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ABSTRACT

This paper explores the use of randomized sam-
pling in implementing convolution in discrete-time
with application to the areas of approximate fil-
tering, low-power filter design, and hardware fail-
ure modeling. Three distinct randomized sampling
methods are presented and additive error models
as well as second-order error statistics are derived
for these for both white and semi-correlated sam-
pling processes. Discrete-time randomized sampling
(RS) is then considered as a filter approximation
method and conditions are derived under which RS-
based approximations to the Wiener filter lead to a
smaller mean-square estimation error than the best
constrained LTI approximation. The tradeoff be-
tween power savings and output quality is also in-
vestigated for low-power applications. In addition,
the RS framework is used to model a class of ran-
dom hardware failures and algorithms are presented
to improve the output SNR.

1. INTRODUCTION

Signal processing algorithms are designed to satisfy
a variety of constraints depending on the applica-
tion and the resources available [1]. For example,
when the amount of computation or the processing
time is an issue, algorithms should be optimized for
computational or time efficiency while low-power al-
gorithms are designed for use in environments where
power is limited such as battery-powered mobile de-
vices. In this paper, we present a framework based
on randomly sampling signals or the impulse re-
sponse of LTI filters which allows the modification
of pre-existing algorithms to meet certain complex-
ity, robustness or power constraints. Since this ap-
proach does not require re-computation of the filter
coeflicients, it is not computationally intensive and
therefore is particularly attractive in applications
where real-time adjustments to changing resources
is needed.
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Randomized sampling is defined within the
broader randomized signal processing framework
used when the signal conversion or processing proce-
dures are performed stochastically. When the sam-
pling is performed at random time-intervals, it is
described as randomized. Most of the randomized
sampling literature starts from a continuous-time
signal and thus consists of a randomization of the
sampling process [2]. In this paper, the random-
ized sampling is carried out exclusively in discrete-
time and can therefore be thought of as randomized
down-sampling.

In the next sections, we start by defining discrete-
time randomized sampling and deriving models and
properties for the resulting errors. This frame-
work is then applied to the problem of approximat-
ing Wiener filters and conditions are derived under
which randomized sampling methods perform bet-
ter, in a mean-square sense, than more traditional
approximation methods. We also explore random-
ized sampling in a low-power digital filtering con-
text. Power savings are evaluated and the trade-off
between power and system performance is analyzed.
We then consider hardware failure models in which
the distortion introduced by the faulty system can
be represented by the randomized sampling algo-
rithms, and present simple techniques that guaran-
tee a desired performance level under a given prob-
ability of failure.

2. DEFINITIONS

Given an LTI system with a wide-sense-stationary
stochastic input z{n] and deterministic impulse re-
sponse hin], we define as discrete-time randomized
sampling the process of randomly setting some of
the time samples of the input or the filter impulse
response to zero and denote it RS with the under-
standing that the sampling is performed exclusively
in discrete-time. There are three forms of RS: ran-
domized sampling of the input, randomized sam-
pling of the filter impulse response, and iterative
randomized sampling of the filter impulse response.

¢ Randomized sampling of the input (RSI).
Let r5[n] be a wide-sense-stationary stochastic



process with mean m.., independent of z[n), and
that can only take on values zero or one. RSI
refers to the process of multiplying the input
z[n] by rs[n] and then filtering the result with
hln], i.e. the resulting output, y1{n], can be

written as:
+o0
viln] = Y roklzklhln— k. (1)
k=—o00

Randomized sampling of the filter im-~
pulse response (RSF).

If the process r4[n] is multiplied by the filter im-
pulse response, h[n], then the resulting scheme
is referred to as RSF. In this case, the output

is given by:
+o0
veln] = > rilklplklzln~ K. (2)
k=—00

Iterative randomized sampling of the fil-
ter impulse response (IRSF).

A more elaborate sampling technique consists
of randomly sampling the filter impulse re-
sponse at each iteration of the convolution sum.
The output can then be written as:

+oo

S° rifns k)hK)aln — k).

k=-—-00

3)

y3[n]

We restrict r;[n;k] to be a wide-sense-
stationary two-dimensional stochastic process
with mean m,, independent of z[n], and that
can only take on values zero or one.

3. LINEAR ERROR MODELS

Since the desired system has output yn)

;:_OQ h[k]z(n— k], any of the three RS techniques
will result in some error. In each case, it can be
shown [3] that the RS output can be expressed as
y[n] scaled by m, added to an error term e]n] which
is uncorrelated with y[n]. In addition, if the sam-
pling is white, the error sequence e[n] is white only
for IRSF. Table 1 gives the second-order error statis-
tics for the three sampling methods using white sam-
pling sequences.

A generalization of the IRSF white sampling ap-
proach which we refer to as semi-correlated sampling
consists of using a sampling process that is white in
one dimension and correlated in the other. This re-
sults in two different sampling strategies. We first
counsider the case in which the processes used to sam-
ple the impulse response in order to compute suc-
cessive output samples are uncorrelated with each
other, i.e. 7s[n;k] is white in the n-dimension

Method | Cy,,[m] Ceelm]

and C,,, [m;]]
RSI a?8m] 2Cr [0]Chi[m]
RSF a?é(m] 02Chi[0]Cre[m]
IRSF | o28[m]ol] 72C [0]Ch [0][m]

Table 1: Second-order error statistics for the differ-
ent sampling methods using white sampling func-
tions. Cp,,,[m] and Cy,,, [m;!] are the sampling pro-
cesses covariance functions, and o2 = m,(1 — m,.).

but arbitrary in the k-dimension. The covariance
function of 74[n;k] is thus given by Cr . [m;l] =
my(1 — m;)8[m]Cyy[l] where m, is the mean of the
process and Cgg4ll] is a one-dimensional covariance
function that is not restricted to be white and de-
scribes the second-order statistics of rs[n; k| in the
k-dimension. It can be shown that the error result-
ing from such sampling is still white with variance
given by the first entry in Table 2. In addition, if
Cygll] represents a first-order process, i.e. Cggll] =
O[l] ~ bl — 1] — adfl+ 1] where —1 < & < 1, then the
covariance of the error is given by the second entry
in Table 2. Alternatively we can choose r4[n; k) to
be white in the k-dimension i.e. white at each con-
volution step but correlated in the n-dimension. In
this case, the two-dimensional covariance function of
the sampling process can be written as C,.,,, [m; 1] =

(1 —my)Cyy[m]d[l], where m, is the mean of the

1408

process and Cyy,[m] is a one-dimensional covariance
function that is not restricted to be white and de-
scribes the second-order statistics of r4(n; k] in the
n~dimension. The resulting error has a covariance
function proportional to the product of the covari-
ance of the input and Cy,[m) as shown in the third
entry in Table 2. If Cy,[m] is a first-order process,
ie. Culm] = 8[m] — adfm — 1] — ad[m + 1] where
again —1 < a < 1, then the covariance of the error
is given by the last entry in Table 2.

4. ERROR ANALYSIS

As indicated in Table 1, in the white sampling case,
the error sequences resulting from all three sam-
pling schemes have the same total power: m,(1 —
M )Cix[0]Cr1[0] and therefore they all lead to the
same full-band output signal-to-noise ratio (SNR).
However, the errors have different spectral densi-
ties and therefore lead to different in-band SNR, i.e.
for bandlimited outputs, the ratio of the power in
the output signal to the noise power within the sig-
nal band is different across sampling methods. In
fact, IRSF always leads to a higher in-band signal-
to-noise ratio than RSI if the filter is bandlimited.
If, on the other hand, the input has a bandlimited
power spectrum, then IRSF always leads to a higher



CryryIm; 1]

Cee|m]

a%s [m]Cyqll]
if Cggll] = 6[1] — ad[l — 1] — ad[l + 1)

02Cyy[m]d[l]
if Cyo[m] = 8[m] — ad[m — 1] — ad[m + 1]

%> 2y hKIA[Cqll = K]Cou [l — Klo[m]
o2(Chrl0]Cas[0] — 2aCha[1]Cra[1])8[m)]

02Chn[0]Cyy [m]Caz[m]
02Cn[0]Ca2[0](8[m] —

age=flolm — 1] — aGe=fifolm + 1))

Table 2: Second-order error statistics for IRSF using semi-white sampling processes. C., ., [m;] is the sampling
process covariance function, Cgg[l] and Cy,[m] are covariance functions that describe the correlation of the
two-dimensional sampling process, rs[n; k|, in the k- and n-dimensions respectively, and 02 = m,(1 — m,.).

in-band SNR than RSF. In addition, it follows that
in the case where the filter is bandlimited to wg, if
the ratio of input power within the filter band to
total power in the input is greater than 22, then
IRSF always leads to a higher in-band SNR than
RSF, and thus in this case, IRSF leads to the high-
est in-band SNR. Similar reasoning can be applied
to the case where the input power is bandlimited to
wg. There are therefore clear advantages to using
IRSF over other sampling methods.

The results in Table 2 further suggest that im-
proved error behavior can be obtained if appropri-
ate correlation is introduced in the sampling process.
For example, if o = sign{Chp[1]Csz[1]} in the first
semi-correlated sampling example with error covari-
ance given by the second entry in Table 2, then the
resulting error has a lower variance than the error re-
sulting from white sampling, therefore leading to im-
proved SNR. Similarly, while the total power in the
error resulting from the second semi-correlated sam-
pling example with error covariance given by the last
entry in Table 2 is the same as the white sampling
case, if a = sign{C,.[1]}, the error power is highest
at high frequencies whereas if a = — sign{Cy.[1]},
the error power is highest at low frequencies. This
spectral shaping is reminiscent of the error behavior
in a sigma-delta A/D converter and can be exploited
to shape the IRSF error and therefore increase the
in-band SNR.

5. RS-BASED APPROXIMATIONS
TO WIENER FILTERS

One direct application of RS consists of reducing
the complexity of a filter by lowering the amount of
computation (number of non-zero multiplications)
needed per output sample therefore trading-off qual-
ity for computation. In this section, we consider the
application of IRSF to approximate Wiener filters.
We also compare the performance of IRSF-based ap-
proximations to traditional methods corresponding
to approximating the original LTI filter of length P
by a shorter LTI filter of length M, where M < P.
Specifically, the objective is to obtain an approx-
imation to the best linear mean-square estimator
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(the Wiener filter) of the signal y[n] based on the
received data, z[n]. Using the mean-square estima-
tion error as a performance metric, we wish to define
conditions under which IRSF-based approximations
perform better than traditional approximations, i.e.
lead to a smaller increase in mean-square estimation
error. Block diagrams for the different approxima-
tion techniques are shown in Figure 1. Note that
for the case of IRSF, the output is rescaled in order
to express the output of the system as the original
output added to an error term.

(4)
z[n] v[n] —=@— valn]
ea[n]
(B)
z[n] ho[ns k] 177> ys[)
y[n] + es[n]

Figure 1: Block diagram of the LTI (A) and IRSF
(B) approximations of h[n]. y[n] denotes the origi-
nal output of the Wiener filter, e,{n] and e,[n] are
the approximation errors for the LTI and the IRSF
approximation methods respectively, hs[n; k] is the
sampled version of h[n] using IRSF, and m, is the
mean of the sampling process.

In the following, we refer to the difference between
the output of the exact Wiener filter and the out-
put of the approximated filter as the approzimation
error whereas the estimation error refers to the dif-
ference between the desired signal and the output
of the estimator. It can be shown [3] that the in-
crease in mean-square estimation error is equal to
the variance of the approximation error for both the
traditional and the IRSF methods. As a result, the
variance of the approximation errors is a sufficient
measure for this problem.



5.1 Zero-Mean, Unit-Variance, White
Process, z[n|

If the data is white, truncating the Wiener filter im-
pulse response results in the LTT filter with smallest
mean-square approximation error for a given filter
length M. In this case, IRSF using white sampling
outperforms the truncation method and therefore
any approximation technique leading to an FIR fil-
ter of length M if and only if:

L—me Sy (hlk] = hok)?
T S SN

where h,,[n] is the truncated version of h[n] and m,
is the mean of the sampling process and is equal to
the ratio of the length of the original filter, h[n], to
the length of the truncated filter, hy(n]. As a re-
sult, if the ratio of the total energy in the portion of
the impulse response not included in the truncated
filter to the total energy in the truncated impulse re-
sponse is greater than zlm;:’ﬁ, then IRSF leads to an
estimation error with lower variance than the filter
approximation using truncation.

0<

4)

5.2 Non-White Process, z|n|

The truncated Wiener filter is the best length-M
approximation to the linear minimum mean-square
estimator only if the received data, z[n], is white.
If z[n] is not white, then the optimal linear mean-
square estimator needs to be computed every time
M changes. This may not be desirable or even fea-
sible in cases where resources are limited or if al-
gorithm simplicity is of primary concern. In these
cases, a straight-forward approach would be to trun-
cate the Wiener filter or iteratively randomly sample
it if the conditions in equation (4) are satisfied. Al-
ternatively, the estimator could be decomposed into
two systems with different resource allocations: a
whitening filter implemented accurately, and a con-
strained Wiener filter (with limited resources) op-
erating on the whitened data. In this case, the
problem is similar to the one discussed in the previ-
ous section and the IRSF method leads to a better
mean-square estimate if the conditions of equation
(4) are satisfied.

6. OTHER APPLICATIONS
6.1 Low-Power Digital Filtering

Since randomized sampling leads to a reduction in
non-zero terms in the convolution sum, less power
can be consumed to compute the output therefore
leading to a reduction of the switching activity if
one checks for multiply-by-zero operations. Out-
put quality can thus be traded for power savings.
Figure 2 illustrates a low-power implementation for
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discrete-time randomized sampling. At each time
point or clock cycle, a subset of the outputs of the
multipliers is picked by a collection of multiplexers
(abstracted by MUX in the figure), the remaining
multiplications are not performed therefore reduc-
ing computation. The chosen subset is then used as
an input to an accumulator which performs the final
addition to generate the output.

IN L] .
R[] h[u«% h[2]o% -+ hln— 1]+ hin]+®

MUX

OouT

Figure 2: FIR filter structure for low-power filtering
using discrete-time randomized sampling. The rect-
angles represent delay registers and MUX is used as
an abstraction to a collection of multiplexers.

Since the computational load is decreased,
throughput can be maintained while reducing the
supply voltage resulting in additional power sav-
ings. Relative power savings as a function of the
mean of the sampling process is shown in Figure
3 while Figure 4 quantifies the trade-off between
power consumption and output quality using SNR
as a quality measure. Specifically, SNR (in dB)
is-given by 10logyo(7755-) + 1010g10(—6ﬁ[’ﬁ‘%),
where the mean of the sampling process only ap-
pears in the first term which we refer to as gain in
SNR and use as a performance measure in Figure 4.
Note that if none of the filter coefficients are set to
zero, i.e. if m, = 1, the gain in SNR is infinite as
expected.
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Figure 3: Relative percent power consumption as a
function of the sampling process mean m,. [Chan-
drakasan et al.[4] derive a similar relationship where
the relative power consumption is plotted as a func-
tion of the normalized workload.]
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Figure 4: Relative percent power consumption as
a function of the gain in SNR at the output on a
semi-log scale.

6.2 Modeling Hardware Failures

Randomized sampling can also be used to model cer-
tain types of hardware failures. Specifically, in the
case of direct and transposed direct form implemen-
tations of FIR filters and for a given time point n
and a given non-zero filter coefficient hli], the follow-
ing three types of failures generate the same error
and are therefore equivalent from a distortion point
of view:

1. The value of h[] is read as a zero.

. The output of the multiplier associated with
hli] is incorrectly set to zero.

. An addition is skipped by not using the value
resulting from the multiplier operation associ-
ated with h[d].

If for each coefficient h[é] the probability of an er-

ror occurring resulting from one of the above modes

of failures is {1 — m,) and is independent of the
occurrence of other similar errors associated with
other coefficients, then the resulting faulty process is
equivalent to white iterative randomized sampling of
the FIR impulse response. In particular, under these
circumstances and after proper scaling, the distor-
tion introduced consists of additive zero-mean white

noise at the output with variance =2 Cy, [0]Ch [0].
Simple techniques can be used to improve the

output SNR. For example, the input signal can

be up-sampled by a factor of N and filtered at a

higher rate and the resulting output low-pass fil-

tered using more reliable hardware as shown in Fig-
ure 5. Alternatively, N parallel filters could be
used followed by averaging the outputs of the fil-
ters. In both cases, the SNR (in dB) is given by

10 logm(lﬁ_%&) +10 logw(z,—;(%gfc[i}i[—m), where the ef-

fects of N and m, on the SNR only appear in the

first term which we denote as gain in SNR. As an

example, up-sampling by a factor of 10 (or using 10

parallel filters) will be needed to maintain a gain in

SNR of 20dB under a 1% probability of failure.

(A)
FHEH
(B) ’

hin]
Figure 5: (A) Up-sampled implementation for hard-
ware failure applications. L1 and L2 are low-pass
filters with cutoff % and gain N and 1 respectively.
It is assumed that only h,[n] is implemented on the
faulty hardware. (B) Definition of hy[n]. LPF is a
low-pass filter with cutoff % and gain N.

LPF hy[n]

7. CONCLUSION

This paper explored a randomized sampling ap-
proach to implementing convolution in discrete-time
and its applications to three areas: approximate fil-
tering, low-power filter design, and modeling hard-
ware failure. It was shown that correlated sampling
can lead to better error performance than white
sampling and conditions were defined where an it-
erative discrete-time randomized sampling approach
leads to a better approximation to the Wiener filter,
in terms of mean-square estimation error or approx-
imation error, than any LTI approximation tech-
nique. Significant power savings for low-power ap-
plications were also suggested through lower switch-
ing activity and supply voltage scaling. It should
be further noted that because of its low complex-

_ ity, this approach is particularly attractive for ap-
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plications where real-time adjustments are needed
to adapt to changing resources. Finally, we showed
that specific hardware failures could be modeled us-
ing this framework and presented simple algorithms
to improve the quality of the output under a given
probability of failure.
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