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Abstract

In a variety of contexts, observations are made of the outputs of an unknown multiple-input
multiple-output linear system, from which it is of interest to recover the input signals. For
example, in problems of enhancing speech in the presence of background noise, or separating
competing speakers, multiple microphone measurements will typically have components from
both sources, with the linear system representing the effect of the acoustic environment. In this
paper we consider specifically the two-channel case in which we observe the outputs of a 2 x 2
linear time invariant system with inputs being sample functions from mutually uncorrelated
stochastic processes. Our approach consists of reconstructing the input signals by making an
essential use of the assumption that they are statistically uncorrelated. As a special case, the
proposed approach suggests a potentially interesting modification of Widrow's least squares
method for noise cancellation, when the reference signal contains a component of the desired
signal.
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I. Introduction

In a variety of contexts, observations are made of the outputs of an unknown multiple-input

multiple-output linear system, from which it is of interest to recover its input signals. For example,

in problems of enhancing speech in the presence of background noise, or separating competing

speakers, multiple microphone measurements will typically have components from both sources,

with the linear system representing the effect of the acoustic environment.

In this report, we consider specifically the two-channel case in which we observe the outputs

of a 2 x 2 linear time invariant (LTI) system with inputs being sample functions from mutually

uncorrelated random processes. Our approach consists of reconstructing the input signals by making

essential use of the assumption that they are statistically uncorrelated. In its most general form,

this is a highly under-constrained problem. By applying appropriate constraints on the form of

the reconstruction system, meaningful and useful solutions are obtained, one class of which has

as a special case the well-known Widrow's least-squares method for noise cancellation. A more

elaborate presentation of the results reported here can be found in [1]

II. Signal Separation Based on Decorrelation

Consider the problem in which we observe the outputs yl[n] and y2[n] of a 2 x 2 linear system 7i

illustrated in Figure 1, whose input signals s [n] and s2[n] are assumed to be sample functions from

mutually uncorrelated stochastic processes having stationary covariance functions. To simplify the

exposition, we further assume that the signals have zero mean, in which case

E {s[n]s[n - k]} = Vk (1)

where E {.} stands for the expectation operation and * denotes the complex conjugate. We note

that the zero mean assumption is not necessary. The derivation and results apply equally to the

more general case of non-zero possibly time-varying means since they are phrased in terms of

covariances.

The system components Hij i, j = 1, 2 are assumed to be stable single-input single-output linear

time invariant (LTI) filters, and the overall frequency response is denoted by:

(,-) = [ Hi(w) H(w) 1 (2)
H2 1(w) H22(W) J
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where Hij(w) are the frequency responses of Hij. We note that Hij, i 0 j represent cross-coupling

from input s[n] to sensor output yj[n], and Hij, i = j represent the frequency shaping applied to

each individual input.

Our objective is to recover the input signals by using a 2 x 2 reconstruction filter G illustrated

in Figure 2, whose outputs are denoted by vi[n] and v2[n], and whose frequency response is:

5(S) =[ G11(w) -G 12(W) ](3)
-G 2 1 () G22(w)

We want to adjust the components of G so that

H(w)g(w) = Fi(w) (4)
0 F2 () j

or

7H(w)G(w) L F2( ) (5)

If we require that F1(w) = F2(w) = 1 Vw, then in case of (4) vi[n] = sl[n] and v2[n] = s2[n], in case

of (5) vl[n] = s2[n] and v2[n] = sl[n], and the input signal are exactly recovered. The equalization

of F1 and F2 to a unity transformation requires partial knowledge of 1t (e.g. knowledge of H11

and H22) and/or some prior knowledge concerning s[n] and s2[n]. However, since our main goal

is the separation of the input signals, it may be sufficient to adjust the components of G so that

the signals si [n] and s2 [n] are recovered up to arbitrary shaping filters F1 and F2. To this end we

may assume, without further loss of generality, that H11(w) = H 22 (w) = 1 Vw, in which case the

off-diagonal elements of 7(w)G(w) are zero, as required by (4), if

-G 1 2 (W) + H1 2(w)G 2 2(W) = 0 (6)

H 21 ( w)G1i(w) - G2 1(w) = 0, (7)

and the diagonal elements of 'H(w)G(w) are zero if

G,(w)-- H2()G21(0) = 0 (8)

-H 2 1 (w)G 12(w) + G22 (L3) = 0. (9)

Clearly, there are infinitely many combinations of Gij i,j = 1,2 that satisfy (6) (7), or (8)

(9). Therefore, we may pre-specify any pair of transfer functions, and solve for the other pair.

Specifically, we choose G11(w) = G22(w) = 1 Vw, in which case the solution to (6) (7) is:

G1 2 (W) = H1 2 (W) , G 21 (w) = H 2 1 (ws) (10)
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and the solution to (6) (7) is:

1 _ 1
G 12 (W) = 1X() , G 21(W) = H 1 (w)' (11)

under the assumption that H12 and H21 are invertible.

If the coupling systems H12 and H21 were known, then by setting the decoupling systems G12

and G 21 according to (10) or (11) we obtain the desired signal separation. However, since H12 and

H21 are unknown, we want to find a method or criterion that yields the desired solution. Invoking

the assumption that the input signals are uncorrelated, our approach is to adjust G 12 and G21 so

the recovered signals are also uncorrelated, i.e.,

E {v[n]v*[n - k]} = 0 Vk (12)

or, equivalently, that their cross-spectrum P,,,,2 (w) is zero for all w. Using the well-known relation-

ship for the power spectra between inputs and outputs of an LTI system,

P. 1 2 (a)= [ 1 -G 1 2(W) ][ Y () PyY () G 21(W) 1 (13)
LPY2Y2(w) Py~ Y(W)J

where Piyj (w), i,j = 1,2, are the auto- and cross-spectra of the observed signals yi[n] and y2[n],

and + denotes the conjugate-transpose operation. Carrying out the matrix multiplication and

setting the result to zero, the decorrelation condition becomes:

PlY2(w)- Gl2(w)P, 2 2(w) - Gl(w)Pylyl(w) + G 12(w)G*(w)Py2 (w) = 0. (14)

This equation does not specify a unique solution for both G 12(w) and G 21(w), even if Pyiyj(w)

i, j = 1, 2 are precisely known. Any combination of G12 and G21 that satisfies (14) yields outputs

vl[n] and v2[n] which are uncorrelated. We could arbitrarily choose G21, in which case G12 is

specified by:

~G12 (w) = P 1 ()- G 1 (w)P ~(w) (15)
Py 2y2 (w) - e*l(w)Py2y (lap)'

or we could arbitrarily choose G12, in which case G21 is specified by:

G21(W) _ PY2Y 1 (w) - Gt2 (w)PY2 Y2 (w) (16)
21P111 () - G2(W)PoY12 (")'

As a special case, if we choose G21 = 0 then (15) reduces to:

12(w) = P 1 Y2 () (17)
PY2 Y2 w
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which is recognized as Widrow's least squares solution [2] for the simplified scenario in which there

is no coupling of sl[n] (the desired signal) into y2[n], i.e. H21 = 0. It conforms with the observation

(e.g., see [3]) that the least squares filter causes the estimate of s [n] to be uncorrelated from

y2[n] = 8s2[n] (the reference sensor signal). The least squares method has been successful in a

wide variety of contexts. However, it is well known that if the assumption of zero coupling is not

satisfied, its performance may seriously deteriorate. Equation (15) suggests a potentially interesting

modification of the least squares method which allows the incorporation of non-zero G21 for the

compensation of possibly non-zero coupling.

There are practical situations in which one of the coupling systems H12 or H21 may be known

a-priori, or can be measured independently. For example, in speech enhancement, either the desired

or the interfering signal may be in a fixed location and therefore the acoustic transfer functions

that couple it to the microphones can be measured a-priori. In such cases either (15) or (16) can

be used to find the other coupling system. To show this, we use the relation

E PV1Y1 () PY1 Y2 (w) 1 F 1 H 1 2(W) 1 [ P. 1 (w) 0 1 F 1 H1 2(W) 1
PY2Y1(w) P 2(w) J H 21(w) 1 J 0 P 2(w) J L H21(w) 1 j

(18)

where P,1 (w) and P 2 ( w) are the power spectra of sl[n] and s2[n], respectively. Substituting (18)

into (14) and following straightforward algebraic manipulations, we obtain:

Ps, (w) [1 - G1 2(w)H 21(w)] [21 (w) - G21(w)] +

Ps2 (w) 1 - G21(w)H 12(w)]* [H12(w) - G12(w)] = 0. (19)

If G21 = H21 or G12 = H~1' (the inverse of H21), then the only solution to the equation is

G12 = H12 or G21 = H - 1, respectively, provided that 7- is invertible (i.e. [1 - H 21(w)H 12(w)] 01 2

Vw), and that P 2(w) is strictly positive. Similarly, if G12 = H112 or G21 = H1- 1, then the only

solution is G21 = H21 or G12 = H' l , provided that 7H is invertible and that P (w) is strictly

positive. Thus, if one of the coupling system is known than the decorrelation criterion yield the

correct compensation for the other coupling system.

If both coupling systems H12 and H21 are unknown so that both decoupling systems G12 and

G21 need to be adjusted, then the decorrelation condition is insufficient to uniquely solve the prob-

lem, and we need to use some additional information or constraints. One possibility is to assume

that s[n] and s2[n] are not only statistically uncorrelated, but statistically independent. By im-

posing statistical independence between the reconstructed signals, we obtain additional constraints
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involving higher order cumulants/spectra that can be used to specify a unique solution for both

G 12 and G21. This approach is currently being developed.

Another approach consists of restricting the decoupling systems to be causal finite impulse

response (FIR) filters, i.e. of the form:

ql

G12(W) = E ake-wk (20)
k=O

q2

G21(W) = E bke- jwk (21)
k=O

where q and q2 are some pre-specified filter orders. We note that in this case the reconstructed

signals v[n] and v2[n] are given by:

ql

v1[n] = yl[n]-E aky2[n-k] (22)
k=O
q2

v2[n] = y2[n]-E bkyl [n-k]. (23)
k=O

In Appendix A we show that if H12 and H21 are also causal FIR filters of orders less or equal

to q and q2, respectively, then the only solution to the decorrelation equation is given by (10),

provided that at least one of the coupling systems is of order greater than zero, and that Ps (w)

and PS2(w) are rational spectra. There are many situations of practical interest in which H12 and

H2 1 are closely approximated by FIR filters, and upper bounds on the filter orders are provided.

We note that the finite length restriction is essential in order to obtain a unique solution. As the

number of FIR coefficients increases, the solution becomes more and more ill-conditioned, and in

the limit we may lose identifiability.

III. Algorithm Development

Frequency domain algorithms in the case where one of the decoupling systems G12 or G21 is pre-

specified (e.g. when one of the coupling systems is known) are suggested by (15) or (16), where

we note that in practice Pyiyj, (w), i, j = 1, 2 are replaced by their sample estimates (periodograms)

based on the observed signals yl[n] and y2[n].

If both decoupling systems need to be adjusted, then the form of (15) and (16) suggests the

following iterative algorithm:

(12k PY2 2(w) - [G'1)()]*P,,y1 (L) (24)p~~,(,,) [[¢)(,,]%21 , )
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21 _G ~~(I-1) .G(~): = P,(2 )- [%,1 (w :) ]
-(4) (25)

Pyl Y(W)- G|2 )(W)]*pYl Y2(W)

where G(l)(w) and G(l)() are the filters after iteration cycles. Of course, in this case we must in-

corporate the FIR constraint by limiting the number of coefficients of the inverse Fourier transforms

of the decoupling filters.

To implement these algorithms in the time domain, we note that:

P (w) P (W)] [P (W) Py2~(w) (W) -G2(W) (26)[ PY2VI(W) PY2V2(w) P2Y1(W) P 2(W) -G21G() 1 

where Pyivj(w) is the cross-spectrum between yi[n] and vj[n]. Using (26), Equations (15) and (16)

can be represented in the form:

P,2V,,2 (w)G1 2(w)

PyIv, (w)G 2 1 (W)

Inverse Fourier transforming, we obtain:

ql

E alcY2V2 (k - 1)
1=0

= PYV 2,, ()

= PYvI ()-

= CYv1 2(k)

q2

bicylvl (k-I) = cy2,,(k)
l=0

where ak and bk are the unit sample response coefficients of G 12 and

is the covariance between yi[n] and vj[n] defined by:

Cyv3(k) = E{yi[n]v[n - k]}.

Expressing (29) and (30) for k = 0, 1,..., we obtain:

C, 2 , a = c Y 

Cyl b = Cy2v

where a = [aoa ... aq,]T, b = [bob ... bq2]T, and

C2 2cy2V2
Cyl 2

'Y VI

CY2 1-Cy2v~

(30)

G21, respectively, and cyiv 3 (k)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

= E _[n]2[n]}

= E{v[n]yl[n]}

= E {v[n]yT[n]}

= E [n]y 2 [n]}
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where

y1 [n] = y [n] y [n - - - -y[n-q2]] (38)

y2[n = [y2[n] y2[n - ... Y - q ]]T (39)

vj[n] = [v*[n] v[n-1] ... v[n - q2]] T (40)

v2[n] = [v;[n] v[n - ]...v[n-q]]T . (41)

Equations (32) and (33) are the time domain equivalents of Equations (15) and (16), respectively.

Thus, if the coefficients b of G21 are pre-specified, then the coefficients a of G12 are specified by:

a = Cje1y_ (42)

and if the coefficients a of G12 are pre-specified, then the coefficients b of G21 are specified by:

b _ = Y2V (43)

Since the covariance functions are unknown, they are approximated by the sample averages:

N

n=1
NCy__2 - /N [n]y 2[n] (45)n=1

N

CYv Y /3 n [n]yl[n] (46)
n=l

N,EYEv t E 2 _vl [nlY[n] (46)

n=l

where /1 and /32 are real numbers between 0 and 1. To achieve maximal statistical stability, we

choose A1 = /32 = 1. However, if the signals and/or the unknown system exhibit non-stationary

behavior in time, it may be preferable to work with /31, /32 < 1. In this way we introduce exponential

weighting that gives more weight to current data samples, resulting in an adaptive algorithm that

is potentially capable of tracking the time-varying characteristics of the underlying system.

Replacing the covariances in (42) by their sample estimates, and following the derivation in

Appendix B, we obtain the following time sequential algorithm for adjusting a (for a given b):

a(n) = a(n-1)+Q(n)v2[n]vl[n;a(n- 1)] (48)

Q() l= - 1q ) Q(n -1 )+ [n]Q(n-)v [n] - 1) )
/31 1. 31 + j2T[n] Q(n - 1)L~2[n]J

7
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where v [n; a(n - 1)] is the signal v[n] in (22) constructed using the current value a(n - 1) of a.
Similarly, replacing the covariances in (43) by their sample estimates, we obtain a time sequential
algorithm for adjusting b (for a given a):

b(n) = b(n - 1) + R(n)z [n] 2[n;b(n - 1)] (50)

1n) = ~ R( n - 1)- / 13[n] y[n]R(n - 1)1
R(n) [R(n - 1) - 1)[]yn]R(n- ] (51)

where 2 [n; b(n - 1)] is the signal v2[n] in (23) constructed using the current value b(n - 1) of b.
Thus, if one of the decoupling systems is pre-specified, we have a fully sequential algorithm to
determine the other one.

If we set b = 0 (G 21 = 0), then (48) (49) reduce to:

a(n) = a(n- 1) + Q(n)y*[n]vl[n;a(n- 1)] (52)~~~~~~~~~~~~2

Q (n) = (n - Q (n - 1)k2*[n]g [n] Q(n - 1) (3Q(n) = A[-i Q(n-1)- /3 + yT[n]Q(n -1)y* [n] (53)

which is recognized as the Recursive Least Squares (RLS) Algorithm for solving Widrow's least
squares criterion [4] [5]. The algorithm in (48) (49) can therefore be viewed as a modification of
the RLS method which allows the incorporation of non-zero b (non-zero G21) for the compensation
of non-zero coupling of s[n] (the desired signal) into y2[n] (the reference sensor signal).

If both decoupling systems need to be adjusted, then the form of (42) and (43) suggests the
following iterative algorithm:

a(') C-2212 tb- (54)

b(l) = C CY2L 1 (55)

where a(l) and b(0 ) denote the value of a and b after iteration cycles. The above notation indicates
that the right hand side of (54) is computed at b = b - ) and the right hand side of (55) is computed
at a - a(l 1 ). In the actual implementation of the algorithm, the covariances are substituted by
their sample estimates in (44)-(47). By the same considerations leading from (42) to (48) (49), and
from (43) to (50) (51), each iteration of the algorithm can be performed sequentially in time as

follows:

a(l)(n) = a(l)(n - 1) + Q(n)v2[n;b('-')]vl[n;a(l)(n- 1)] (56)
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[ ~ 1ll2[n - Ttln] (n 1
Q(n) = [Q(n- 1)- 57 + yTtQ(n -1))1nb(l 5)13~ [ - i31 + 2T2[n]Q(n - 1)e2[n '~)

b(l)(n) = b(')(n-1)+R(n)v[n;a(-')Iv 2 [n;b()(n 1)] (58)

R(n) = - [1 R(n - 1)- R(n- 1)[n;a()]T[n]R(n-1) (59)/2 L 32 + yT[n]R(n- )v[n; a(-)] J

where at the end of the iteration we obtain a(l)(N) = a(') and b(l)(N) = b().

To obtain a fully sequential algorithm, we simply suggest to use the current value of b in the

recursion (48) (49) for a, and the current value of a in the recursion (50) (51) for b. The resulting

algorithm is:

a(n) = a(n - 1) + Q(n)v2[n; (n - 1)]vl[n;a(n - 1)] (60)

Q (n 1 1) Q(n - 1)2[n; A(n - )]y T[n]Q(n - 1)1
Q(n) : [ Q(n 1)- +y2[n]Q(n- 1)2[n; b(n- J (61)

b(n) = b(n- 1) + R(n)_[n;(n- 1)]V2 [n;b(n- 1)] (62)

R(n) 1 R(n 1)R(n - 1)v[n;a(n - 1)]y T [n]R(n - 1)] (63)
R(n) =132 [R-1)- 32 + y+T[n]R(n - 1)_ [n; (n-1)] (63)

This algorithm can be viewed as an approximation to the algorithm in (56)-(59), obtained by

replacing the iteration index by the time index - which is a common procedure in stochastic

approximation. Both (56)-(59) and (60)-(63) can be viewed as extensions of the RLS method to

the case where each of the observed signals has components from both sources, and both decoupling

systems need to be adjusted.

As an alternative to (54) (55), consider the following iterative algorithm for simultaneously

solving (32) (33):

a(') = a('-') + ( ) - b=b(l-) (64)

bl) = b() + 7Y() [0y2v - b 1) | (65)

9
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where (1 ) and y(l) are gain factors (step-size) that may depend on the iteration index 1. We note

that

-YV Ci,_V2 = E{•.[n] [yi[n] -Y y[n]i] } = E{p[n]v[n]} (66)

Cy2v - C ,lb = E {_v[n] [y2[n] _ yT[n]b] } = E {v[n]v2 [n]} (67)

where in the actual algorithm these expectations are approximated by sample averages. An

iterative-sequential algorithm in which each iteration is performed sequentially in time can also

be obtained here.

Using the Robbins-Monro first order stochastic approximation method [6] [7], in which expec-

tations are approximated by current realizations and the iteration index is replaced by the time

index, the algorithm in (64) (65) may be converted into the following sequential algorithm:

a(n) = a(n -1) + l(n)v;[n;b(n - 1)]vl[n;a(n-1)] (68)

b(n) = b(n - 1) + 72(n)v~[n;a(n - 1)]v2[n;(n - 1)] (69)

This algorithm is similar in form to (60) (62), except that instead of the matrices Q(n) and

R(n), we have the gains al(n) and 72(n). Using well-known results from the theory of stochastic

approximation [6] [7] [8], it can be shown that if these gain factors are chosen to be positive

sequences such that

00 00

lim -yi(n) = 0, E i(n) = a, < M < ,
n-oo~~~~~~~~~~o

n=1 n=l

(e.g., ?i(n) = yi/n) then under certain regularity conditions this algorithm converges almost surely

(a.s.) and in the mean square (m.s.) to the solution of (32) (33), and the limit distribution can also

be evaluated. Such an analysis is beyond the scope of this paper.

If the signals and/or the linear system exhibit changes in time, and an adaptive algorithm

is required, choosing constant gains yi(n) = i, i = 1,2, is suggested. This corresponds to an

exponential weighting that reduces the effect of past data samples relative to new data in order to

track the varying parameters.

If we substitute b(n) = 0 in (68), we obtain:

a(n) = a(n - 1) + ?l(n)y][n]vl [n;a(n -1)] (70)

which is recognized as the least mean squares (LMS) algorithm, suggested by Widrow et al [2],

for solving the least squares problem under the indicated zero-coupling assumption. Thus, as

10



observed in the case of the RLS method, the algorithm presented by (68) (69) can be viewed as an

extension of the LMS method to the more general scenario in which each of the observed signals

have components from both sources, and one or both coupling systems need to be identified.

IV. Experimental Results

In this section we demonstrate the performance of the proposed method on a few simulated exam-

ples. In all our experiments Hll and H22 were unity transformations, and the coupling systems

H12 and H21 were non-zero FIR filters of order 9 (corresponding to 10 coefficients). In all cases the

reconstructed signals v[n] and v2 [n] were filtered by the shaping filter [1 - G12G21] - so that if

G12 = H12 and G21 = H21 then we have applied the exact inverse filter to recover sl[n] and s2[n].

We begin with the simpler case in which G21 = H21 so that we only need to adjust the coefficients

a of G12. For that purpose we have used (42), where the covariances are substituted by their sample

estimates in (44) and (45) with /3 = 1. We worked with a filter order of q. = 99 (100 coefficients)

so that, in fact, we did not make any assumption concerning the actual order of the system H 12

that we want to equalize. For the purpose of comparison, we have also implemented Widrow's least

squares method, which corresponds to solving (42) under the incorrect choice b = 0.

In the first set of experiments, s[n] was a sampled speech signal, while s 2[n] was a computer

generated white noise at various spectral levels. In the three cases that the algorithm was tested, the

signal-to-interference (S/I) levels at the first sensor (the primary microphone) prior to processing

were -20 dB, -10 dB, and 0 dB. Using the least squares method, the measured S/I levels were 5 dB,

7 dB, and 15 dB, respectively. Using our method, the measured S/I levels were 17 dB, 20 dB and

28 dB, respectively. We have therefore achieved an improvement of 12 to 13 dB in the S/I over

the least squares method. By actually listening to the recovered speech signal, the intelligibility

using our method was improved compared with the least squares method by more than what would

have been interpreted from the improvement in the S/I level. As shown in Figure 3, the frequency

response magnitude of the decoupling filter using our method is also improved noticeably compared

to the least squares method.

In the second set of experiments, both s [n] and s 2[n] were speech signals. Once again, we set

G21 = H21 and adjusted only the coefficients of G12. This is an interesting case since separating

speech signals is considered a more difficult task than enhancing speech embedded in additive

background noise. In the two cases that the algorithm was tested, the S/I levels at the primary
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microphone were -10 dB and 0 dB, prior to processing. Using the least squares method, the resulting

S/I levels were 5 dB and 11 dB, while using our method the resulting S/I levels were 15 dB and

24 dB, respectively.

Next, we have considered the case where both s [n] and s2[n] are speech signals, and both H1 2

and H21 are unknown FIR filters of order 10. We have only assumed prior knowledge of the filters

orders. The S/I levels at the first (primary) and the second (reference) microphones were -1.8 dB

and -2 dB, indicating strong coupling effects. Since this is a more difficult and practically more

interesting scenario, it will be fully presented. In Figure 4 we have plotted the original input signals

sl [n] and s 2 [n], corresponding to the speech sentences: "He has the bluest eyes", and "Line up at

the screen door", respectively. In Figure 5 we have plotted the measured signals yi[n] and y2[n],

which contain the inherent coupling effects. To adjust the coefficients ak and bk of the decoupling

systems G12 and G 21 , we implemented the iterative algorithm in (54) (55) where the covariances

are substituted by their sample estimates in (44)-(47) with 3 = 2 = 1. The recovered signals

are plotted in Figure 6. The measured S/I levels at the first (primary) and second (reference)

sensors were 7.5 dB and 8.3 dB respectively. For the purpose of comparison, we have plotted in

Figure 7 the recovered signal at the primary sensor using the least squares method. The associated

S/I level was 1.8 dB. We note that unlike our approach that treats the signals as being equally

important, the least squares approach regards s2 [n] as being an unwanted interfering signal, and

therefore it makes no attempt to estimate it. By actually listening to the recovered signal using the

least squares method, one can hear the reverberant quality due to the fact that the desired signal

is canceled with some delay together with the interfering signal. This reverberant effect does not

exist when using our method.

12



Appendix A: Proof of Uniqueness under the FIR Constraint

Assuming that PS1 (w) and PS2 (w) are rational spectra, that is a ratio of polynomials, then multi-

plying (19) by their common denominator, we obtain:

C(W) [1 - G 12(w)H 21(W)] [H21(w) - G 21(w)]* +

D(w) [1 - G 21(w)H2(W)]* [H12(W) - G12()] = 0

where C(w) = ZP'.P1 cie-jwt, D(w) = ZP2-P die- where c-i= c, d-i = di and c, dp2 0

where Pi and P2 are finite non-negative integers.

Let H12 and H 21 be causal FIR filters of orders q1 < q and q2 < q2, respectively (the order is

defined as the index of the largest non-zero coefficient of the unit sample response). We assume

that e1 + q2 > 0 (i.e., at least one of the coupling systems is of order greater than zero). Then

[1 - G12(w)H 21(w)] is of order (ql + q2), [1 - G21(w)H 12(w)] is of order (q2 + q1), [H 21(w) - G 21(W)]

is of order q2 or less (if q2 = q2 and there is a cancellation of the largest non-zero coefficient), and

[H21 (w) - G2 1 (w)] is of order ql or less. Hence, the first term on the right hand side of the equation

is a polynomial in powers of ejw, where the index of its most positive non-zero coefficient equals

(Pi + ql + q2), and the index of its most negative non-zero coefficient is less than or equal to

(P1 + q2). Similarly, the second term is a polynomial in powers of ej w, where the index of its most

positive non-zero coefficient is less than or equal to (P2 + ql), and the index of its most negative

non-zero coefficient is equal to (P2 + q2 + ql). To satisfy the equation all the coefficients of the sum

of the two terms must be equal to zero. Therefore, necessary conditions are given by:

Pl + q + l < P2 + ql

P2+q2+ql < pl+q2.

Adding the two inequalities we obtain 41 + q2 0 which is a contradiction. Therefore, the

decorrelation equation is satisfied if and only if each term is equal to zero, implying that the only

possible solution is given by (10).

13



Appendix B: Derivation of the Sequential Algorithm in (48) (49)

Let

= n/32%kv* nJ Y '[k]]-1

=E 1 V2 [n] Y2 [k]
k=l

- [Q-l(n -1) + v*[n]22T[n]]-1

1I Q(n
Q(n- 1)v2[n]y [n]Q(n-1)

-1)- 1 + y}[n]Q(n - )v[n]

n

= E3n-k,*[n]y[k] = q(n - 1) + vf[n]yl[n]
k=l

= Q(n)q(n) = Q(n) [3l q(n - 1)+ [n]yl [n]]

= Q(n) [3Q-l(n- 1)a(n- 1) + v[n]yl[n]]

1

= a(n - 1) + Q(n)[n] [Yi[n]-yT[ - n]a(n - 1)]

= a(n - 1) + Q(n)v;[n]vl [n; a(n - 1)].

14

Q(n)

q(n)

Then

a(n)

= Q(n) 1 - + v*[n]yl[n]}[Q-1(n - v*[n]22T[n]] a(n - )2
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Figure 1: The signal model.
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Figure 2: The reconstruction system.
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Figure 3: Frequency response magnitude of: (a) The coupling filter, (b) The decoupling filter using
the proposed method, (c) The decoupling filter using the LS method.
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Figure 4: The speech signals: (a) "He has the bluest eyes", (b) "Line up at the screen door".
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Figure 5: The measured signals.
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Figure 6: The recovered signals using the proposed method.
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Figure 7: The recovered signal using the LS method.
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