which is
the focus of the paper.

The Rayleigh model described above is most appropriate
when the transmitting array is cited near many local RF
scatterers, as is typically the case indoors [25]. The model
also applies, for example, to an outdoor array in an urban
setting when communicating with street-level users. The min-
imum required spacing of the antenna elements depends on
the RF environment; less than one wavelength may suffice
indoors, while an outdoor array may require 20 wavelengths
or more [11].

Because the channel parameters are random, system per-
formance whether measured by SNR or mutual information
is also a random variable. However, although the channel
parameters can remain essentially constant over transmission
intervals of reasonable duration in practice, ergodic fluctu-
ations are generally experienced over sufficiently long time
scales. In such cases, then, expected SNR or expected mutual
information provide the corresponding measures of average
performance of interest in such systems. And it is these
measures upon which we will focus.3

As we will see in Section III-A, the expected SNR
obtained at receiver in such systems is

determined by the system designer’s choice of the second-
moment statistics of the complex channel input vector

(3)

To maximize expected SNR, the designer need only determine
the complex correlation matrix

(4)

appropriate for the available side information.
When expected mutual information is the performance

metric, it is straightforward to verify that optimum perfor-
mance is achieved by a Gaussian input that is zero-mean and
circularly symmetric [16]. The input distribution is likewise
characterized by (4) in this case.

We therefore focus our attention throughout on the correla-
tion matrix and its properties in different scenarios. Among
other properties, the rank of conveys important informa-
tion: observe that a system can be viewed as implementing
beamforming (to some location) whenever has rank 1.
Finally, we constrain the total transmitted power according

3Exploiting the smallz approximationlog(1 + z) � z, we obtain at low
SNR that

E[log(1 + SNRl)] � E[SNRl]:

As a result, we can also view maximizing expected SNR as effectively
maximizing the rate of reliable communication in coded systems in this SNR
regime.
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to , which is conveniently expressed in
terms of as

tr (5)

III. POINT-TO-POINT TRANSMISSION

WITH PARTIAL SIDE INFORMATION

For an -element transmit antenna and single-element
receive antenna ( ), we consider two different and fairly
general models for the partial side informationabout the
channel available to the transmitter. Collectively, these two
models capture the salient features of practical systems that
employ side information obtained via feedback or other means.

In one case, this side information takes the form of a random
vector

(6)

where each represents a noisy measurement or estimate
of the corresponding . We consider the case in which
the pairs for are independent,
identically distributed (i.i.d.) and each jointly circularly sym-
metric Gaussian. With denoting the (common) variance
of each of the ’s, the complex correlation coefficient

then provides a complete description of the
dependence between and .

Among other properties, these conditions imply that the
posterior mean and correlation4 of take the form

(7)

(8)

where denotes the identity matrix. As will
be apparent from our development, our results apply more
generally to vectors with any distribution such that (7) and
(8) hold.

As an alternative model for partial side information that
is matched to other classes of practical systems, we also
consider the case in which is an -bit description of the
vector obtained via some quantization process. This scenario
arises naturally when a dedicated digital feedback channel with
limited bandwidth exists from receiver to transmitter. When
is large and the quantization is appropriately chosen, the two
models are often effectively equivalent.

A. Optimization of Expected SNR

Since the SNR of the received signal is , the
signal design problem given side information can be
expressed as one of choosing the input correlation matrix
to maximize

SNR (9)

subject to the power constraints (5).

4Note that we distinguish correlation from covariance and use the former
in what follows.

Substituting (4) into the numerator of (9) and interchanging
the order of expectations to obtain

SNR (10)

in terms of the posterior channel correlation matrix , we
see that the optimum input correlation matrix is the one that
maximizes a quadratic form. As is well known, the maximum
occurs when , where is the (normalized) principal
eigenvector associated with the principal (largest) eigenvalue

of , and where has second moment .
The rank-one correlation matrix therefore attains
the maximum achievable performance,SNR .
Equivalently, the optimum SNR is achieved by beamforming
in a direction determined by the eigenstructure of the posterior
channel correlation matrix.

It is worth stressing that beamforming is not always nec-
essary, however. When the largest eigenvalue is not unique,
correlation matrices of higher rank can also achieve the
optimum SNR. For example, whenis independent of , i.e.,
when provides no information about the channel parameters,
then all eigenvalues equal and a scaled identity matrix can
be used for .

In what follows, a convenient parameter that allows schemes
that exploit side information to be evaluated and related is the
enhancement in expected SNR provided by the channel side
information, which we denote by

expected SNR given side information
expected SNR without side information

(11)

1) Noisy Side Information:Having shown that expected
SNR is optimized by beamforming, we now solve explicitly for
the beamforming weights and the corresponding performance
when the side information has the form (6). From (8), it is
straightforward to verify that the principal eigenvalue and
eigenvector are given by

(12)

Thus, regardless of how distorted a representation the side
information is of the actual channel parameters, beamforming
to the location implied by the noisy side information is
optimum. The transmission paths combine coherently at the
true receiver location if and only if the side information is
perfect ( ). When , imperfect combining takes
place, as reflected in the resulting maximum expected SNR

SNR (13)

As (13) reveals, the SNR enhancement factorincreases
monotonically from one to as the transmitter ranges from
having no knowledge of the channel parameters ( ) to
perfect knowledge ( ). Consistent with the discussion in
Section III-A, when , any correlation matrix with trace

achieves the same performance.
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2) Quantized Side Information:We now consider the case
in which the side information consists of an-bit description
of and explore how these bits should be chosen as a
function of to optimize expected SNR. The key problem
is equivalent to that of vector quantization. The quantizer
divides the space of channel vectors into regions

, and, for each region, the transmitter se-
lects the transmission strategy that maximizes expected SNR.

Since the optimal strategy involves beamforming in the di-
rection implied by the principal component of

, the Lloyd algorithm [6] can be used to find a locally op-
timal set of quantization regions. In particular, given an initial
partition , the algorithm determines the
corresponding antenna weights that maximize
expected SNR. Then, given these weights, a new partition is
formed by associating each possiblewith the direction that
produces the largest SNR (breaking ties arbitrarily)

for all (14)

Each iteration either increases or leaves unchanged the ex-
pected SNR; the algorithm repeats until the expected SNR
converges.

The power constraint at the transmitter requires the beam
directions to have equal norm. Thus the partitioning rule
(14) depends only on the direction of, not on its norm.
Furthermore, when the components ofare i.i.d. Gaussian,
the norm of remains independent of its direction even after
conditioning on an event . In effect, we are quantizing
the surface of the complex unit hypersphere using the special
metric , which we emphasize has characteris-
tics very different from the more familiar Euclidean distance.

The power constraints ultimately mean that only
of the real channel parameters need be quantized, e.g.,
the relative magnitudes and phases of any of the
complex coefficients.

i) Example— transmit antenna elements:This
algorithm can be used with any number of antenna elements;
for the purposes of illustration we describe the associated
results in the case , for which the maximum possible
SNR enhancement factor is . The
relevant degrees of freedom can be expressed in terms of two
angles: the relative magnitude and the
relative phase .

In this scenario, typical random initial conditions lead to a
quantization strategy with the behavior illustrated in Fig. 1.
As this figure reflects, the SNR gap between perfect and
no side information falls exponentially in the number of
bits of side information. In particular, each additional bit of
side information effectively halves the gap to the maximum
possible SNR enhancement factor, i.e., .

Interestingly, the SNR enhancement factor of
shown in Fig. 1 for the specific case can also be
obtained by either of two simple quantization strategies: the
bit indicates whether or (i.e., the sign
of ), or the bit indicates the sign of ,
where the relative angle ranges from to . For

Fig. 1. Gap between perfect side information andN bits of side information
using randomly generated initial partition regions.

Fig. 2. Quantization regions and codebooks obtained via the Lloyd algo-
rithm. The jagged region boundaries are an artifact of the approximations
resulting from the discretization of the�–� sample space.

, however, the performance of schemes generated from a
randomly initialized Lloyd algorithm cannot be matched with
simple heuristically developed quantization strategies [16].

A typical resulting vector quantizer for is shown
in Fig. 2. The jagged region boundaries are an artifact of
the numerical discretizations in the implementation of the
algorithm. The fact that the quantization regions are smaller
in the middle than near the edges reflects, in part, that points
in the middle of the – space as drawn in Fig. 2 are more
probable than those near the edges.

ii) Suboptimal strategies for antenna elements:
Heuristic quantization strategies can often be employed ef-
fectively in some scenarios as an alternative to strategies
generated by the Lloyd algorithm. These are particularly
appealing for large since the computational requirements
of the Lloyd algorithm increase rapidly with .
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One is a transmitter-based selection diversity strategy,
whereby bits of side information specify which
of the antenna elements is associated with the largest
gain; the transmitter then uses this element exclusively. The
performance of transmitter selection diversity is determined by
the probability density of the gain of the element with highest
gain, which is the maximum of independent Rayleigh
gains, i.e., . The resulting SNR
enhancement factor is [8]

(15)

which is well-approximated by when is large.
Hence, with this form of side information, SNR enhancement
is effectively proportional to the number of bits of side
information.

An alternative is a transmitter-based strategy realizing
equal-gain combining, whereby bits of side information
specify one bit of information about each of the relative phases
of the channel coefficients. In particular, the side information
specifies the sign of the principal value of the relative angles

, for .
To compute the SNR enhancement achieved by this scheme,

we first note that the posterior density of each
is given by, for

sgn sgn

otherwise
(16)

from which we see , ,
and . Thus, the associated SNR enhance-
ment factor follows as

(17)

As in the case of transmitter-based selection diversity, the SNR
enhancement is also roughly linear in the number of bits of side
information, although the number of bits required per antenna
element and the resulting performance are significantly larger.

3) Asymptotic Results—Large and : When the num-
ber of bits and the number of antennas is large, we can
use rate distortion theory to heuristically relate the quantization
results in Section III-A-2 to the results on correlated side
information in Section III-A-1, thereby gaining insight on the
achievable performance of the vector quantizer.

Rather than directly pursuing a vector quantizer that maxi-
mizes expected SNR, assume instead thatbits are used to
describe the complex -vector using a vector quantization
codebook that minimizes mean squared error

(18)

where is the codeword used to represent.
Unlike the absolute inner product metric , squared

Euclidean distance is a per-letter distortion measure. Rate
distortion results therefore apply. Since the components of

are i.i.d. complex Gaussian with variance, the mean squared
error is lower-bounded by the corresponding distortion-rate
function, i.e.,

(19)

where is the number of descriptive bits per
antenna element. Holding constant, this lower bound can
be approached arbitrarily closely as .

When is large, the quantization error
may be modeled as a zero-mean Gaussian random vector,
independent of , with i.i.d. components each having variance

. Under this assumption, has the same form as the
side information considered in Section III-A1, where the
correlation between and is

(20)

Therefore, for large , from (13) the increase in expected
SNR achieved by using bits to describe the channel coeffi-
cients to minimize mean-square error is roughly

(21)

The factor of gap between perfect and zero side information
decreases exponentially with .

Recall from Section III-A2i that vector quantization for
also reduced the gap between perfect and zero

side information exponentially with . In particular, the
reduction was proportional to . The estimate (21) for

instead gives a reduction proportional to . This
result is overly pessimistic for two reasons. First, minimiz-
ing mean-squared error rather than maximizing the absolute
inner product needlessly quantizes the absolute phases

instead of the relative phases
, , , . Second, from

our previous results, there is no need to quantize the norm of
. The combination of these two effects is to quantize

real parameters instead of . We expect the difference
between the performance of the empirically trained vector
quantizer and the rate-distortion approximation to be small
when is large.

B. Optimization of Expected Mutual Information

Since the mutual information of the channel is
, the signal design problem given side infor-

mation can be expressed as one of choosing the input
correlation matrix to maximize

(22)

subject to the power constraints (5).
In general, this optimization is less tractable than that corre-

sponding to the SNR criterion. However, it is straightforward
to show that for the mutual information criterion—unlike for
the SNR criterion—beamforming is not always optimum.

In particular, as developed in [14] and [15], when the
side information provides no information about the channel
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parameters, the expected mutual information satisfies

(23)

with equality holding if and only if . Since
this matrix obviously has full rank, beamforming cannot be
used to achieve channel capacity.

There are scenarios, however, in which capacity is achieved
via beamforming. For example, when the side information
provides the transmitter with perfect knowledge of channel
parameters, it is straightforward to show that the mutual
information satisfies

(24)

with equality holding if and only if ,
i.e., if and only if the transmission paths combine coherently
at the receiver.

Novel coding schemes that generate vector-valued channel
symbols, such as those developed in [24], are needed to
achieve the performance gains afforded by input correlation
matrices of rank greater than one. As shown in [15], the
cost of using a rank 1 correlation matrix when a larger rank
is optimal can be as high as 0.833 bits per channel use.
However, results in Section III-B1 confirm the conjecture in
[15] that this gap decreases to zero as the quality of the side
information increases, so that SNR-based design and mutual
information-based design become equivalent.

It is difficult to develop fully general necessary and suffi-
cient conditions for when beamforming is a capacity-achieving
strategy. We develop partial answers again in the cases of our
two models for side information.

1) Noisy Side Information:One approach to analyzing the
scenario in which the side information takes the form of
the vector (6) involves exploiting the diagonalization

, where is unitary and is diagonal, and expressing
in innovations form, i.e., , where

and where

(25)

is independent of and has i.i.d. Gaussian components each
with variance . This allows the optimization
to be expressed in the form

(26)

In the remainder of this section we use this formulation to
develop a condition under which beamforming is optimal for
a transmitter antenna array with elements. For ,

expanding the quadratic in (26) and exploiting that and
are identically distributed we can write the optimization in the
form as shown in (27) at the bottom of the page.

Both and in (27) can each be described via a single
parameter. We can use the parameterization

(28)

in terms of a scalar because all the numerator terms
in (27) have distributions that are independent of the phases
of the components of . The parameter describes the
principal eigenvector of ; the larger , the more closely this
eigenvector is to being aligned with the beamforming direction
associated with the side information. Likewise, we can write

(29)

in terms of a single parameter . The parameter
describes how much power is transmitted in the direction of
the principal eigenvector; the closer is to one, the better
beamforming approximates the optimum solution. Moreover,

corresponds to an exact beamforming solution.
The optimization problem (27) now reduces to

Re

Re (30)

where Re and Im denote the real and imaginary parts,
respectively, of their arguments.

Note that the optimum parameters are generally not unique:
if achieve (30), so do . Hence, it suffices
to restrict our attention to the range .

In general, the optimization (30) can be performed numeri-
cally, and simulations of this type confirm that the maximum is
achieved when , as intuition suggests. Assuming
is optimum more generally, we can derive a sufficient condi-
tion on the side information quality metric for beamforming
to be optimal.

We begin by introducing some simplifying notation. Let
and . With , the maximum

expected mutual information is

(31)

where Re Im and
Re Im .
The following general result, proved in the Appendix,

characterizes the behavior of (31) using easily computed
second moment properties of and .

(27)
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Fig. 3. Regions where a rank 1 (beamforming) or rank 2 (not beamforming)
input correlation matrix maximize expected mutual information, as a function
of the SNR~� = Ek���k2Es=N0 and the side information qualityj�j.

Lemma 1: Let and be independent nonnegative ran-
dom variables with nonzero variance. Then a sufficient con-
dition for the maximum in (31) to be achieved at
is

(32)

In other words, if the mean of is greater than the mean
of (i.e., if ) and if the variance of is not too
large, a rank 1 correlation matrix maximizes expected mutual
information. To convert this into a condition on is a matter
of some algebra.

The random variable is a noncentral distribution with
two degrees of freedom. Its mean and variance [10] are

(33)

Similarly, the expected value of is

(34)

Substituting (33) and (34) into (32), defining
, and using both and

yields the following sufficient condition for ensuring
that the maximum expected mutual information occurs at

:

(35)

For , this cubic polynomial in is positive between
one and its greatest root less than one, which we denote by

.
The solid line in Fig. 3 indicates as a function of .

When is above this line, beamforming maximizes expected
mutual information. For comparison, the dashed line indicates
the result of a numerical search for the critical values of
below which a rank 2 correlation matrix yields greater
expected mutual information than a rank 1 matrix. The bound

(35), though not tight, has the same characteristic shape as the
numerical results.

2) Quantized Side Information:The approach used in
Section III-A2 to design an -bit vector quantizer to
maximize expected SNR can also be used to maximize
expected mutual information. A difficulty with this approach is
that there appears to be no simple expression for the correlation
matrix (of rank greater than 1 in general) that maximizes
expected mutual information as a function of the region shape

. A numerical search for makes the Lloyd algorithm
computationally burdensome. Some suggestive results about
the behavior of the Lloyd algorithm can, however, be obtained
for the special case of antennas and bits.

The correlation matrix can be parameterized as

(36)

where , , and . Two natural
possibilities for the side information are i) designating the
antenna with the larger gain and ii) specifying whether the
relative phase is between and zero or between zero and

. In the remainder of this section, we show that rank 1
correlation matrices are optimal in both cases.

Expanding yields maximum expected mutual in-
formation

(37)

where . If is chosen to specify the larger
gain antenna, is uniformly distributed between and
and is independent of , . By Jensen’s inequality, the
expectation over in (37) is maximized by choosing .
The problem thus reduces to

(38)

If specifies , the expected mutual information is
monotonically increasing with and is thus maximized when
all energy is radiated from the first antenna. For ,
the maximizing is zero, and all energy is radiated from the
second antenna. This solution, which is equivalent to selection
diversity, is thus a stationary point of the Lloyd algorithm.

If, instead, is used to provide one bit of information
about the relative phase , can be chosen to keep

between and , so that the cosine term in (37)
is always positive. Therefore, to maximize expected mutual
information, should be as large as possible: . Assume
without loss of generality that . Averaging (37)
over and , which are Rayleigh distributed,
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yields

(39)

The maximum is found by setting the derivative of (39) with
respect to equal to zero as shown in (40) at the bottom of
the page. By symmetry, (40) is satisfied at . Evaluating
the second derivative confirms that this is indeed a maximum.
The resulting correlation matrix is again rank 1.

Thus, for and , the same partitioning schemes
and rank 1 correlation matrices yield local maxima of the
Lloyd algorithm for both expected mutual information and
expected SNR. However, as we would expect from the results
in Section III-B1, for other cases rank 2 correlation matrices
may be optimal.

IV. BROADCAST TRANSMISSION

WITH PERFECT SIDE INFORMATION

The problem of point-to-point transmission with partial side
information is closely related to the problem of broadcast
transmission, as we now develop. We explore the problem of
transmitting a single message to receivers simultaneously
using an -element transmit antenna array given complete
channel knowledge at the transmitter. Moreover, we focus on
expected SNR as a performance metric for the purposes of
illustration, though we remark in advance that, as in earlier
parts of the paper, the ideas extend naturally to the mutual
information metric, though the analysis is less tractable.

For point-to-point transmission, we established the optimal-
ity of beamforming given side information for optimizing
received SNR. In broadcast scenarios, it is generally not
possible to simultaneously beamform to multiple receivers, so
not every receiver can experience performance equivalent to
that of point-to-point systems. Phrased differently, the need to
share a message with multiple receivers in general reduces
the average received SNR, where the average is over all
receivers. Neverthless, as we will see, beamforming in an
appropriately chosen direction that depends on the collective
channel parameters can significantly enhance the performance
of a broadcast system relative to one whose transmitter ignores
the channel information.

In this section we explore the design of such systems
and examine the manner in which achievable performance
degrades as the number of receivers increases (and there-
fore knowledge of the channel parameters at the transmitter
becomes less useful).

In the sequel, it is convenient to describe the set of received
signals in vector form

(41)

where

(42)

is the channel noise vector whose components are i.i.d., and
where is the matrix of channel parameters

(43)

with as given in (2). The vectors for different receivers
are independent. We restrict all the channel coefficients
to have a common variance , which corresponds to all
receivers being at similar distances from the transmitter;
extensions to more general scenarios are possible but are
beyond the scope of the present paper.

A. Broadcast Performance Frontier: Transmitter
Operating Characteristic

When there are multiple receivers corresponding to dis-
tinct users, the transmitter has conflicting objectives, since
maximizing one receiver’s SNR is typically at the expense
of the SNR’s of the remaining receivers. Nevertheless, as
we now develop, there is a convenient way to describe the
tradeoffs available to the transmitter and to assess whether
the transmitter is operating efficiently. In particular, when the
transmitter input correlation matrix is selected, there is an
associated pointSNR SNR SNR in -dimensional
“SNR-space” that describes the associated SNR’s experienced
at the receivers in the system. Moreover, given the transmitter
power constraint, there is a well-defined surface that defines
the boundary of those points that are attainable in SNR-
space. We refer to this frontier of achievable points as the
“transmitter operating characteristic” (TOC) for the realized
channel and power constraint. As will become apparent, a
transmitter operates efficiently if and only if it results in an
SNR vector lying on the TOC.

To develop and illustrate these ideas further, we restrict our
attention to the case of two receivers . Then the TOC
is defined as the set of pointsSNR SNR for which SNR
is maximized subject to a constraint of the form SNR ,
for various prescribed thresholds.

It is straightforward to verify that the curve in SNR-space
formed by this set of points has some equivalent characteri-
zations that emphasize its universality. As one example, the
same curve is obtained by maximizing SNRsubject to an
analogous constraint on SNR. As another example, the same
curve is obtained as the locus of points obtained when the input

(40)
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correlation is chosen so as to maximize the weighted sum of
the constituent SNR’s, i.e., an objective function of the form

SNR SNR (44)

with various nonnegative weights and , again subject to
the system power constraint.

These various characterizations are collectively useful both
in developing key properties of this curve, as well as in its nu-
merical evaluation. For example, the former characterizations
imply that the two pairs

(45)

which correspond to beamforming directly to each of the first
and second receivers, respectively, must lie on the TOC. This
follows from the fact that one of the receivers experiences the
maximum possible SNR in each case, i.e., all achievable SNR
pairs must lie somewhere within the rectangle SNR

, SNR .
The weighted SNR characterization can be used to establish

that all points on the TOC are achieved by beamforming
toward some location. To see this, note that via an approach
analogous to that used in Section III-A, the optimum is
that maximizing

(46)

subject to the power constraint (5), where diag .
Thus, the weighted sum of SNR’s is maximized by beam-
forming, where the appropriate antenna weight vector is the
principal eigenvector of .

The TOC curve for a particular channel realization and
power constraint is depicted in Fig. 4. The two circles “”
correspond to the points (45), and the two dashed line segments
that connect them to the axes are also achieved by the same
respective beamforming solutions. As we would expect, the
TOC must be convex: points on a line segment connecting any
two points on the TOC can be achieved by a timesharing strat-
egy, which cannot be better than the optimum beamforming
strategy.

The operating points corresponding to other performance
criteria of interest can also be developed from the TOC.
For example, it is often desirable to maximize theminimum
performance among receivers—thereby ensuring that both
receivers achieve a sufficient quality of service—which is
achieved by operating at the intersection of the TOC with the
line SNR SNR ; in Fig. 4 this point is indicated via the
symbol “ .” In scenarios where the line does not intersect the
curve, we operate at the nearest of the points (45). In other
cases, maximizing theaverage(or, equivalently, total) SNR
over all receivers is more appropriate. This is achieved by
operating at the point where the TOC has slope1; in Fig. 4
this point is indicated via the symbol “,” and corresponds to
weights in (44) satisfying . For both of these criteria,
there are natural extensions for .

Fig. 4. A typical transmitter operating characteristic (TOC) for a ten-element
transmitter antenna array broadcasting to two receivers and�2

�
Es=N0 = 1.

SNR pairs are achievable if and only if they lie on or inside the TOC. The
symbols “�” denote solutions corresponding to beamforming to one of the two
receivers; the symbol “5” denotes the point of maximum worst-case SNR
among receivers; the symbol “” denotes the point of maximum average of
the two received SNR’s.

While the solution that optimizes the worst-case SNR is
often of most interest in practice, its performance is gen-
erally difficult to analyze. In contrast, optimizing average
SNR is highly tractable, but can lead to solutions in which
performance among receivers is uneven, with some receivers
experiencing excellent SNR at the expense of others. However,
this solution does provide an upper bound on achievable
average per-receiver performance and can be interpreted as
maximizing worst-case time-averaged SNR among receivers
when the receivers are in motion. If such moving receivers
undergo ergodic variations in the channel parameters when
such a strategy is used, then each of thereceivers will
achieve an equal share of the maximum total time-averaged
SNR across all receivers. Additionally, in a scenario where
the multiple receive antennas correspond to a single receiver
in which maximal ratio combining [8] is used, this solution
leads to maximum received SNR. In the sequel, we therefore
focus on the maximization of average SNR.

B. Optimizing Average SNR Per Receiver

Analogous to the corresponding quantity in the point-to-
point problem, it is convenient to define an SNR enhancement
factor in the broadcast problem. This enhancement factor is
the additional average SNR per receiver obtained by tailoring
the transmission strategy to the finite receiver population rather
than assuming an infinite receiver population and ignoring the
available side information

average SNR with finite receiver population
average SNR for infinite receiver population

(47)
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Fig. 5. Expected average SNR enhancement per receiver
 (over average
SNR per receiver for an infinite receiver population) for anM -element
transmitter antenna array broadcasting toL receivers.

The expected receiver-average SNR enhancement is .
As we will see, ranges from one to as the number of
receivers decreases from to one.

From Section IV-A, we see that we can maximize average
SNR per receiver by beamforming in the direction correspond-
ing to the principal eigenvalue of , and
that the corresponding achieved average SNR per receiver is
given by the largest eigenvalue of (or, equivalently,

). Since is a random matrix, the achievable
average SNR is a random variable.

As , we have, via the strong law of large numbers

(48)

independent of the realized channel parameters. Hence, for
the infinite receiver population beamforming in any direction
maximizes average SNR per receiver, and this optimality is
achieved without the transmitter having access to the channel
parameters. Moreover, from (48) we see immediately that
the resulting average SNR per receiver in this case, i.e., the
denominator of (47), is , again independent of the
realized channel.

For modest numbers of transmitter antenna elements and
receivers, the expected value of the numerator of (47) can
be determined from Monte Carlo simulations, from which the
expected SNR enhancementfollows. This enhancement is
depicted as a function of the number of target receivers in
Fig. 5 for several transmitter array sizes. As we would
expect, each of the SNR curves in Fig. 5 asymptotically
approaches an SNR enhancement of unity as the number
of receivers increases. However, as the figure reflects, this
convergence is very slow; even in an receiver scenario,
each additional antenna element provides a significant SNR
enhancement.

To develop the SNR enhancement characteristics further,
we exploit that the matrix then has a complex Wishart
distribution [13] when ; when , it is the matrix

Fig. 6. Expected average SNR enhancement per receiver
 for various
values ofM=L. The solid line shows the deterministic (� = 
) asymptotic
values for a transmitter antenna array withM elements broadcasting to
L!1 receivers with the ratioM=L held fixed. The dashed curves denote
representative points corresponding to finiteM andL for L = 4 (“ ”) and
L = 8 (“5”).

that is Wishart distributed. Thus, the SNR enhancement
is completely specified by the largest eigenvalue of a Wishart

distributed matrix.
When and approach infinity in such a way that the ratio

of transmitter antenna elements per receiver approaches
a positive constant, then the largest eigenvalue of (and
hence average SNR per receiver) can be shown to converge
almost surely to [2], [4], [21]

(49)

and thus

(50)

This asymptotic SNR enhancement behavior is shown by
the solid curve in Fig. 6, from which we see that the SNR
growth is effectively linear in the antenna/receiver ratio
for even modest ratios. Moreover, when the number of antenna
elements is significantly larger than the number of receivers

, there is a gain of approximately 3 dB in SNR for every
doubling of . We stress that the limit in (49) is no longer
random: it does not depend on the realized channel parameters,
so .

It is also worth emphasizing that a ratio of
corresponds to a scenario in which grows much more
slowly than , i.e., . A special case corresponds to
using a fixed number of transmit antenna elementswhile
allowing the number of receivers to increase to infinity.
Consistent with our earlier analysis, this ratio leads to a
deterministic SNR enhancement of unity.

Also shown in Fig. 6 is the expected SNR enhancement for
representative scenarios involving antennas with finitely many
elements and finite receiver populations (using Monte Carlo
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simulations). As the plot reflects, the asymptotic behavior (49)
is approximated reasonably closely for even moderate values
of and . Indeed, as Figs. 5 and 6 reflect, for a ratio of
one transmitter antenna element per receiver ( ),
for example, expected SNR enhancementincreases from
one to approximately three as increases from one to
eight, achieving about 75% of the asymptotic performance of
four shown in Fig. 6. Fig. 6 also demonstrates that the rates
at which SNR grows with the number of antenna elements
is closely approximated by the asymptotic results even for
moderate values of and ; for example, with
receivers, the additional SNR enhancement added by each
of the eighth and ninth antennas is approximately 90% of
the value suggested by the asymptotic curve at a ratio of

.
For finite values of and , the SNR enhancement

is a random variable whose value depends on the realized
channel. If more accurate performance statistics are desired
than the asymptotic assumptions can provide, it is possible to
calculate the probability distribution of the possible values the
SNR may take on. In particular, the joint distribution of all
the eigenvalues of the normalized Wishart matrix
is [2]

(51)

where

denotes the usual Gamma function. Following Edelman [2],
the density of the largest eigenvalue (the SNR enhancement
) can be computed by integrating over all but one of the

and dividing by to remove the arbitrary ordering
of the eigenvalues. When , the resulting probability
density for the SNR enhancementis shown in (52) (found
at the bottom of the page) where

(53)

is the incomplete Gamma function. From these probability
functions, it is possible to numerically calculate detailed
statistics over the ensemble of possible channels. For exam-
ple, Fig. 7 depicts the corresponding cumulative distribution
function—the probability that average SNR per receiver falls
below a particular threshold—for antenna elements
for various numbers of receivers. As we would expect,
the curves become less dispersed as the number of receivers
increases, i.e., the average performance per receiver becomes

Fig. 7. Cumulative distribution for average SNR enhancement per receiver�

for transmit antenna array withM = 2 elements broadcasting toL receivers,
whereL = 1; 2; 4; 8, and1.

less random and we approach the deterministic asymptotic
behavior. Other useful statistics concerning average SNR per
receiver for specific and such as the expectation and
variance can be readily computed from probability densities
as shown in (52).

C. Individual Receiver Performance

While the average SNR per receiver performance metric
is a useful characterization of overall system performance,
it does not reflect the SNR behavior experienced by any
individual receiver in the system. In this section, we show that
from an individual receiver’s perspective, taking into account
the channel parameters and beamforming as dictated by the
average SNR criterion is preferable to ignoring the channel
parameters—effectively assuming an infinite receiver popula-
tion—even when the number of receivers is reasonably large.

To determine the performance of an individual receiver, we
exploit the singular value decomposition

(54)

and let denote the first column of , corresponding to the
largest singular value. The SNR of the first receiver, which we
consider without loss of generality, is then

SNR (55)

where is the upper left entry in the matrix , and where,
when for example, is as given by (52). Since is
a random circular unitary matrix [23], the probability density
of is (see, e.g., [15])

otherwise.
(56)

(52)
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Fig. 8. Cumulative distribution for any particular receiver’s SNR enhance-
ment (over average SNR per receiver for an infinite receiver population) when
using a transmitter antenna array withM = 2 elements to broadcast toL
receivers, whereL = 1; 2; 4; 8, and1.

The distribution for SNR can be readily computed since
random variables and in (55) are independent—the
principal eigenvector of has no preferred direction. In
the limiting case of and finite, it is straightforward
to verify that SNR has the same exponential distribution as
if side information had been ignored when transmitting to an
arbitrary number of receivers.

The resulting cumulative distribution function of a particular
receiver’s SNR for and several values of is shown
in Fig. 8. As this figure reflects, outage probability—i.e., the
probability that a receiver’s SNR drops below some pre-
scribed threshold—increases monotonically with the number
of receivers, and that there is a significant outage difference
between even an eight-receiver population and the infinite
population case. Thus, in terms of both average and worst-case
performance, transmission strategies that take into account the
channel parameters according to the average per-receiver SNR
criterion perform uniformly better than those that do not.

V. CONCLUSIONS

We have quantified the limits on system performance of
a transmitter array that uses either partial side information
to transmit to a single user or perfect side information to
broadcast to a set of users.

For the point-to-point scenario with side information, beam-
forming in a direction determined by the eigenstructure of the
posterior channel correlation matrix maximizes expected SNR.
If the side information has the form of random variables,
representing noisy estimates of channel coefficients, the
improvement in expected SNR over a system without side
information increases to quadratically in the correlation co-
efficient . Given bits of side information, the transmitter
can follow a vector-quantization-based approach to determine
a locally optimal transmission strategy. For the case of
antennas, each additional bit of side information effectively
halves the gap to the maximum possible SNR enhancement of

. Also, for large and large , the gap between perfect and
zero side information decreases exponentially in the number
of bits of side information . Though a general analysis for
other values of is considerably more cumbersome, a scheme
using bits of side information provides an increase
in an expected SNR logarithmic in , and a scheme using

bits of side information produces an expected SNR
improvement linear in .

For sufficiently high quality side information, beamforming
also maximizes mutual information. However, beamforming is
not always optimal. For example, if the correlation between the
side information and the true channel parameter is below 0.5,
beamforming is suboptimal for channel SNR ( )
greater than two. In such cases, more complex coding schemes
may be used to achieve additional performance gains.

For the broadcast scenario, we considered the conflicting
objectives inherent in transmitting to several receivers and
introduced the “transmitter operating characteristic” as a useful
tool in evaluating actual broadcasting schemes with respect
to such objectives. From this characteristic, the frontier of
operating points corresponding to SNR-based optimization
criteria is easily identified.

We developed schemes for transmission to finite receiver
populations and evaluated them relative to the performance of
transmission schemes that assume an infinite receiver popula-
tion and therefore ignore the channel parameters that constitute
side information. In particular, we examined schemes that
optimize average received SNR per receiver and used an
expected SNR enhancement factoras a measure of the
improvement in system performance obtained by explicitly
taking into account the finite receiver population over the
corresponding system designed for an infinite receiver pop-
ulation. As we saw, the expected SNR enhancementwas
significant even for relatively large receiver populations.
Specific degrees of SNR enhancement obtainable in systems
of practical size could be efficiently predicted from asymptotic
results we derived, which demonstrated approximately linear
growth in SNR with the number of antenna elements.

Finally, while SNR enhancement per receiver is a measure
of overall system performance, we showed that the schemes
we developed for finite receiver populations are also sig-
nificantly better than the corresponding systems for infinite
receiver populations from an individual receiver’s perspective.
In particular, we showed that outage probabilities increase
uniformly with the size of the receiver population, so that
explicitly taking into account side information in the form of
channel parameters also enhances both the average and worst-
case performance experienced by individual users. Systems
with transmission strategies more closely related to minimizing
individual receivers’ outage probabilities than those explored
in this paper will result in an even greater gain in worst-
case performance and are an area of current research; for
preliminary results, see, e.g., [12].

Many interesting and important problems remain. As one
example, in scenarios where the antennas are too closely
spaced or where the RF environment has few scatterers, then
the amplitudes of the components ofcan become correlated;
see, e.g., [1]. In this case, however, an uncorrelated model for
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the phases may still apply. We have not analyzed a randomized
phase model in detail, but we anticipate qualitatively similar
results to those that hold under a Rayleigh model. More
complex models of correlation between array elements remain
an area for future study.

APPENDIX

PROOF OF LEMMA 1

Define as the expected mutual information

(57)

We first show that is strictly concave in by establishing
that the second derivative is strictly negative

(58)

(59)

The inequality is strict because and are independent
random variables with nonzero variance. Consequently, the
maximum of occurs at if the first derivative

at . Evaluating the first derivative at we find

(60)

(61)

(62)

Thus, the maximum occurs at if and only if

(63)

We can upper bound using methods suggested
in [22, Lemma 1]. Because the third derivative of
is negative, the maximum of over all random
variables with , mean , and second moment

is achieved by a two mass point distribution

.

(64)

Therefore

(65)

(66)

Using this upper bound in (63) yields the sufficient condition
of the lemma.
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