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ABSTRACT 

In this paper, we present techniques for computing 
frame-adaptive approximations to  the S T F T  which can sat- 
isfy arbitrarily specified bounds on the number of arithmetic 
operations per frame. The  central idea is to  represent the 
samples in each signal frame with a very small number Q 
of quantization levels, yielding an SNR of 10Jog(Q2) dB. 
This leads to  the formulation of the frame's D F T  computa- 
tion as a process of summation among pre-stored vectors. 
Experimental studies are used t o  propose and verify math- 
ematical models for how the number of vector additions 
needed in this process depends on the frequency content of 
a frame. The models are utilized to  design frame-adaptive 
techniques for excluding various subsets of vector elements 
from the summation process in order to  keep the number 
of additions per frame from exceeding any specified bound, 
B.  

1. INTRODUCTION 

Last year, we reported [I] a frame quantization and dif- 
ferencing method for calculating an approximate S T F T  
through a vector summation process and no multiplications. 
With this approach, the use of Q-level quantization theoret- 
ically leads to  an SNR of 1010g(Q2). Recommended values 
of Q are 3 and 5 ,  which lead to  SNRs of 9 d B  and 14 d B  
respectively. In this paper, we present techniques which can 
be used to ensure that  the number of additions in the vector- 
summation process does not exceed a specified bound, B ,  
for each frame. An example is used to  illustrate how im- 
portant time-frequency features of the signals are preserved 
even when the bound B is significantly lower than the num- 
ber of additions required by FFT-based approaches. This 
type of computational efficiency is achieved by sacrificing 
frequency resolution and/or frequency coverage in a manner 
which adapts to  the frequency content of each frame. The  
overhead computation in these techniques is also shown to 
be comparable t o  the overhead computation in FFT-based 
approaches. 

'This work was sponsoredin part by the Rome Laboratories of 
the Air Force Systems Commandunder contract number F30602- 
91-C-0038 and in part by the Office of Naval Research under 
contract number N00014-93-1-0686. 

Let us consider the discrete S T F T  of a signal x(n): 

mL - Nu, + N 

n=mL-N, t l  

where f m ~ ( n )  = z(n)w(mL - n )  and k = 0,1 ,  ...., N - 1. 
Suppose f m ~  (n )  undergoes a Q-level quantization. The  
quantized frames, f,L(n), can be used t o  obtain an "ap- 
proximate" STFT: 

mL-N, tN 

n=mL-N, t 1  

(3) 

(4) 
The expression in (2) for X2L(lc) can be viewed in terms 
of a vector-summation operation performed among column 
vectors each of which consists of the multiplicative coeffi- 
cients Wn(k) for a particular n scaled by one of the (29-1)  
quantization levels used t o  represent g z L  (n ) .  

Four basic variations on our vector-summation approach 
for the evaluation of the approximate S T F T  are presented 
in this paper. When the number of additions required by 
unrestricted vector-summation exceeds B for a particular 
frame, these techniques sacrifice frequency resolution, fre- 
quency coverage or some combination of the two in pro- 
portion to  the number of additions which have t o  be elim- 
inated. Furthermore, the reduction of frequency coverage 
is designed to  be sensitive to the frequency content of the 
corresponding frame. 

The  loss in frequency resolution or frequency coverage 
results from the exclusion of a subset of vector elements 
from the vector-summation process. Let us assume that  
for the m t h  frame there are N, vectors remaining after the 
exclusion of zero-valued vectors. Since each vector is N / 2  
elements long and in general each element is complex, the 
unrestricted vector-summation process for the m t h  frame 

m-449 
0-7803-1775-0/94 $3.00 0 1994 EEE 



requires N x N ,  real additions. If B 2 N x N,, there is 
no need for further computational efficiency. The  major 
differences among the four techniques arise when B < N x 
Nu. 

2. TIME-NARROWING TECHNIQUE 
T h e  simplest of the four approaches, frame-adaptive time 
narrowing involves the use of a counter to  ensure that  the 
number of vectors summed for the m t h  frame does not ex- 
ceed [ B L N J .  For each g:,(n), as defined in (4), a counter 
nu is initialized to  zero and the value of the argument n is in- 
cremented starting from a value of mL - N ,  + 1. Whenever 
the value of g:,(n) is non-zero, the corresponding vector 
addition is performed and the counter n, is incremented 
and compared to  [ B I N ] .  The process for tha t  frame stops 
when nu matches [ B / N J  or the full length of gE,(n)  has 
been covered by the incrementing variable n. Since the 
number of non-zero elements in g:,(n) is sensitive t o  the 
frequency content of the corresponding signal frame, the 
amount of time narrowing introduced by this approach is 
similarly frame dependent. Generally speaking, frames with 
spectral energy concentrated in lower frequency regions ex- 
perience a lesser degree of loss in frequency resolution. 

3. FREQUENCY-NARROWING TECHNIQUE 
T h e  idea behind this approach is t o  compute X z , ( k )  for a 
restricted set of values for k in order to  keep the number of 
additions below B. I t  is desirable for the restricted range to  
include frequencies a t  which the corresponding signal frame 
has its most significant spectral energy. Toward this end, 
experiments were conducted to  find the  dependence of the 
number of non-zero samples in each frame to  the frequency 
content of the frame [2] [3]. The results are presented in 
Figure 1. 

Consider the data in Figure 1 for the case of 3-level quail- 
tization. For each frame length, N,,  this da ta  may be mod- 
eled by a monotonically increasing function: 

Nu = N,(1 - e-6f ) ;  0 5 f 5 0.5 (5) 

where f denotes normalized discrete-time frequency. The  
da ta  of Figure 1 along with the corresponding models are 
shown in Figure 2. Obviously, the actual da ta  is not mono- 
tonically increasing in the higher frequency regions. How- 
ever, we model it t o  be a monotonically increasing function 
because such a function may be inverted t o  obtain an ex- 
pression for frequency in terms of the number of non-zero 
samples detected in gzL(n): 

f = -(1/6) l og  (1 - 2) W (6) 

Our approach to  frequency narrowing for the mth  signal 
frame s tar ts  by counting the total number N ,  of non-zero 
samples in g:,(n). Using (6),  the  value f, for f is obtained 
and converted to  the integer k,, calculated as [ f o N J .  Let- 
ting R be LB/2NuJ ,  the values of k1 and kz are then se- 
lected such that  the frequencies a t  which the N-point D F T  
is calculated are centered as much as possible around the 
frequency f,: 

kl = Lo- 191 
kz = k,+ [ f j  - 1  

(7) 

When k ,  - LR/2J < 1, we set kl to 1, and kz to  R .  Sim- 
ilarly, when k, + LR/2J > N / 2 ,  we set kz to  N / 2  and kl 
to  N / 2  - R f 1. The  flowgraph for an algorithm based 
on this adaptive frequency-narrowing approach is shown in 
Figure 3. The centering of the restricted frequency region 
about f, is based on the assumption that  the underlying 
frame has a significant amount of spectral energy in the 
vicinity of the frequency which corresponds to  N ,  through 
the relationship in (6).  

As alluded to  earlier, the actual relationship between f 
and N, (as represented in Figure 2 )  is not monotonic a t  
higher frequencies. In particular, this means that  each value 
of N ,  beyond a particular threshold corresponds to  more 
than a single value o f f .  The  modeling of the data  in that  
region by a monotonic curve can therefore lead t o  substan- 
tial inaccuracies in determining the dominant frequency in 
a frame on the basis of its Nu measurement. For values of 
B which force the frequency coverage to  be severely limited, 
such inaccuracies in the estimation of the center frequency 
can cause frequency regions with significant spectral energy 
t o  be missed. To circumvent this problem, we have for- 
mulated one approach which combines time and frequency 
narrowing and another one which carries out a type of fre- 
quency reversal when high-frequency energy is determined 
to  dominate a frame. 

4. HYBRID NARROWING TECHNIQUE 
This approach is designed to guarantee minimum frequency 
coverage in order to  mitigate the effects of unreliable “center 
frequency” estimates obtained through (6).  This is achieved 
by first using frequency narrowing with the constraint that  
the width of the narrowed frequency range, R = [ B / 2 N u J ,  
is not smaller than a pre-specified number R,,,. When 
R < R,,,,  frequency coverage is kept a t  R,,,, and time 
narrowing is used for reducing the number of vectors in the  
summation process to  LB/2Rm,,J.  By setting the value of 
R,,, in the hybrid narrowing approach to  specific values, 
it is possible to  obtain S T F T  approximations with a “bal- 
anced” sacrifice of time-resolution and frequency-coverage. 

5. FREQUENCY REVERSAL TECHNIQUE 
In this technique we apply backward differencing on both 
the quantized frame, f:,(n), and its “frequency reversed” 
version, (-l)”f:,(n). The  vector summation is applied 
t o  whichever result has the smaller number of nonzero ele- 
ments. This procedure has the advantage that  if f:,(n) is 
a high-frequency frame, its frequency reversed version is a 
low-frequency frame. Consequently, applying backward dif- 
ferencing to  (-l)*f:,(n) yields a smaller number of non- 
zero samples and therefore fewer additions are needed in 
the vector summation process. 

6. EXAMPLE 
In Figure 4, we illustrate quality versus efficiency trade- 
offs which can be obtained with our techniques in the case 
of a musical signal corresponding to two consecutive notes 
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played on a violin. Figure 4(a) corresponds to the exact 
FFT-based S T F T  computed with 8960 real arithmetic op- 
erations ( 40% are multiplications) per frame. Figures 4(b), 
4(c), and 4(d) correspond t o  the Approx. S T F T  perfor- 
mance with 4480, 2240, and 1120 real addition operations 
respectively. The  number of real multiplications is less than 
3% of the number of real additions in the case of the Ap- 
prox. STFT.  
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Figure 2.  The data shown i n  Figure 1 plotted along with 
the corresponding models expressed in  (5). The curves with 
dashed lines depict the models. 
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Figure 1. The number of non-zero samples N ,  obtained after 
3-level quantization and backward differencing of sinusoidal 
frames with different frequencies. The curve joining the points 
marked with 0 ’s  represents the results for frames of length 128 
samples, whereas the curve joining the points marked with +Is 
depicts the results for 64-sample frames. 

Figure 3. The flowgraph of the algorithm for calculating 
the approximate STFT based on the frequency narrowing ap- 
proach. 
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Figure 4. A comparison of  the exact and the approximate 
STFTs corresponding to  a violin playing a sequence of two 
notes. (a) corresponds t o  the exact FFT-based STFT com- 
puted with 8960 real arithmetic operations ( 40% are multipli- 
cations) per frame. (b),(c) and (d) correspond to  the Approx. 
STFT performance with 4480, 2240, and 1120 real addition 
operations respectively. 
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