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ABSTRACT

We consider the problem of embedding one signal (e.g., a digital watermark), within another “host” signal to form
a third, “composite” signal. The embedding must be done in such a way that minimizes distortion between the
host signal and composite signal, maximizes the information-embedding rate, and maximizes the robustness of the
embedding. In general, these three goals are conflicting, and the embedding process must be designed to efficiently
trade-off the three quantities.

We propose a new class of embedding methods, which we term quantization index modulation (QIM), and
develop a convenient realization of a QIM system that we call dither modulation in which the embedded information
modulates a dither signal and the host signal is quantized with an associated dithered quantizer. QIM and dither
modulation systems have considerable performance advantages over previously proposed spread-spectrum and low-
bit(s) modulation systems in terms of the achievable performance trade-offs among distortion, rate, and robustness of
the embedding. We also demonstrate these performance advantages in the context of “no-key” digital watermarking
applications, in which attackers can access watermarks in the clear.

We also examine the fundamental limits of digital watermarking from an information theoretic perspective and
discuss the achievable limits of QIM and alternative systems.

Keywords: dither modulation, quantization index modulation, information embedding, digital watermarking,
steganography, data hiding

1. INTRODUCTION

A variety of related applications have emerged recently' that require the design of systems for embedding one signal,
sometimes called an “embedded signal” or “watermark”, within another signal, called a “host signal”. These ap-
plications include copyright notification and enforcement, authentication, and transmission of auxiliary information.
Digital “fingerprinting” and enforcement of copy-once features in digital video disc recorders? are two commonly
cited copyright enforcement applications, for example. In each of the proposed applications, the embedding must be
done such that the embedded signal causes no serious degradation to its host. At the same time, the host always
carries the embedded signal, which can only be removed by causing significant damage to the host.

Various information-embedding algorithms have been proposed® in this still emerging field. Some of the earliest
proposed systems®* employ a quantize-and-replace strategy: after first quantizing the host signal, these systems
change the quantization value to embed information. A simple example of such a system is so-called low-bit(s)
modulation (LBM), where the least significant bit(s) in the quantization of the host signal are replaced by a binary
representation of the embedded signal. Recently, spread-spectrum based systems, which embed information by adding
to the host signal a small pseudo-noise signal that i1s modulated by the embedded signal, have received considerable
attention in the literature. (Several references are provided, for example, by Swanson, et al.! ) However, as we
demonstrate in this paper, spread-spectrum based systems offer relatively little robustness to noise when the host
signal is not known at the decoder. Intuitively, when the host signal is not known at the decoder, as is typical in
many applications of interest, it is a source of noise. With a spread-spectrum system, the host signal is an additive
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Figure 1. General information-embedding problem model. An integer message m is embedded in the host signal
vector x using some embedding function s(x, m). A perturbation vector n corrupts the composite signal s. The
decoder extracts an estimate m of m from the noisy channel output y.

noise that is often much larger, due to distortion constraints, than the pseudo-noise signal carrying the embedded
information.

While a number of embedding strategies have been proposed in the literature, much work remains to characterize
the inherent trade-offs among the robustness of the embedding, the degradation to the host signal caused by the
embedding, and the amount of data embedded. In this paper we introduce a framework for characterizing these trade-
offs and develop a new family of information-embedding techniques based on ensembles of quantizers that perform
these trade-offs efficiently. We refer to this family of techniques as “quantization index modulation” (QIM),? and we
also explore a special member of this family, “dither modulation”. As we will show, this new method of embedding
information offers significant advantages over previously proposed spread-spectrum and LBM techniques.

In Sec. 2 we formalize the information-embedding problem using a general problem model applicable in many
scenarios of interest. This characterization of the problem leads quite naturally to the class of information-embedding
systems that we present in Sec. 3, namely quantization index modulation systems. Dither modulation is discussed in
Sec. 4, including a demonstration of its performance advantages over spread-spectrum and LBM techniques. In Sec. 5
we show that QIM systems also have attractive performance advantages in the context of no-key digital watermarking
since they are robust to in-the-clear attacks. We discuss the limits of digital watermarking over random channels
from an information-theoretic perspective in Sec. 6. Finally, some concluding remarks are presented in Sec. 7.

2. PROBLEM MODEL

Although a variety of information-embedding applications exist, many of these can be described by Fig. 1. We have
some host signal vector x € ®" in which we wish to embed some information m. This host signal could be a vector
of pixel values or Discrete Cosine Transform (DCT) coefficients from an image, for example. Alternatively, the host
signal could be a vector of samples or transform coefficients, such as Discrete Fourier Transform (DFT) or linear
prediction coding coefficients, from an audio or speech signal. We wish to embed at a rate of R, bits per dimension
(bits per host signal sample) so we can think of m as an integer, where

me{1,2,... 2NV} (1)

An embedding function maps the host signal x and embedded information m to a composite signal s € RV subject
to some distortion constraint. For example, one might choose the squared-error distortion constraint

1
D(s,%) = s = x|* < Dina. (2)

The composite signal s is passed through a channel, where it is subjected to various common signal processing
manipulations such as lossy compression, addition of random noise, and resampling, as well as deliberate attempts to
remove the embedded information. We let y € Y denote the output of the channel and define a noise or perturbation
vector to be the difference n 2 y—s. Thus, this model is sufficiently general to include both random and deterministic
perturbation vectors and both signal-independent and signal-dependent perturbation vectors. Specific channels that
will be of interest in this paper are:

1. bounded perturbation channels: A key requirement in the design of information-embedding systems is

that the decoder must be capable of reliably extracting the embedded information as long as the signal is
not severely degraded. Thus, it is reasonable to assume that the channel output y is a fair representation of
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the original signal. One way to express this concept of “fair representation” is to bound the energy of the
perturbation vector,
2 2 2
lly —slI” = [In]" < Noy,. (3)

This channel model, which describes a maximum distortion® or minimum SNR constraint between the channel
input and output, may be an appropriate model for either the effect of a lossy compression algorithm or
attempts by an active attacker to remove the embedded signal, for example.

2. bounded host-distortion channels: Some attackers may work with distortion constraint between the host
signal, rather than the channel input, and the channel output since this distortion is the most direct measure
of degradation to the host signal. For example, if an attacker has partial knowledge of the host signal, which
may be in the form of a probability distribution, so that he or she can calculate this distortion, then it may be
appropriate to bound the expected distortion E[D(y,x)].

3. probabilistic channels: In some contexts it may be convenient to assume some probability distribution for
n. Two examples of probabilistic channels are discrete, memoryless channels and Gaussian channels.

The decoder forms an estimate m of the embedded information m based on the channel output y. In the case of the
bounded perturbation channel, we can characterize the robustness of the system by the maximum allowable o2 such
that we can still guarantee that m = m. Alternatively, in the case of probabilistic channels, we can characterize the
reliability of the system by the probability of message error Pr[m # m] or bit-error rate. The problem we face is
to design an embedding function s(x, m) that achieves the best possible trade-off among the three parameters rate,
distortion, and robustness (or reliability).

3. QUANTIZATION INDEX MODULATION

Specifying the performance requirements of an information-embedding system in terms of rate, distortion, and
robustness leads quite naturally to the notion of quantizer ensembles and a new method of information embedding,
as we develop in this section. In the last section, we consider the embedding function s(x, m) to be a function of
two variables, the host signal and the embedded information. However, we can also view s(x, m) to be a collection
or ensemble of functions of x, indexed by m. We denote the functions in this ensemble as s(x; m) to emphasize this
view. As one can see from (1), the rate Ry, determines the number of possible values for m, and hence, the number
of functions in the ensemble. The distortion constraint suggests that each function in the ensemble is close to an
identity function so that

s(x; m) = x, Vm. (4)

That the system needs to be robust to perturbations suggests that the points in the range of one function in the
ensemble should be “far away” in some sense from the points in the range of any other function. At the very least,
the ranges should be non-intersecting. Otherwise, even in the absence of any perturbations, there will be some
values of s from which one will not be able to uniquely determine m. This property along with (4) suggests that the
functions be discontinuous. Quantizers are just such a class of discontinuous, approximate-identity functions. Then,
“quantization index modulation (QIM)” refers to embedding information by first modulating an index or sequence of
indices with the embedded information and then quantizing the host signal with the associated quantizer or sequence
of quantizers.

Fig. 2 illustrates this QIM information-embedding technique. In this example, one bit is to be embedded so
that m € {1,2}. Thus, we require two quantizers, and their corresponding sets of reconstruction points in RV are
represented in Fig. 2 with x’s and o’s. If m = 1, for example, the host signal is quantized with the x-quantizer, i.e.,
s is chosen to be the x closest to x. If m = 2, x is quantized with the o-quantizer. Here, we see the non-intersecting
nature of the ranges of the two quantizers as no x point is the same as any o point. We also see the discontinuous
nature of the quantizers. The dashed polygon represents the quantization cell for the x in its interior. As we move
across the cell boundary from its interior to its exterior, the corresponding value of the quantization function jumps
from the x in the cell interior to a x in the cell exterior.

*Some types of distortion, such as geometric distortions can be large in terms of squared error, yet still be small perceptually. However,
in some cases these distortions can be mitigated either by pre-processing at the decoder or by embedding information in parameters of
the host signal that are less affected (in terms of squared error) by these distortions. For example, a simple delay or shift may cause large
squared error, but the magnitude of the DFT coefficients are relatively unaffected.
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Figure 2. Quantization index modulation for information embedding. The points marked with x’s and o’s belong
to two different quantizers, each with its associated index. The minimum distance dy,in measures the robustness to
perturbations, and the sizes of the quantization cells, one of which is shown in the figure, determine the distortion.
If m =1, the host signal is quantized to the nearest x. If m = 2, the host signal is quantized to the nearest o.

A few parameters of the quantizer ensemble conveniently characterize the performance of a QIM system. As
noted above the number of quantizers in the ensemble determines the information-embedding rate. The size and
shape of the quantization cells determine the distortion due to the embedding. Finally, the minimum distance dp;in
between the sets of reconstruction points of different quantizers in the ensemble determines the robustness of the
embedding. We define the minimum distance to be

A . . . .
doin 2 min, i [s(xi; 1) = 5(x5)]. )
(i,4):8#F (xi,x;)

Intuitively, the minimum distance measures the size of perturbation vectors that can be tolerated by the system.
For example, in the case of the bounded perturbation channel, the energy bound of Eq. (3) implies that a minimum
distance decoder is guaranteed to not make an error as long as

dZ

R (6)

In the case of an additive white Gaussian noise channel with a noise variance of o2, at high signal-to-noise ratio the
minimum distance also characterizes the error probability of the minimum distance decoder,®

d?.
Pr[rﬁ;ﬁm]NQ( ﬁ)

The minimum distance decoder to which we refer simply chooses the reconstruction point closest to the received
vector, 1.e.,
m(y) = argmin min ||y — s(x; m)||. (7)
m X

If, which is often the case, the quantizers s(x; m) map x to the nearest reconstruction point, then (7) can be rewritten
as

m(y) IargngliHIIY—S(y;m)ll- (8)

From the preceding discussion, we see that the nonzero minimum distance of QIM systems offers quantifiable
robustness to perturbations, even when the host signal is not known at the decoder. In contrast, spread-spectrum
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based systems that have been proposed recently offer relatively little robustness to perturbations if the host signal
is not known at the decoder. These systems embed information by adding a pseudo-noise vector w(m) to the host
signal,
s(x,m) =x+w(m). 9)
From the definition of minimum distance (5),
dmin = min  min ||x; + w(i) —x; — w(j
Jmin - min (x4 w(i) - x5~ wi)|
= min |Ix +w(i) = (xi + w(i) — w(j)) — w(j)]
(i,5):1#7
= 0.

Thus, although these systems may be effective when the host signal is known at the decoder, when the host signal
is not known, they offer no guaranteed robustness to perturbations. As alluded to in Sec. 1, in a spread-spectrum
system (9), x is an additive noise that is often much larger than w due to the distortion constraint. The quantization
that occurs with quantization index modulation, however, removes much of the noisiness introduced by x.T We shall
see this robustness advantage in Sec. 4 in the context of dither modulation, a special case of quantization index
modulation.

4. DITHER MODULATION: A SPECIAL CASE

For ease of implementation and analysis, one may want to impose some structure on the quantizer ensembles discussed
78 which have the property
that the quantization cells and reconstruction points of any given quantizer in the ensemble are shifted versions of the

in the last section. A convenient ensemble to consider are so-called dithered quantizers,

quantization cells and reconstruction points of any other quantizer in the ensemble. In non-watermarking contexts,
the shifts typically correspond to pseudorandom vectors called dither vectors. For information-embedding purposes,
the dither vector can be modulated with the embedded signal, i.e., each possible embedded signal maps uniquely
onto a different dither vector d(m). The host signal is quantized with the resulting dithered quantizer to form the
composite signal. Specifically, we start with some base quantizer q(-), and the embedding function is

s(x;m) = q(x + d(m)) — d(m).
We call this type of information embedding, which is a special case of quantization index modulation, “dither

modulation”.

As a simple example, we consider the case of coded binary dither modulation and uniform, scalar quantization
with step size A. We assume that 1/N < R,, < 1. The dither vectors in a coded binary dither modulation system
are constructed in the following way:

e The NR,, information bits {by, bs, ..., byr, } representing the embedded message m are error correction coded
using a rate-k, /k. code to obtain a coded bit sequence {zl, Z9, ..., zN/L}, where

L= Ri(ku/kc).

m

(Tn the uncoded case, z; = b; and ky/k. = 1.)

e Two dither subvectors of length-L are constructed with the constraint

oy d; (1 +A/2, d;(1) <0 .
di(z)_{diglg—A/Z diEIgZO ., i=1,...,L,

where d;(1) and d;(2) are the i-th components of the two dither subvectors. This constraint ensures that the
two corresponding L-dimensional dithered quantizers are the maximum possible distance from each other. For
example, a pseudorandom sequence of +A/4 and its negative satisfy this constraint. One could alternatively
choose d;(1) pseudorandomly with a uniform distribution over [-A/2, A/2].}

tConsider, for example, that a quantized random variable has finite entropy while a continuous random variable has infinite entropy.
{ A uniform distribution for the dither sequence implies that the quantization error is statistically independent of the host signal and
leads to fewer “false contours”, both of which are generally desirable properties from a perceptual viewpoint.”
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e One dither subvector is associated with a 0, and the other is associated with a 1.

o The sequence of N/L dither subvectors associated with the coded bit sequence z1, zo, . . ., zy/ 1, are concatenated
to form d(m) € RV.

If the error correction code is a binary block code with a minimum Hamming distance of dg, then the recon-
struction points of any given quantizer in the resulting ensemble are shifted by +A/2 in each dimension relative to
the points of any other quantizer over at least Ldy dimensions. Thus, the minimum distance squared (5) is

A\’ ko\ 1 /AN 1 /A’
. =Ldg (=) =(dg=2)=— (=) =~v— | = 1
w=tan (3) = (w2) 7 (3) —*m (3) (o)
where v, = d(ky/ke).

If the quantization cells are sufficiently small such that x can be modeled as uniformly distributed within each
cell, the expected squared-error distortion per sample (2) of a uniform, scalar quantizer is

A/Z A2

E[D(s,x)] = %/_A/sz de =75 (11)

Thus, with bounded perturbation energy and a minimum distance decoder (8), the guaranteed error-free decoding
condition (6) can be used to compactly express the trade-off among distortion, robustness and rate:
dr2nin
4No2
A2
—>1
— T 1I6NRpo? ~
N 3 1 A?/12
Y4 NR, o2

n

3 1 E[D(s,x)]

= |\"INR, oI

> 1. (12)

The second line follows by substituting the expression in (10) for d%. . The third line is a re-grouping of factors

from the second line. The fourth line follows from (11). Thus, for example, at a fixed rate R, to tolerate more
perturbation energy o2 requires that we accept more expected distortion E[D]. Eq. (12) conveniently relates design
specifications to design parameters for dither modulation systems. For example, if the design specifications require
an embedding rate of at least R, and robustness to noise of at least ¢2 in energy per sample, then (12) gives the
minimum embedding-induced distortion that must be introduced into the host signal, or equivalently via (11) the
minimum quantization step size A, to achieve these specifications. Finally, we see that ~. is the improvement or gain
in the trade-off among distortion, robustness, and rate due to the error correction code. For example, an uncoded
system has 7. =1 =0 dB.

As mentioned in Sec. 3, spread-spectrum systems have dpin = 0, so no condition analogous to (12) exists under
which error-free decoding is guaranteed. The nonzero minimum distance of QIM systems leads to a performance
advantage over spread spectrum in the case of random additive white Gaussian noise channels as well.” Although
LBM systems have nonzero minimum distance, the achievable performance trade-offs are not as good as those of dither
modulation (12). We show in App. A that the LBM system corresponding to the coded binary dither modulation
system of this section is worse by 2.43 dB (Eq. (18)).

5. ROBUSTNESS TO IN-THE-CLEAR ATTACKS

As mentioned in Sec. 2, some attackers may exploit partial knowledge of the host signal. In these cases a bounded
host-distortion channel model, rather than a bounded perturbation channel model, may be appropriate.

In addition, these attackers may also exploit knowledge about the embedding and decoding processes. To limit
the attackers’ knowledge, some digital watermarking systems use keys, parameters that allow appropriate parties to
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Table 1. Attacker’s distortion penalties. The distortion penalty is the additional distortion that an attacker must
incur to successfully remove a watermark. A distortion penalty less than 1 (0 dB) indicates that the attacker can
actually improve the signal quality and remove the watermark simultaneously. In the quantization index modulation
case, reconstruction points are assumed to lie at centroids of quantization cells.

Embedding Distortion Penalty
System (Dy /D)
1d%. /N
Quant. Index Mod. | 1+ _% >0dB
4  Dg
Binary Dith. Mod 14+ 3/4 >0 dB
y . . e NE.
Spread Spectrum —oo dB
LBM <0dB

embed and/or decode the embedded signal. The locations of the modulated bits in a LBM system and the pseudo-
noise vectors in a spread-spectrum system are examples of keys. If only certain parties privately share the keys to
both embed and decode information, and no one else can do either of these two functions, then the watermarking
system is a private-key system. Alternatively, if some parties possess keys that allow them to either embed or decode,
but not both, then the system is a public-key system since these keys can be made available to the public for use
in one of these two functions without allowing the public to perform the other function. However, in some scenarios
it may be desirable to allow everyone to embed and decode watermarks without the use of keys. For example, in
a copyright ownership notification system, everyone could embed the ASCII representation of a copyright notice
such as, “Property of ...” in their copyrightable works. Such a system is analogous to the system currently used to
place copyright notices in (hardcopies of) books, a system in which there is no need for a central authority to store,
register, or maintain separate keys — there are none — or watermarks — all watermarks are English messages —
for each user. The widespread use of such a “no-key” system in which the watermark is “in the clear” requires only
standardization of the decoder so that everyone will agree on the decoded watermark, and hence, the owner of the
copyright.

In this section, we examine the robustness of QIM, spread spectrum, and LBM systems to in-the-clear attacks
from adversaries that have a distortion constraint, partial knowledge of the host signal, and full knowledge of the
embedding and decoding processes including any keys. We show that of the three systems considered, only QIM
systems are robust enough such that the attacker must degrade the host signal quality to remove the watermark.

The measure of robustness is Dy, the minimum expected squared-error per letter distortion between y and x that
an attacker would need to impose in order to cause a decoding error. We use Dy to denote the expected distortion
between s and x. The ratio between Dy and Ds is the distortion penalty that the attacker must pay to remove
the watermark, and hence, is a figure of merit measuring the trade-off between robustness and embedding-induced
distortion at a given rate. Distortion penalties for QIM, spread-spectrum, and LBM systems are derived below and
are shown in Table 1.

5.1. Quantization Index Modulation

We first consider the robustness of quantization index modulation. We assume that all reconstruction points s lie at
the centroids of their respective quantization cells.

We use R to denote the quantization cell containing x and py(x) to denote the conditional probability density
function of x given that x € R. Again, for sufficiently small quantization cells, this probability density function can
often be approximated as uniform over R, for example. Since s 1s the centroid of R,

/R(s—x)px(x) dx = 0. (13)

Also, the average squared-error per letter distortion due to the embedding given x € R is

1
Dy = N/ [|s — x||2px(x) dx. (14)
R
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The most general attack can always be represented as y = s 4+ n, where n may be a function of s. The resulting
distortion is

Dy = 5 [ lly=xlnix N/ (s =) + ()
_ L o2 A2 4.7 _
= N/ [|s — x|| px(x)dx+N||n|| /Rpx(x)dx—f—Nn /R(s X)px (%) dx

([

= Dg
+N

where we have used (14), the fact that py(x) is a probability density function and thus integrates to one, and (13) to
obtain the last line. For a successful attack, ||n|| > dmin/2 so our figure of merit for a quantization index modulation
system is

Dy > 1+ 1d12nln/N
Dy 4 Dy
Thus, for any QIM system of nonzero dmin, the attacker’s distortion penalty is always greater than 1 (0 dB), indicating
that to remove the watermark, the attacker must degrade the host signal quality beyond the initial distortion caused

by the embedding of the watermark.

(15)

In the special case of coded binary dither modulation with uniform, scalar quantization considered in Sec. 4,
q. (10) gives d%.., and Eq. (11) gives the distortion Ds. Thus, the attacker’s distortion penalty (15) that must be
pald to defeat the watermark in this case is

Dy
Ds

21+’7c

NRn,

5.2. Spread-spectrum Modulation

The embedding function of a spread-spectrum system is
s=x+w(m),
so the resulting distortion is
Ds = ||w|]*/N > 0.

An attacker with full knowledge of the embedding and decoding processes can decode the message m, and hence,
reproduce the corresponding pseudo-noise vector w. Therefore, the attacker can completely remove the watermark
by subtracting w from s to obtain the original host signal,

y=s—w(m)=x.

Hence, the resulting distortion penalty is
D
y — i = —oco dB.
Dg Dg

Because the spread-spectrum embedding function combines the host signal x and watermark w(m) in a simple
linear way, anyone that can extract the watermark, can easily remove it. Thus, these systems are not very robust to
in-the-clear attacks. In contrast, the quantization that occurs in quantization index modulation systems effectively
hides the exact value of the host signal even when the embedded information m is known, thus allowing no-key digital
watermarking with a positive (in dB) attacker’s distortion penalty.

5.3. Low-bit(s) Modulation

The embedding function of a LBM system can be written as

s = q(x) + d(m),
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where q(-) represents the coarse quantizer that determines the most significant bits and d represents the effect of the
(modulated) least significant bits. Because the embedding never alters the most significant bits of the host signal,

a(s) = a(x).
One possible attack is to simply remodulate the least significant bits with some other message m’,
y = als) + d(m') = q(x) + d(m').

Since both s and y are both low-bit(s) modulated versions of x, the distortions must be equal, particularly if the
distortions are averaged over all possible choices of m and m’. Thus, the attacker’s distortion penalty in this case is

Dy

S

= 1=0dB,

i.e., an attacker can remove the watermark without causing additional distortion to the host signal. This result applies
regardless of whether error correction coding is used. Thus, in contrast to dither modulation (See Table 1.), error
correction coding does not improve low-bit(s) modulation in this context. As a final note, although the distortion
penalty for this particular attack is 0 dB, this attack is not necessarily the best that an attacker could choose. Thus,
the argument above shows only that 0 dB i1s an upper bound on the distortion penalty, a fact that is reflected in

Table 1.

6. FUNDAMENTAL PERFORMANCE LIMITS FOR RANDOM CHANNELS

In previous sections we consider primarily deterministic channels using worst-case analyses, determining the per-
formance limits of digital watermarking that is robust to all attacks belonging to a given class such as bounded
perturbation or bounded host-distortion attacks. These analyses rely on very few assumptions about the channel.
In some scenarios, however, one may wish to incorporate additional knowledge about the relationship between the
channel input and output. A common approach to modeling this relationship is to assume a conditional probabil-
ity law of the channel output given the input. In this section, we consider the fundamental limits of information
embedding over these random channels.

We restrict our analysis to the case of a blockwise independently and identically distributed (iid) host, a blockwise-
memoryless channel, a block embedding function, and a random embedded message. Specifically, the assumptions
are:

I

L. blockwise-iid host signal: The host signal is x = [x; ---xn/z]", where the x; are a collection of iid, L-

dimensional subvectors with a probability density function py(z;).
2. blockwise-memoryless channel: We assume a probabilistic channel model of the form

N/L
pyis(y1s) = [T pyis(usls)),
j=1

where y = [y; - - ')/N/L]T and s = [s; -- 'SN/L]T~

3. block embedding function: The overall N-dimensional embedding function s(x, m) can be decomposed into a
sequence of N/L L-dimensional embedding functions so that s; is a function of only x; and z;, the i-th subvector
of an encoding of m. This model is sufficiently general to include both QIM systems with finite-dimensional
quantizers and spread-spectrum systems, as explained below.

4. random message: In this section the information-embedding rate Rp, is the amount of information, as
measured by its entropy, that is embedded per host signal sample. Thus, we consider m to be a random integer
chosen uniformly from the set {1, .., 2Ny }
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Figure 3. Equivalent super-channel for information embedding. The embedding function can be decomposed into
two stages, encoding and combining. The cascade of the combiner with the true channel forms a super-channel.

The embedding system can be decomposed into two stages as shown in Fig. 3. The first stage is an encoder, which
takes the embedded information m as input and produces the N/L L-dimensional code subvectors z; as output. The
second stage combines each z; with the corresponding x; to form s;. A QIM system combines by quantizing x; with
the quantizer associated with z;. For example, z; could be the dither subvector of a dither modulation system. A
spread-spectrum system combines by adding to x; the pseudo-noise subvector associated with z;. We see that in both
cases the cascade of the combiner with the true channel forms a blockwise-memoryless super-channel.

For a given combiner, reliable information-embedding (where Pr[m # m] is arbitrarily small) is possible if and

only if
1

where I(-;-) denotes mutual information.’® Thus, the optimal encoder and combiner maximize I(z;y) subject to
a distortion constraint E[D(s,x)] < Dmax. Also, in general, the optimal encoder involves long codes that achieve
optimal performance asymptotically with large N/L.

Useful insight can be obtained by considering the case of a scalar combiner (L = 1) and an additive noise channel
(n = y — s is independent of s). Interestingly, in the small distortion limit (where the host signal variance o2
is much larger than the embedding-induced distortion Ds), the achievable information-embedding rate with dither
modulation can be nonzero even if the achievable rate with an additive spread-spectrum system is zero, as we show
below. This result indicates that dither modulation is much more attractive than spread spectrum for applications
where the host signal, rather than channel noise, is the dominant noise source at the decoder, a result that is closely
related to the minimum distance properties of the associated systems developed in Sec. 3 and 4.

With an additive system such as spread spectrum, y; = s; + n; = z; + x; + n;. Thus, the achievable rate I(z; y)
equals the capacity of an additive noise channel with a power constraint E[z%] = D, on the input and an effective
noise x + n. In the small distortion limit, the effective noise variance o2 4 o2 is infinite, even if 2 is finite (not much
larger than Ds). Thus, if the effective noise has a Gaussian distribution, for example, the capacity of this effective
additive noise channel is zero. Indeed, even if the effective noise 1s not Gaussian, but one uses, as is commonly
done, a Gaussian codebook for z and a minimum distance decoder (or equivalently, a correlation decoder), then the
capacity is still zero.!!

In contrast, the achievable rate with dither modulation can be nonzero, which can be shown by first defining a

random variable v; 2 q(y;) — yi and noting that

vi = qlgx+2zi)—zi+n)—[q06 + z) —zi + ni]
= qm—z)+qx+z)—qxi+z)+z—mn
= zi+q(n —z)— n,
where z; is the i-th element of the dither vector. The first two terms of the second line arise from the identity

q(q(a) + b) = q(a) + q(b) for a uniform scalar quantization function ¢(-). The third line shows that v; is independent

of x;, and hence, I(z;v) can be greater than zero even when o2 is infinite. (For example, when 02 = 0 and z has
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a uniform distribution over the quantization cell, v; = z; and I(z;v) is infinite.) The data processing inequality'’
states that I(z;y) > I(z;v). Thus, if I(z;v) can be nonzero in the small distortion limit, then so can the achievable
embedding rate I(z;y).

More general results on achievable information-embedding rates can be found in an upcoming paper.!?

7. CONCLUDING REMARKS

Quantization index modulation (QIM) systems in general, and dither modulation in particular, offer significant
performance advantages over previously proposed spread-spectrum and low-bit(s) modulation systems in terms of the
achievable trade-offs among information-embedding rate, distortion, and robustness. For a given rate and embedding-
induced distortion, the nonzero minimum distance of QIM systems makes the embedding considerably more robust
than that of spread-spectrum systems, which have zero minimum distance, in scenarios where the host signal is not
available at the decoder. We have demonstrated this performance advantage in the fairly general cases of bounded
perturbation channels and bounded host-distortion channels, both of which may be useful for modeling effects of
lossy compression or an adversary’s attempts to remove the embedded signal with an SNR constraint, for example.

No-key digital watermarking systems may be useful for applications such as copyright identification, provided that
these systems are robust to in-the-clear attacks. In these scenarios, an attacker of a QIM system incurs a distortion
penalty despite the fact that the attacker can exploit full knowledge of the embedding and decoding processes. In
contrast, an attacker incurs no distortion penalty when attacking a low-bit(s) modulation system and can actually
completely remove the watermark with no distortion when attacking a spread-spectrum system due to its simple,
linear nature.

Finally, information-theoretic analysis also reveals performance advantages of QIM systems in the commonly
studied case of additive random noise channels.

APPENDIX A. LOW-BIT(S) MODULATION DISTORTION

In this appendix we calculate the expected squared-error distortion per sample of a low-bit(s) modulation system.
We assume that the host signal and embedded signal are statistically independent.

The embedding function of such a system can be written as
s = q(x) + d(m),

where q(+) is a coarse quantizer that determines the most significant bits in the quantization of x, and d is determined
by the modulated least significant bits. We define q(-) such that its reconstruction points lie at the centroids of its
quantization cells so that

Elq(x) — x] = 0. (16)
Then, the expected distortion is
FEls=x17] = E [lal) - x+d(m)|]
= S E [l - Xl + 2(a() — )7 d(m) + [d(m)]|]
= B lal) — %] + 5 B [ld(m)] (7

where we have used (16) and the independence of x and m to obtain the final line. Thus, the overall distortion is
the distortion of the coarse quantizer plus the expected magnitude-squared per sample of the least significant bits
adjustment vector d(m).

We consider the special case of a uniform, scalar quantizer with modulation of the least significant bit and compare
its distortion to the dither modulation example of Sec. 4. The low-bit modulation system is illustrated in Fig. 4.
The coarse quantizer q(-) has a step size of A, and every component of d equals +A/4. Consequently, the system
has the same minimum distance as the dither modulation system of Sec. 4 and, hence, the same noise tolerance for a
given rate. If we make the same assumption as in Sec. 4 that x can be modeled as uniformly distributed within each
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Figure 4. Low-bit modulation with a uniform, scalar quantizer. The quantizer has a step size of A/2, and the
least significant bit (Isb) is modulated. All reconstruction points marked with a x have a Isb of 0. Points marked
with a o have a Isb of 1. This process is equivalent to first quantizing using a quantizer with a step size of A, whose
reconstruction points are marked with a e, and adding +A /4.

cell of q(-), then the first term in (17) is A?/12, the same as the expected distortion (11) of the dither modulation
system. The second term is A%/16 since every component of d is £A/4. Thus, the overall expected distortion is

11\ T
<E+E>A_48A'

Therefore, the low-bit modulation system is worse than the dither modulation system by

/A8 T
TE-1" 2.43 dB. (18)
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