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ABSTRACT

We explore the application of chaotic sequences for en-
coding and transmission of analog sources over channels
with unknown or multiple signal-to-noise ratios, as oc-
cur in broadcast and fading scenarios. Lower bounds on
the mean-square distortion are derived for codes based on
so-called tent-map dynamics, and are compared with those
of other| codes. For additive white Gaussian noise channels,
we show there always exists a power-bandwidth regime in
which this code yields lower distortion than any digital (i.e.,
finite-alphabet) code. We also develop and evaluate three
practical decoding algorithms for efficiently exploiting these
new codes on intersymbol interference channels.

1. INTRODUCTION

Among |many other interesting properties, chaotic systems
possess |the sensitivity to initial condition property, i.e.,
state trajectories corresponding to nearby initial states di-
verge exponentially fast. Although prediction of the future
states of a chaotic system is thus fundamentally difficult,
this sensitivity is actually advantageous in the estimation
of past states [1]. Hence, if one embeds information in the
initial state of a chaotic system, the resulting state sequence
forms a natural error correction code, where code sequences
corresponding to nearby initial states eventually separate.
It is this concept that we explore in this paper.

In particular, we explore the potential application of
chaotic sequences for joint source-channel coding of analog,
discretertime data. A traditional digital approach to this
communication problem has been to quantize the source
data and encode the quantized data using some suitable
channel code so that the quantized data can be recovered
with arbitrarily low probability of error. Although such
approaches can be optimal over additive white Gaussian
noise (AWGN) channels with known signal-to-noise ratios
(SNRs),| this separation of lossy source coding (quantiza-
tion) and channel coding is suboptimal when the SNR is
unknown or when there are multiple SNRs. Indeed, the
performance of these digital approaches depend crucially
on being able to choose the proper number of quantization
levels, which in turn depends on the SNR. See, e.g., Trott
[2] for a|discussion of several aspects of the suboptimality of
separate source and channel coding for the broadcast chan-
nel.
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There are a wide range of scenarios in which the need
to transmit data over a channel with unknown or multiple
SNRs is encountered. For example, in a broadcast con-
text, SNR typically varies from receiver to receiver. An-
other application involves low-delay communication over a
time-selective fading channel, where the SNR. fluctuates over
time in a manner that is unknown a priori. Motivated by
the knowledge that digital channel coding of quantized data
can be suboptimal in these situations, in this paper we ex-
plore the use of chaotic systems to implement analog codes
for the transmission of analog source data over channels
with unknown or, equivalently, multiple SNRs.

We consider first the coding of a uniformly distributed
source for the AWGN channel. For simplicity of exposition,
we restrict our attention to real-valued baseband channels;
extensions to more typical complex equivalent baseband
channels are straightforward. Fig. 1 illustrates the prob-
lem considered. The source letter zg has a uniform density
on the interval [—1,1] and is mapped into a sequence z[n]
of length N, i.e., we constrain the encoder to expand the
bandwidth by a factor of N. We also constrain the average
signal energy per dimension to be P:

1 N-~1
P:-N-ZE{x2[n]}. (1)

n=0

This sequence passes through an AWGN channel where the
noise win] has zero mean and variance ¢2,. Then, the SNR

is, therefore,

. P
SNR = - 2)

Finally, the decoder estimates zo from the channel output
y[0],--+,y[N — 1]. The source-channel coding problem we
consider is that of finding a code with small distortion for
a given SNR and bandwidth, where the distortion measure
of interest is mean-square error, E{(&o — %0)*}.
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Figure 1. Joint Source-Channel Coding of a Uniform
Source over an AWGN Channel

2. THE TENT MAP CODE

The proposed encoder maps each analog source “letter” to
a chaotic sequence generated from a nonlinear dynamical



system with the source letter as an initial value. Although
any of a variety of discrete-time chaotic systems is suit-
able for this purpose-—and all lead to the same qualitative
behavior—we will focus on the system whose dynamics are
governed by the symmetric tent map, for which efficient sig-
nal processing algorithms are readily available. With these
systems, the resulting chaotic sequences obey the following
one-dimensional dynamics

z[n] = F(z[n — 1)), ®3)

where

F(z)=1-2|z|. (4)
Specifically, the encoder maps the source letter zy into the
sequence z[n] = F((zo) where F(™(.) is used to denote
the n-fold iteration of the tent map. As discussed in [1], for
almost all zg, z[n] will be an ergodic sequence of random
variables uniformly distributed on the interval [—1,1].

We exploit three different but interrelated interpretations
of this tent map code.

1. The tent map code is the state trajectory of a chaotic
system (3) with the source letter zo embedded in the
initial state.

2. The tent map code is the superposition of less signifi-
cant bits in the quantization of z¢ on top of a BPSK
encoding of more significant bits.

3. The tent map code corresponds to nonlinearly mod-
ulating a set orthogonal sequences with the source
letter z¢. In this case the orthogonal sequences are
@i[n] = §[n — 4], 0 <i < N — 1. The nonlinear modu-
lating functions are F(9 (), so that

N-1
zfn} =" FO(zq)giln). (5)
=0

As we will see, each of these interpretations provide use-
ful and complementary insights into the performance of the
code.

Papadopoulos and Wornell have developed the maximum
likelihood (ML) estimator for such sequences in AWGN [1].
This estimator can be implemented as the cascade of a non-
linear recursive filter and corresponding smoother. The de-
coder for our tent map code is simply this ML estimator
followed by a sampler which samples the estimator output
at n = 0, giving the ML estimate of z;.

3. TENT MAP VS. DIGITAL CODING

In this section we compare the expected distortion resulting
from the tent map code with the smallest achievable distor-
tion using a channel code with a finite alphabet size of M
on the quantized source. Our main result is that for any
finite M there always exists some SNR and N such that the
tent map code yields superior performance.

To begin, as developed in [3] the mean-square error of the
ML estimator in estimating zo decays exponentially with N
to a threshold. Specifically, for small N the decay takes the

form AN-1)
1\*" Y 173
< | = —
Dtent = (2) SNR, (6)
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while the threshold level is inversely proportional to SNR?/ 2
i.e., for large N,

0.18
SNR¥/?’ ™

In practice, Diens is effectively the maximum of (6) and (7).

Next, a few information-theoretic results allow us to ob-
tain a lower bound on the distortion for any code involving
an M-ary quantization [3]. Given separation of the (lossy)
source encoder and channel encoder, the following inequal-
ity holds:

tent

R(D) < NC, (8)

where R(D) is the rate-distortion function and C is the
channel capacity. When the source is uniform on the interval
[—1,1], it can be shown that [3]

1 2

Combining (9) with (8) yields, after some minor algebra:

2 _
D> ;5(22) NC, (10)

Thus, we have a lower bound on the distortion which de-
pends only on the channel capacity. When the channel input
is constrained to be one of M letters,

Cu < logy M, (11)

with equality if and only if the input can be determined
from the output with no uncertainty. Thus, combining (11)
with (10) leads to the inequality

D > 2 (M%), (12)

e

Comparison of (6) and (7) with (12) yields the sufficient, but
not necessary, conditions under which the tent map code is
guaranteed to result in smaller expected distortion than any
M-ary code, viz.,

2
SNR > (7.55 + 10N logy, MT> dB (13)

and
SNR > (—0.762 + 10N—§- logy, M2> dB (14)

Egs. (13) and (14) define an operating region in the power-
bandwidth plane: in regions corresponding to high power
(SNR) and low bandwidth (/V), tent map coding results in
smaller distortion than any M-ary code. The boundaries for
the regions corresponding to M = 2,4, and 8 are plotted in
Fig. 2. Additional results, including a method for combining
M-ary coding with tent map coding to make M-ary codes
more robust to fluctuations in SNR, are developed in [3].

3.1. Additional Perspectives

Useful interpretations of our chaotic codes in the context
of digital codes results from exploiting a natural correspon-
dence between the dynamics of tent map systems and those
of infinite length binary shift registers. Specifically, given
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Figure 2. The regions in the power-bandwidth plane in
which the tent map code results in lower expected distortion
than M-ary codes lie above the curves, i.e., high SNR and
low baindwidth.

any binary sequence b[0],b{1],- - - of £1, there exists an ini-
tial state z[0] such that

sgn{z[n]} = b[n]. (15)

Given the state z[n], one can obtain every subsequent binary
element via

bln + k] = sgn {F(k)(:z:[n])} . Yk>0.  (16)
Thus, any digital encoder whose output is a function of the
contents of some binary shift register may be represented
by a tent map system with the appropriate choice of obser-
vation [function g(z[n]). Specifically, if the encoder is some
function ¥(b[n],b[n + 1],---,b[n + k]), then

g9(z[n])

(sen {aln]} ,sen (F(aln])} -, sen { FO (aln)) } )

Similarly, one can represent the dynamics of a register that
shifts R bits at a time with the state evolution function
F(®E)(.). Then, one can emulate, for example, a rate-k/N,
2K _state convolutional encoder with the one-dimensional
dynamic system,

<

F®) (z[n])
g(z[n]),

where g(-) is a piecewise constant function that maps
intervals into one of 2"V possible channel inputs.

The tent map code we consider in this paper uses the
identity function as the observation function. In this case
the equivalent digital encoder has an infinite length shift
registe;m with encoding function

1

2

z[n + 1]
y[n]

(17)
2K+k

oo

>

k=0

;)k blnJbln + 1] - --b[n + K.

Ml bn + 1,) =
(18)
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Furthermeore, the binary sequence b[0],b[1],--- is directly
connected to the source letter zy. Specifically, the sequence
is the Gray code quantization of zg, b[0] being the most
significant bit. Thus, we can interpret z[n] as the super-
position of less significant bits on top of 2-PAM (BPSK)
transmission of the nth bit b[n).

4. TENT MAP CODING VS. LINEAR

MODULATION

We now turn our attention to the third interpretation of the
tent map code—that it corresponds to nonlinear modulation
of a set of orthogonal sequences with the source letter zg.
Then, it is natural to ask how this modulation compares
to linear modulation. Linear modulation codes are codes
in which the source letter simply multiplies some signature
sequence of length V. A common example of such codes
is the repetition code, in which the signature sequence is
a sequence of N ones. In contrast to linear modulation
codes, the tent map code can be interpreted as a type of
nonlinear modulation, referred to as “twisted modulation”
by Wozencraft and Jacobs [4]. Connections between the
tent map code and general twisted modulation systems are
developed in [3].

The expected distortion for all linear modulation codes
over the AWGN channel is

(19)

Again, comparison of (6) and (7) with (19) allows one to
find the region in the power-bandwidth plane where the tent
map code results in lower distortion than linear modulation
codes. In particular, since (6) is always less than (19) for
N > 1, the nontrivial condition is that (7) be less than (19).
This condition is equivalent to

SNR > 0.29N? (20)

Fig. 3 shows the region in the power-bandwidth plane
where the tent map code results in lower distortion than
linear modulation codes. A source sequence of 1000 uni-
formly distributed random variables on the interval [—1,1]
was encoded using both the tent map and repetition codes
with 2 < N < 15 and 0 < SNR < 25 dB, and the result-
ing distortion in the decoded sequence was measured. The
dashed curve (— — —) represents the theoretically predicted
boundary given by (20). As in the digital comparison, we
see that the tent map code is better than linear modulation
codes at high power or low bandwidth.

TENT MAP CODING FOR THE
UNKNOWN ISI CHANNEL

We now consider chaotic codes in the context of the more
general class of noisy channels characterized by dispersion in
the form of convolutional distortion. As we develop in this
section, tent map coding can be highly effective on these
channels when the associated intersymbol interference (ISI)
is removed by an appropriately designed equalizer that is
matched to these codes.

Fig. 4 illustrates the channel and receiver structure we
consider. The transmitted signal z[n] is convolved with the
channel impulse response h[n], which we assume to be un-
known, and the received signal r[n] is a noisy version of

5.
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Figure 3. The experimentally determined region in the
power-bandwidth plane where the tent map code resulted
in lower distortion than the repetition code is marked with
x’s. The region where the repetition code resulted in lower
distortion is marked with O’s. The dashed line is the theo-
retically predicted boundary.

the channel output. The equalizer, a filter with impulse
response g[n|, produces an estimate of z[n], denoted Z{n].
We constrain the equalizer to be an M-tap finite impulse
response filter, so the deconvolution problem becomes one
of choosing the appropriate filter taps. After equalization,
subsequent processing removes residual noise from Z[n] and
recovers the source data. In this paper, we use the decoder
for the AWGN channel for this latter purpose.

sl

Channel
h[n]

Noise
Removal

y[n r[n] [Equalizer | [n] |

g[n]

win]
Figure 4. Removal of ISI through Equalization

5.1. Equalization Algorithms

In the sequel, we summarize three distinct blind equalization
algorithms proposed and developed in [3] for use with tent
map encoded data on the unknown ISI channel as described
above.

5.1.1. Dynamics Matching Algorithm
The dynamics matching algorithm selects the equalizer
taps '
g = [5[0] g1] ... g[M — 1))T (21)

based on the dynamics matching criteria suggested by Is-
abelle [5], which corresponds to choosing the g that mini-

mizes
J(® = > (Eln]-F(En-1))".
n£kN

(22)

We use the following iterative algorithm to minimize J(g).

1. Let k = 0 and guess a solution g(*).
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. Calculate #*[n — 1] = ¥ [n — 1] ¥ r[n — 1]. Form the
matrix R(® with elements

[R®]; = rfi—(i-D]+2sgn {0 i—1]} rli-1-(-1),

where 1 <¢ < NL,1<j < M, and L is the number of
source letters per block.

. Remove the rows of R(* for which the row index i is
a multiple of N, and use R to denote the resulting
matrix.

. Find a new solution:

g(EHD) — [(R<k))TR(k)]_l (Rw))Tb_ (23)

where b is a vector of all ones.

. Increment k£ and return to step 2. Continue iterating
until g+ = gk),

A computationally efficient recursive implementation of
this algorithm is also developed in [3].

5.1.2. Alternating Projections Algorithm

The alternating projections algorithm selects the equal-
izer taps to minimize the mean-square distance between the
equalizer output and the closest sequence composed of con-
catenated, length N tent map sequences. It performs the
minimization by alternately projecting onto the set of equal-
izer outputs and onto the set of concatenated tent map se-
quences. The algorithm below converges monotonically to
a local minimum.

1. Form the matrix R, where
[R]i; = r[i - j].

Note that Rg is the equalizer output, the convolution
of r[n] and g[n].

(24)

2. Let k = 0 and guess a set of equalizer taps §(F.

3. Parse the sequence Rg(®) into sequences of length N
and filter and smooth the parsed sequences with the
ML estimator for tent map sequences in AWGN.

. Concatenate the smoothed sequences and call this se-
quence %+ Note that x*T1 is the sequence com-
posed of concatenated, length N tent map sequences
closest in a mean-square distance sense to Rg(®.

. Project x**1) onto the column space of R to find
g(k—{—l):

g(kﬁ‘*l) — (RTR) -1 RT}"{(k—f-l) . (25)

Increment k and return to step 3. Continue iterating
until |x*+D) — x(®)|| < ¢ for some e.

5.1.3.  Supez-Based Algorithm

The superexponential or “supex” algorithm developed by
Shalvi and Weinstein [6] uses higher-order statistics of the
output to estimate the equalizer taps, and is effective when
the channel input satisfies some second- and fourth-order
cumulant whiteness conditions. Under such conditions, the
impulse response of the cascaded channel and equalizer ap-
proaches a delay with each iteration. Specifically, the largest



tap of the cascaded system grows exponentially relative to
all the other taps.

It can be shown that tent map sequences downsampled
by two lapproximately satisfy the second- and fourth-order
whiteness constraints [3]. Exploiting this property, Fig. 5 il-
lustrates a method for using the supex algorithm for decon-
volution of tent map encoded data. The tent map sequence
z[n] is separated into even and odd phases through down-
sampling so that the even numbered samples pass through
the upper channel and the odd numbered samples pass
through the lower channel. The two phases are processed
in parallel, with the channel impulse response assumed to
be the same for both channels. The supex algorithm is run
separately on the two received sequences r1[n] and rq[n] to
find the sets of equalizer filter taps ¢i[n] and ga[n]. After
estimating the taps for the two phases separately, the sys-
tem recombines the two estimates to obtain a composite
estimate of the full original sequence.

z[n] \ll 0 |Channel yi[n, rl[nEqualizer \L )
h[n] a1 [n]

wi[n]
wa[n]
|Channel y2[n r2["Equalizet
h(n] g2[n] ¢’2 2_1—> E[n]

Figure 5. Downsampling and Supex for Equalization of
Tent Map Encoded Data

5.2. Simulation Results

The three algorithms were tested on a source data sequence
of 1024 independent, identically distributed (IID) random
variables uniformly distributed on the interval [—1, 1]. Each
of these variables was mapped onto a tent map sequence of
length N, and L such sequences were concatenated together
to form a block of length NL = 1024. (For the supex al-
gorithm, L was chosen to make NL = 2048 so that each
phase had length 1024 after downsampling.) Each algorithm
was run on all of the blocks, and the average ISI across all
blocks was calculated, as was the mean-square error dis-
tortion (D) in estimating the 1024 source data variables.
The performance of the supex algorithm on uncoded source
sequences is taken to be a somewhat arbitrary but useful
baseline. The improvement in ISI and distortion over this
baseline is shown in Figs. 6 and 7, respectively. The SNR
and N were chosen to correspond to points on the power-
bandwidth plane where tent map coding is superior to linear
modulation coding over the AWGN (no ISI) channel. (cf.
Fig. 3.)

A cursory inspection of Fig. 6 might lead one to conclude
that tent map coding offers only moderate improvement in
residual ISI over the baseline of using the supex algorithm
on an uncoded sequence. Indeed, one would expect zero
ISI gain for the case N = 2 when supex decoding is used
since the even and odd phases are in fact IID sequences.
However, from Fig. 7 we see that tent map coding offers
substantial improvement in minimizing distortion over the
baselind case, especially if dynamics matching or alternating
projections decoding is used. Thus, if we interpret residual
ISI as an effective noise source, we see that just as tent
map coding can reduce distortion caused by AWGN, it can
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Figure 6. Improvement over baseline in ISI using dynam-
ics matching (dashed), alternating projections (solid), and
supex (dotted) algorithms.
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Figure 7. Improvement over baseline in distortion D us-
ing dynamics matching (dashed), alternating projections
(solid), and supex (dotted) algorithms.

reduce “residual ISI noise” as well. Furthermore, that the
gain in distortion reduction increases with SNR, even at
fairly high SNR, suggests that the results demonstrating
the superiority of tent map coding to M-ary coding at high
power in the AWGN channel case may extend to the ISI
channel case as well.
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