EFFECTS OF CONVOLUTION ON CHAOTIC SIGNALS

Steven H. Isabelle

Alan V. Oppenheim

Gregory W. Wornell

Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

Because chaotic signals are potentially useful both in de-
scribing physical phenomena and in engineering applica-
tions, signal processing algorithms exploiting their unique
characteristics are of interest. In this paper, we consider
issues pertaining to processing signals in convolutional dis-
tortion. Specifically, we discuss the effects of convolutional
distortion on two parameters commonly used in the descrip-
tion of chaotic signals — the Lyapunov exponents and the
fractal dimension of the attractor. In addition, we present a
blind deconvolution technique based on minimizing a non-
linear prediction error for data generated by one dimen-
sional chaotic maps.

1. INTRODUCTION

Chaotic signals are of increasing interest in science and
engineering because they model a wide range of physical
phenomena and contain a considerable amount of inherent
structure. Signals which are well modelled as chaotic have
been observed in physical phenomena ranging from turbu-
lence in fluid flow to radar clutter [4]. Also, because of the
deterministic structure of chaotic signals, they are poten-
tially applicable in areas such as communications systems
[6]. In these contexts and others, we often have access only
to distorted versions of the chaotic signals of interest and
would like to make inferences concerning the original sig-
nal. This paper is concerned with chaotic signals distorted
by convolution. This is an important distortion mechanism
to consider because a wide variety of phenomena affecting
applications —e.g. propagation channel effects and signal
smearing due to sensor motion— are well modelled by con-
volution.

In this paper, we examine the effects of convolutional
distortion on two sets of parameters of chaotic signals —
the Lyapunov exponents and fractal dimension of the at-
tractor. These quantities are defined in section 2. Their
behavior under convolution is discussed in Section 3. Fi-
nally, in section 4 we present a deconvolution technique for
signals generated from one dimensional chaotic difference
equations.
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2. BACKGROUND

We confine our attention to signals generated by an N di-
mensional difference equation of the form

x[n +1] F(x[n]) 1)
yln] = Gx[r])

where x[n)] is the state at time 7 and y[n] is a scalar obser-
vation of the state at time n. We assume that G is Lipschitz
and that F is a Lipschitz’ diffeomorphism (LD) which dis-
plays dissipative chaotic behavior. The dissipative nature
of F implies that state trajectories eventually converge to
an attractor which has zero volume when viewed in the
state space. Also, since the system is chaotic it displays
sensitive dependence on initial conditions, i.e. trajectories
generated from initial conditions which are arbitrarily close
in state space will eventually diverge exponentially from one
another. This local instability implies that the scalar obser-
vation y[n] will be a broadband signal. Of course, this di-
vergence cannot continue indefinitely since the trajectories
must remain bounded. Eventually widely separated trajec-
tories must fold back toward each other creating a fractal
structure.

Two signature quantities of chaotic systems and the sig-
nals they generate are Lyapunov exponents and the fractal
dimension of the underlying attractor. Lyapunov exponents
describe the local sensitivity to initial conditions, while the
fractal dimension quantifies the notion of the size of the
limiting trajectory of the system. These notions are de-
fined more precisely below. A more detailed treatment of
these issues is available in several references, e.g. [1].

In order to define the Lyapunov exponents we make use
of the notion of stable and unstable directions. At each
point on the attractor there exists a set of stable and un-
stable directions {u} Initial conditions differing by a small
perturbation equal to one of these directions generate state
sequences which exponentially converge or diverge at a rate
determined by the Lyapunov exponent. These exponents
are defined through a linear approximation to the distance
between trajectories. Specifically, the Lyapunov exponents
satisfy the relation

i

lim —::10g [V(F"(2))usll = Ae. )

Positive Lyapuov exponents correspond to expanding direc-
tions while negative exponents correspond to contracting

1A function F is Lipschitz if ||F(z) — F()|| < Kllz - Y|
for all X and ¥ in its domain and for some finite constant K.
This condition essentially restricts the maximum growth rate of
a function to be finite.
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directions. Under mild conditions it can be shown that the
\; do not depend on the value of £ when z is a point of the
attractor.

Another quantity commonly used to characterize chaotic
systems is the fractal dimension of its attractor. Its impor-
tance as a signature quantity can be seen by noting that all
m dimensional dissipative chaotic systems of the form (1)
will have attractors with zero volume in R™. The fractal di-
mension is a way of comparing the size of these zero volume
sets. Of the many notions of fractal dimension, perhaps the
easiest to define is the capacity. Given a set in R™, let N(c)
be the minimum number of m-dimensional balls of radius €
needed to cover the set. The capacity dimension of the set
quantifies the rate at which N(e) grows as ¢ goes to zero
and is defined as

D. = lim log N(¢)

T =0 —loge

It is straightforward to verify that for simple sets in R™
such as line segments and cubes , the value of the capacity
corresponds to our intuitive notion of the dimension.

Under our assumptions, a theorem of Takens [10] states
that for most systems of the form (1), vectors constructed
from the scalar observation y[n] of a chaotic state sequence
using the so-called time delay reconstruction

Y[n] = [:‘/[n]iy[n - 1]7 ) y[" b N -+ 1]]

are equivalent (to within a nonlinear coordinate change by
a LD) to the original state vectors x[n] for sufficiently large
N. Further, it can be shown that that the capacity di-
mension and Lyapunov exponents are invariant to Lipschitz
diffeomorphisms. These two facts together imply that the
dimension and exponents of the original system may be es-
timated from an observed scalar time series. This will be
of use in the next section where we examine the effects of
filtering on chaotic signals. For a review of techniques for
estimating these quantities from data see [1].

3. EFFECTS OF CONVOLUTION

Consider the situation in which we have access only to a
distorted version z[n] of the signal y[n]. The relationship
between the distorted and the desired signal is given by

oo

oln] =) hlilyln — 1] ®)

=0

where h[n] is the impulse response of a stable causal LTI
system with a rational transfer function.

In order to determine the effects of filtering on Lyapunov
exponents, we represent the time series z[n] as the scalar
observation of a composite system of the original nonlinear
dynamics and the filtering dynamics :

xin+1] = F(xfa])
wlr+1] = Aw[r]+ bG(x[n])
z[n] = cTwin].

The matrices A, b, and ¢ are chosen to represent a min-
imal realization of the LTI system and w(n] the state of
the filter at time n. We also assume that the overall com-
posite system is minimal in the sense that there is no pole
zero cancelations between any linear component of the orig-
inal nonlinear system and the cascaded linear system. The

invariance of the Lyapunov exponents under smooth invert-
ible coordinate changes allows us examine certain properties
of the filtered signal in this augmented state space with the
assurance that the results carry over to the embedded state
space.

The collection of Lyapunov exponents of the augmented
system can be divided into a set equal to those of the orig-
inal nonlinear system and a set equal to the log magnitude
of the eigenvalues of the matrix A. This follows directly
from the relation (2) by computing the gradient of the aug-
mented system. Of course, the eigenvalues of A correspond
to the poles of the system in which we are interested. Fur-
ther, since the filter is stable, the LTI system contributes
only negative exponents.

Convolutional distortion also affects the capacity dimen-
sion. This discovery was apparently first reported by Badii
et al[2] who found that filtering noisy chaotic data to reduce
noise caused errors in fractal dimension estimates. Since
Badii’s original work, several researchers (8, 3] have reported
the same phenomenon and proposed hueristic deconvolu-
tion procedures. The effect of convolution on the capacity
dimension can be examined using the time delay construc-
tion described in section 2. The time delay comstruction
defines a transformation of RY, the state space of the orig-
inal nonlinear system, to RY , the space consisting of the
reconstructed vectors. We show below that the effect of fil-
tering on the capacity dimension of the observed signal z[n]
depends upon the nature of this transformation.

The vectors in the reconstructed space are of the form

[ z[n]
Z[n] '

L z[n — ]\7 +1]
[ e R[EG(F~ (x))

|5, AEGE=F (%))
M(x).

il

Again, because of Takens’s theorem and our assumptions on
F and G, M(z) will in general be a LD from the attractor
in the augmented state space to the reconstructed space for
sufficiently large N.

For certain impulse responses h{n], M(z) will actually
be an LD from the state space of the original dynamical
system to that of the reconstructed vectors. In this case,
the invariance of the capacity to LD coordinate changes
implies that the capacity dimension of the reconstructed
attractor must equal that of the original nonlinear state
space system (1). Thus, the class LTI systems which do not
affect capacity includes the class of impulse responses for
which M is a LD. We develop below a sufficient condition
for a LTI system to belong to this class.

The definition of Lipschitz implies that the norm of gra-
dient of a Lipschitz function M(z) must be bounded for any
induced norm. for all vectors x in the domain of M. The
gradient of the embedding transformation is

VM(z) = [ mo(z) mﬂ_l(z) ] . (4)
where (with £_; = F7*(z)) the columns are given by

my(z) = Y hiV[E™ 7 (2)]VG(z-i-y)

=0
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We examine conditions for the norm of VM to be bounded
using the maximum absolute column sum norm. Our ap-
proach is to bound the columns of the gradient matrix since
bounded columns imply a bounded matrix norm.

For any j, the norm m;(z) can be bounded as follows :

ms @)l < 3 IIVIET 7 (@)IVG (@il (5)

=0

Because G is Lipschitz, the norm its gradient VG is
bounded, say by Kg. Further, from (2) it follows that,
if the vector uy corresponds to the smallest Lyapunov ex-
ponent, Ay, the product |V{F~*(z)]un|| grows asymptot-
ically like e~**~. Thus, the sum of right side equation (5)
will converge if the sum

o0

z Ih‘|e—iAN

=0

converges. The sum thus converges when |hi| decays faster
than e*m. When |h;| satisfies this decay condition, each
column of VM (z) is bounded and hence the map M(z)is
Lipschitz. Note in particular that the sum converges for all
FIR filters. It follows that FIR distortion will not increase
the capacity.

Based on our assumptions, this decay condition is equiva-
lent to requiring that the log magnitude of the largest eigen-
value of A — or equivalently, the log magnitude of the largest
pole radius of the LTI system— is less than Amin. Thus, the
class of impulse responses with strong decay relative to the
chaotic system will not affect capacity dimension. It is in-
teresting to note that one dimension chaotic maps have one
positive Lyapunov exponent and no negative ones. This
implies that no no rational IIR LTI system will fall in the
strong decay class relative to a one dimensional map. In
fact, it can be shown using the above result and a result
of Young [5], that IIR convolutional distortion will always
increase the capacity of the attractors of one dimensional
maps.

4. DECONVOLUTION

In situations where convolutional distortion is present, our
goals include characterizing the distortion and extracting
an estimate of the desired signal or its parameters from
the distorted observation. Algorithms for signal estimation
would be of interest, for example, in applications involv-
ing classification of chaotic signals or communication with
chaotic signal sets. In other situations, for instance channel
characterization, the estimate of the channel may be of in-
terest in itself. This section describes one approach to this
deconvolution problem.

One approach to the deconvolution problem is to estimate
the parameters of a linear system which approximately in-
verts the distortion observed by the receiver. Given that the
impulse response b[n] of such a system can be estimated ,
we form the the estimate §[n] of the desired signal by filter-
ing the received data z[n]. In this scenario, there exists an
inherent ambiguity in the signal estimate since delays and
scaling factors can just as easily be part of the distortion as
the signal. Consequently, we expect to be able to estimate
the signal at most to within a constant scale factor ¢ and a
constant delay no.

In order to achieve a high quality estimate, we would
like the combined system (b[n] * h[n]) to be close in some
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Figure 1: Distorting System Frequency Response

sense to a scaled, shifted unit sample aé{n — no]. If the
dynamics of the signal are known, this goal can be achieved
by solving a set of nonlinear equations. Specifically, for a p
tap equalizer, we must solve the equations

p—1

G(F"™" (o)) = 3 _ b[k]z[n — K.

k=0

This set of equations can in principle be solved in a least
squares sense for the parameters no, %o, 4, and the sequence
b[k]. However, the solution is difficult to obtain directly in
part because the positive Lyapunov exponents of the system
imply that the the solution will be extremely sensitive in the
zo parameter. In this section we examine another approach
to the deconvolution problem assuming much less a priori
knowledge of the signal generation mechanism.

In many situations the dynamical system responsible for
generating the desired signal is unknown. This scenario
may occur, for example, when observing physical phenom-
ena such as turbulence with an unknown source. In this
case, the deconvolution must be performed using only gen-
eral a priori knowledge. This is referred to as the blind
deconvolution problem. Typically, blind deconvolution has
been studied in the context of desired signals which are IID
stochastic processes. In the stochastic context, the statisti-
cal independence of desired signal plays a major role in in
the development of algorithms. For example, assuming that
the desired signal is white Gaussian noise, a minimum phase
equalizer may be designed using linear prediction. Stochas-
tic techniques tend to perform poorly with chaotic signals
at least in part because the 1ID assumption is violated.

To illustrate the approach to deconvolving a chaotic sig-
nal, we consider distorted signals generated by convolving
iterates of a one dimensional map with some distorting ker-
nel corresponding to a stable all pole system. In this case,
the desired signal is generated deterministically by a scalar
difference equation of the form z[n] = f(z[n — 1]). We
observe a distorted version

14

2] = Y alilz[n — ] + o[n]. (6)

t=1

The results of the section 3 show that the capacity dimen-
sion of the received signal must be greater than that of the
desired signal. This suggests performing the deconvolution
by choosing the parameters b[n] to minimize the dimension
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Figure 2: Deconvolution Example

of signal estimate #[n]. An approach similar to this has been
proposed by Scargle [9]. We take a somewhat different ap-
proach which takes advantage of the deterministic structure
of the desired signal. This structure is embodied in short
term predictability based upon a single sample of the sig-
nal. The idea here is that all-pole convolutional distortion
decreases the single sample predictability of the distorted
signal relative to the desired signal. This decrease in pre-
dictability occurs because a sample of the received signal
cannot be expressed as a deterministic function of the pre-
vious sample. This line of reasoning leads us to choose the
equalizer parameters to minimize the prediction error of the
signal estimate.

We consider the error in predicting each value of the re-
ceived signal using a predictor designed from the data itself.
Many techniques for predicting chaotic signals have been
described in the literature, see, for example, [11] and the
references therein. The following locally constant predictor
serves to illustrate the proposed method.

Given a sequence z[n] n = 0---N — 1, we desire to
make a one step prediction of a sample, say z[k]. Let j* be
the index of the sample nearest in value to z[k] inz[n] n=
L,oo-yk=1,k+1,--- N — 1. Then the predicted value is
#Hk+1] = 2[5* +1].

At each time n the prediction error e[n] = En+1]—é[n+

T T

1] is computed. The prediction error of the signal is defined

as
£=Y en]

The prediction error of the signal estimate &[n] is of course a
function of the equalizer parameters. This function is min-
imized with respect to the filter parameters using standard
nonlinear optimization techniques.

The performance of this technique is illustrated in figure 2
with a signal generated by the tent map,

A= { (4T

The signal [n] has is fairly lowpass with a power spectrum
equivalent to that of white noise through a system with a
single pole at z = .5 [7]. The frequency response of the
distorting filter is shown in figure 1. Figures 2 (a), (b), and
(c) show segments of the original, distorted and recovered
signals respectively. It is apparent that, with the exception
of a scale factor, the distortion apparent in figure 2 (b) has
been largely removed.
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