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Abstract - A variety of related applications have emerged recently
that require the design of systems for embedding one signal within an-
other signal. We propose a new class of embedding methods called
quantization index modulation (QIM) and develop an example of such
a method called dither modulation in which the embedded informa-
tion modulates the dither signal of a dithered quantizer. We also de-
velop a framework within which one can analyze performance trade-offs
among robustness, distortion, and embedding rate, and we show that
QIM systems have considerable performance advantages over previously
proposed spread-spectrum and low-bit modulation systems.

1. INTRODUCTION

A variety of related applications have emerged recently that require the
design of systems for embedding one signal, sometimes called an “embedded
signal” or “watermark”, within another signal, called a “host signal”. The
embedding must be done such that the embedded signal causes no serious
degradation to its host. At the same time, the host always carries the em-
bedded signal, which can only be removed by causing significant damage to
the host. These applications include copyright notification and enforcement,
authentication, and transmission of auxiliary information. These and other
applications are described 1n [1 , which also provides an overview of several
proposed information-embedding algorithms.

Many algorithms belong to one of two classes: (1) additive techniques such
as spread-spectrum in which a small pseudo-noise signal i1s added to the host
signal and (2) quantize-and-replace strategies that replace a quantized host
signal with another quantization value. A common example belonging to the
second class 1s low-bit(s) modulation (LBM) in which the least significant
bit(s) of the host signal are replaced by the embedded signal.
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Figure 1: General information embedding problem model. An integer m is
embedded in the host signal x. A perturbation vector n corrupts the com-
posite signal s. The decoder extracts an estimate m of m from the channel
output y.

There has been relatively little performance analysis and much work re-
mains to characterize the inherent trade-offs among the robustness of the
embedding, the degradation to the host signal caused by the embedding,
and the amount of data embedded. In this paper we introduce a frame-
work for characterizing these trade-offs and develop a class of information-
embedding systems, quantization index modulation (QIM) systems [2], that
perform these trade-offs efficiently. We demonstrate that dither modulation,
an example of a QIM system, offers significant advantages over previously
proposed spread-spectrum and LBM techniques.

2. PROBLEM MODEL

Although a variety of information-embedding applications exist, many of
these can be described by Fig. 1. We have some host signal vector x € R
in which we wish to embed some information m. This host signal could be a
vector of pixel values or Discrete Cosine Transform (DCT) coefficients from
an image, for example. We wish to embed at a rate of R bits per dimension
{bits per host signal sample) so we can think of m as an integer chosen from
the set {1,2,...,2¥%}. An embedding function maps x and m to a composite
signal s € "V subject to some distortion constraint. For example, one might
choose the squared-error distortion constraint

1
D(s,x) = N—Hs — x||? < Dimax, Ym. (1)

The composite signal is passed through a channel, where it 1s subjected to
various common signal processing manipulations such as lossy compression,
addition of random noise, and resampling, as well as deliberate attempts to
remove the embedded information. We model the combined effects of these
manipulations by the addition of a noise or perturbation vector n € RV,
which can be random or deterministic, signal independent or signal depen-
dent. Thus, this channel model is completely general. However, we assume
that the channel output y must still be a fair representation of the original
signal so in this paper we often bound the energy of the perturbation vector,

In|l* < No. (2)



The decoder forms an estimate m of m based on y. We can quantify the
robustness of the system by the maximum allowable o2 such that we can still
guarantee that m = m. Alternatively, particularly if we wish to model n as
random, we could characterize the reliability of the system by the probability
of message error Pr[fn # m] or bit-error rate. The problem we face is to design
an embedding function s(x, m) that achieves the best possible trade-off among
the three parameters rate, distortion, and robustness (or reliability).

3. QUANTIZATION INDEX MODULATION

Specifying the performance requirements of an information-embedding sys-
tem in terms of rate, distortion, and robustness leads quite naturally to the
notion of quantization index modulation (QIM), as we develop in this sec-
tion. In the last section, we consider the embedding function s(x, m) to be
a function of two variables, the host signal and the embedded information.
However, we can also view s(x,m) as a collection or ensemble of functions
of x, indexed by m. Henceforth, we denote the functions in this ensemble as
s{x; m) to emphasize this view. The rate R determines the number of possi-
ble values for m, and hence, the number of functions in the ensemble. The
distortion constraint suggests that each function in the ensemble is close to
an identity function so that s(x;m) ~ x for all m. That the system needs
to be robust to noise suggests that the points in the range of one function
in the ensemble should be “far away” in some sense from the points in the
range of any other function. At the very least, the ranges should be non-
intersecting. Otherwise, even in the absence of any noise, there will be some
values of s from which one will not be able to uniquely determine m. This
property, when considered with the near-identity property, suggests that the
functions be discontinuous. Quantizers are just such a class of discontinu-
ous, approximate-identity functions. QIM refers to modulating an index or
sequence of indices with the embedded information and quantizing the host
signal with the associated quantizer or sequence of quantizers.

Figure 2 illustrates QIM information embedding for the N = 2 and R = 1/2
case. In this example, one bit is to be embedded so that m € {1,2}. The
reconstruction points in NV of the two required quantizers are represented
in Fig. 2 with x’s and o’s. If m = 1, for example, x is quantized with the
x-quantizer, i.e., s is chosen to be the x closest to x. If m = 2, x 1s quantized
with the o-quantizer.

A few parameters of the ensemble conveniently characterize the perfor-
mance of a QIM system. As noted above, the number of quantizers in the
ensemble determines the information-embedding rate. The size and shape of
the quantization cells determine the embedding-induced distortion. Finally,
the mimimum distance d,,;;, between the sets of reconstruction points of differ-
ent quantizers in the ensemble determines the robustness of the embedding,



Figure 2: Quantization index modulation. The reconstruction points marked
with x’s (m = 1) and o’s (m = 2) belong to two different quantizers. The
minimum distance dpn,;, measures the robustness to noise, and the sizes of
the quantization cells, one of which is shown in the figure, determine the
embedding-induced distortion.

where the minimum distance 1s defined as

dnin = min - min_ fis(xs;4) — s 4)]) (3)
(6,5)3#5 (xi,x;5)

Intwitively, the minimum distance measures the size of noise vectors that
can be tolerated by the system. For example, with bounded noise energy (2)
a minimum distance decoder, which chooses the reconstruction point closest
to the channel output, 1s guaranteed to not make an error as long as

d12nin

ZN—UTZE > 1. (4)
Alternatively, for additive white Gaussian noise with variance o2, the error
probability is ~ Q(dmin/(20,)) at high signal-to-noise ratio [3].

From the preceding discussion, we see that the non-zero minimum distance
of QIM systems offers quantifiable robustness to noise. In contrast, spread-
spectrum systems offer relatively little robustness to noise. These systems
embed information by adding a pseudo-noise vector w(m) to the host signal,
l.e., s{x, m) = x + w(m). The minimum distance of these systems is actually
zero, which can be seen by setting x; = x; +w(i) —w(j) during the minimiza-
tion over (x;,x;) in Eq. (3). Thus, although these systems may be effective
when the host signal is known at the decoder, in the often more typical case
where the host signal is not known, they offer no guaranteed robustness to
noise. Intuitively, when the host signal 1s not known at the decoder, it is a
source of noise. With a spread-spectrum system, x is an additive noise that is
often much larger than w due to the distortion constraint. The quantization
that occurs with QIM, however, removes much of the noisiness introduced
by x by reducing the number of possible values. We further quantify this
robustness advantage 1n Sec. 4.



4. DITHER MODULATION

Dithered quantizers [4] are quantizer ensembles where the quantization
cells and reconstruction points of every quantizer in the ensemble are shifted
versions of some base quantizer q(-). The shift is given by a dither vector d,
which 1n non-watermarking contexts 1s typically chosen pseudorandomly. In
a dither modulation (DM) system, however, the dither vector is modulated
by the embedded information. Specifically, we define a dither vector d(m)
for each possible value of m. Thus, the embedding function is s(x; m) =
a(x + A(m)) — d(m).

As a simple example, we consider the case where q(-) is a uniform, scalar
quantizer with step size A, R is between 1/N and 1, and the N R bits in m
are used to binary amplitude modulate a length-R~! pseudorandom sequence
of +A/4 with these N R sequences concatenated to form d(m). The recon-
struction points of the quantizers in this case lie on hypercubic grids in &Y,
the points of a given quantizer shifted by £A/2 in each dimension relative
to the points of any other quantizer over at least R~' dimensions. Thus, the
minimum distance (3) is dpin == /R 1(A/2)2. If the quantization cells are
sufficiently small such that x can be modeled as uniformly distributed within
each cell, the expected squared-error distortion per sample (1) of a umiform,
scalar quantizer is A?/12. Thus, with bounded noise energy and a minimum
distance decoder, (4) can be used to compactly express the trade-off among
distortion, robustness, and rate as

3 1 E[D(s,x)]
INR o2 > 1. (5)

Thus, for example, at a fixed rate R to tolerate more noise energy o2 re-
quires that we accept more expected distortion E[D]. Eq. (5) is convenient
in relating design specifications to design parameters. For example, if the
design specifications require an embedding rate of at least R and robustness
to noise of at least o2 in energy per sample, then (5) gives the minimum
embedding-induced distortion that must be introduced into the host signal,
or equivalently the minimum quantization step size A to achieve these spec-
tfications. Similar relationships to (5) for other QIM and DM systems [2], for
example those employing error correction codes, can also be derived [5].

As mentioned in Sec. 3, spread-spectrum systems have d,,;;, = 0, so no con-
dition analogous to (5) exists under which error-free decoding is guaranteed.
Furthermore, analysis in [5] establishes that LBM is 2.43 dB worse than DM
in this case of bounded noise.

DM outperforms spread-spectrum not only in the bounded noise case, but
also In the additive Gaussian noise case as well. A plot of bit-error rates, as
measured by Monte Carlo simulations, 1s shown in Fig. 3. The host signal
vectors are DC'T coeflicients of 8 x 8 blocks of an image. We see that at
typical host SNRs of 30-40 dB, the host signal is teo large an effective noise
source for the spread-spectrum decoder to overcome.
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Figure 3. Dither modulation vs. spread spectrum on the additive Gaussian
noise channel. E[D] denotes expected distortion, o2 denotes noise variance,
and SNRyg is the ratio between {|x||* and No2. R = 1/64 bits per pixel.

Finally, DM systems also outperform spread-spectrum and LBM systems
when an adversary tries to remove the watermark by exploiting full knowl-
edge of the embedding and decoding algorithms, including any keys, and any
partial knowledge of x that might be available in the form of a probability den-
sity function, while working under an expected distortion constraint between
y and x. Significantly, while DM systems can benefit from error-correction
coding in this case, spread-spectrum and LBM systems do not [5]. Several
other results on coded QIM systems are also developed in [5].
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