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ABSTRACT

This paper presents dynamic coefficient dither as a method to miti-
gate coefficient quantization error in FIR filters. The uncorrelated,
shapeable noise from dithered coefficients may be preferable, in cer-
tain contexts, to the frequency response distortion due to static fixed-
point implementation. A theoretical framework for the analysis of
coefficient dither is developed. Performance, fundamental tradeoffs,
and optimization of dithered filter implementations are discussed.
Oversampling is shown to improve the SNR. The theoretical results
are validated with numerical experiments.

Index Terms— dither, fixed-point filters, coefficient quantiza-
tion, vector binary processes, noise-shaping

1. INTRODUCTION

Dither has long been used as an alternative to static nonlinearities in
signal quantization, but its use in mitigating coefficient quantization
error in fixed-point digital filters is much less developed. Dithered
filters have been proposed before in [1] based on an empirical treat-
ment. In this paper, we present a theoretically based development of
dithered Direct Form FIR filters.

In our development, we assume that a desired FIR impulse re-
sponse, {b; }-;", with N continuous-valued coefficients, is given.
Fixed-point implementation leads to distortion from this desired re-
sponse [2]. A number of techniques have been developed to mini-
mize this distortion, from optimal bit-allocation programs [3, 4] to
special structures, including cascaded-integrator-comb (CIC) filters
[5]. Each has shortcomings such as design difficulties and limited
re-configurability. Moreover, static fixed-point implementations typ-
ically lead to distortion of the frequency response. In certain applica-
tions, especially perceptual ones, this distortion can be unacceptable.

In this paper, we present an approach inspired by [6] based on
dynamically dithering fixed-point coefficients that mitigates the fre-
quency distortion caused by static coefficient quantization. Cou-
pled with over-sampling and properly designed dither correlation,
we show that coefficient dithering can use coarse fixed-point co-
efficient representations to achieve the performance of filters with
much more finely quantized coefficients. In the limit, coefficient
dithering can be used to implement high-quality filters with one-bit,
multiplier-less coefficients. Such multiplier-less filters could be use-
ful in a number of applications, including ones that require low la-
tency or small VLSI chip area.

Section 2 introduces the standard dithered filter model and the
four types of dithered filters. Section 3 develops Type I standard
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dithered filters in detail. Section 4 introduces the oversampled dither
filter model. Section 5 develops Type I oversampled dithered filters
in detail. Section 6 includes experiments from numerical simulations
to validate the theoretical findings. Coefficient dithering is shown to
offer a powerful alternative to static fixed-point coefficient quantiza-
tion.

2. STANDARD DITHERED FILTER MODELS

In this paper, we assume uniform coefficient quantization with a
fixed step-size A. The analysis can be extended to non-uniform coef-
ficient quantization in a straightforward manner. Figure 1 illustrates
a standard Direct Form FIR dithered filter. Each coefficient in the
tapped delay-line is a random process, b;[n], of the form:

bi[n] = Q(bi) + siAdi[n] €))

where Q(b;) is the quantized coefficient, s; = sgn(b; — Q(b:)),
and d;[n] is a binary dither process which takes the values 0 or 1 at
each n. The mean of d;[n] is constrained such that the dither tap
takes the desired continuous-value on average, i.e. E{b;[n]} = b;.
Mathematically, this implies the constraint:

Bdfn)} = p; = L= QD o

With the constraint of Eqn.(2), the dithered coefficient can be ex-
pressed as: .
b; [Tl} = b; + s;Ad; [n] (3)

where d;[n) = {—pi,1 — p:} is a zero mean process such that
di[n] = pi + di[n]. Using the decomposition of Eqn.(3), the output
of the dithered filter, §[n], can be expressed as:

gln] = 2 bixn —i]+ A i sidi[n)a[n — i “

i=1 i=0

y[n] e[n]

The first term, y[n], is the desired output from a Direct Form FIR fil-
ter with continuous-valued taps b;. The second term, e[n], is dither
noise. In our analysis, we assume that the input and dither are inde-
pendent wide sense stationary (WSS) random processes. From the
constraint of Eqn.(2), the dithered filter has the desired response on
average, i.e. E{e[n]} = 0. Because the dither and input are inde-
pendent, the dither noise is statistically uncorrelated with the desired
output. It can be shown to be a wide sense stationary (WSS) random
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process with auto-correlation:
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sis;Ef{aln—daln+m -3} (5)

This auto-correlation can be shaped and reduced by properly de-
signing the dither correlation. This is the benefit of dithering. The
zero-mean, uncorrelated, shapeable dither noise may be less dis-
turbing, especially in perceptual applications, than the frequency re-
sponse distortion that could result from static fixed-point implemen-
tations.

We use the SNR, defined below, as the error metric in this paper.

E{e?[n]}
The coefficient dither can be viewed as a vector binary process:

d[n] = [do[n]  da[n] dy-fn]]" (M)
There are four forms of coefficient dither depending on the two-
dimensional correlation properties of d[n], in time and across the
taps. These are summarized in Table 1. In the simplest form, re-
ferred to as Type I, the dither across taps is independent and a mem-
oryless Bernoulli process for each tap. Type I dither is developed in
detail in Section 3.

Correlation across the taps can be used to improve performance.
In Type 11 dither, each tap is a Bernoulli process but the correlation
between the taps can be designed to increase the SNR. Intuitively, the
coefficient dither can be designed so that there is partial error can-
cellation at the accumulator. Design is difficult because of the binary
nature of d[n]. Type II dither is not developed in detail in this paper.
The interested reader is referred to [7] for a detailed development.

Coefficient dither can also be correlated in time. Time correla-
tion can be used to frequency-shape the error spectrum in a desir-
able manner. This may be useful in perceptual applications such as
audio, since the ear is less sensitive to high frequency noise. It is
particularly useful in oversampled coefficient dithering, introduced
in Section 4. Similar to Type II dither, the design of time correlation
is difficult because of the binary nature of d[n]. Neither Type III
and Type IV dither are developed in detail in this paper. Preliminary
development of these forms of dither can be found in [7].

Time-Independent | Time-Correlated

Tap-Independent Type 1 Type 111

Tap-Correlated Type 11 Type IV

Table 1. Forms of coefficient dither depending on correlation.

3. STANDARD TYPE I DITHERED FILTERS

Standard Type I dithered filters are the simplest form of dithered
filters with d[n] independent in time and across the taps, i.e.
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Fig. 1. Standard coefficient dithering model.

E{d;[n]d;[n + m]} = 026;;6[m]. Substituting into Eqn.(5), the
dither noise can be shown to be white with auto-correlation:

Ree[m] = A? i: 07 Ry [0]6[m] = E16[m) ®)

where £ = E{¢*[n]} is the MSE. Recall that in a binary process
the mean fixes the variance as o7 = p;(1 — yu;). Substituting the
mean constraint of Eqn.(2) into the expression for the variance into
Eqn.(8), the MSE can be expressed as:

N-1

£ = AR l0) S [bi — Q(b)| — Real0] 3 I — QW) )

1=0 1=0

The b; are fixed by the desired continuous-valued filter and Q(b)
and A are fixed by the coefficient quantization levels. Consequently,
in its simplest formulation, there are no designable parameters for
Type I dithered filters and the MSE is fixed by the desired filter and
coefficient quantization.

In a more advanced formulation, we can achieve a degree of
freedom by scaling the desired continuous-valued taps to b; /K and
adding a continuous-valued scaling K after the filter. In this case, the
filter still has the desired response on average, but the MSE can be
reduced by choosing the scaling appropriately. Naively, it may seem
that the MSE should be independent of scaling K, but this is not the
case. For example, assume that the desired continuous-valued filter
has three taps, b = [% % %] and that the quantization levels are
the integers, Q(b;) = {...,—1,0,1,...}. There are an unlimited
number of (£, K) pairs that can be used to implement this filter.
Two possible pairs are:

Dry=(3 3 A K= 1 1))
(10)

The first pair has dithered taps that switch between 0 and 1 and
has a non-zero MSE. In contrast, the second pair can be implemented
perfectly as a static filter so the MSE is zero. Clearly the second pair
is a better dithered implementation and the choice of scaling matters.

Formally, the scaling design can be expressed as a constrained
optimization:

minimize  K*ARq.[0] 70" |5 — Q(%)]
—K’Rea[0] 050" |3 - ()P (D)
subject to 220l < max {|Q(b:)|}

The constraint ensures that the scaling does not saturate the co-
efficient quantization levels. This optimization can be solved numer-
ically for the optimal scaling K. For the special case of one-bit coef-
ficient quantization, where Q(%) = {—1,0, 1}, the design problem



can be expressed as:

minimize K Ry [0] SN bi| = Raea[0] SN [bil?
12)
subjectto K > max{b;}

The optimal scaling in this special case is to choose K as the
minimal feasible value, K* = max{|b;|}. Intuitively, each random
tap is a source of noise, so the optimal solution is to make the tap
with maximal absolute value statically equal to 1 or —1. For a more
complete study of scaling optimization for Type I filters, the reader
is referred to [7].

Standard dithered filters do not have a better SNR than an op-
timal static implementation. Intuitively, since there are only a finite
number of static fixed-point implementations, these exists a static
implementation that has the minimum MSE. Switching randomly,
using dither, to other non-minimum configurations can only increase
the MSE. The benefit of dither comes from the fact that the form of
the error is potentially less disturbing not a lower MSE.

Type I MSE is dependent on the desired continuous-valued filter
we are trying to implement. Certain filters, like one where the coef-
ficients are all identical, e.g. b = [b b b] , can be perfectly im-
plemented using a a fixed-point implementation and has zero MSE.
Other filters have a higher MSE. For the special case of one-bit co-
efficient quantization, the worst-case MSE for a given length N can
be shown to be:

&(N) < R%M (,/N2+%1+\/Lﬁ> (13)

The derivation is omitted for the sake of brevity. The interested
reader is referred to [7] for a complete derivation of this result.

As implied by Eqn.(13), Type I MSE increases as the number of
taps IV increases. Intuitively this is because with more taps there are
more noise-sources injecting error into the filter. The growth of the
error depends on the ideal filter specification. However, with more
taps we can implement a better filter on average, i.e. we are closer
to the ideal filter specification. There is no ideal operating length,
rather the system designer must choose a suitable operating length
by trading off between the dither noise and filter approximation error.
Section 6 illustrates this tradeoff for a specific example.

4. OVERSAMPLED DITHERED FILTER MODELS

In addition to dithering in the standard Direct Form structure, we de-
velop an ovresampled Direct Form structure illustrated in Figure 2.
There are three major differences from the standard structure. First,
the tapped-delay line is preceded by an upsampling stage. As illus-
trated, The input, z[n], is expanded by a factor of L and interpolated
with, G, (e’*), a LPF with gain L and cutoff 7/ L.

Secondly, the tapped-delay line is expanded, i.e. the unit delays
are replaced with L-element delays. The dithered taps are the same
as in the standard Direct Form structure thought, i.e. the assumptions
of Eqns.(1) through (3) still hold. Note that the tapped delay-line has
N non-zero tap processes, not LN. This is important because, as
discussed in Section 3, the MSE scales with the number of non-zero
tap processes. By fixing the number of taps to N, the MSE is fixed
independent of the rate L.

Thirdly, in the oversampled structure, the tapped delay-line is
followed by a down-sampling stage. As illustrated in Figure 2, the
output of the tapped delay line is anti-aliased with a unity-gain LPF
filter, G¢(e’*), with cutoff 7/ L, and then compressed by L.
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Fig. 2. Oversampled coefficient dithering model.

Using the decomposition of Eqn.(3) , the output before down-
sampling, ¢, [n], can be expressed as:

N-1 N—-1
Juln] = Z bizu[n —iL]+ A Z sidi[n]z[n —iL]  (14)
i=1 i=0

Yuln] ey [n]

After downsampling, the first term become y[n], the desired out-
put from a Direct Form filter with continuous-valued taps b;. Sim-
ilarly, the upsampled dither noise, e, [n], is downsampled into the
dither noise ez, [n]. Mathematically, the output §[n] can be expressed
as:

g[n] = yln] +ec[n] (15)

As in standard dithered filters, the output dither noise can be
shown to be zero-mean, WSS process that is uncorrelated with the
desired output. Its power spectrum can be expressed as:

Serer () = TSesen (@ DIGUE D (16)

where S, ., (e7*) is the power spectrum of e, [n] from Eqn.(14).
From Eqn.(16), we see that the MSE is determined by the power
of ey [n] in the passband of G4(e’*), i.e. |w| < m/L. The auto-
correlation of e, [n] can be expressed as:

=z
L
z
L

Reyen|m] = A? E{ciZ [n}cij [n 4+ m]}

i
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o

$i8jRayw, [m+ L(i = 5)]  (17)

where x,[n] is the upsampled input. Similar to standard dithered
filters, there are four types of oversampled dithered filters depending
on dither correlation. In this paper we only discuss Type I in detail.
Oversampling is shown to provide an L-fold SNR gain over stan-
dard Type I dithered filters. Frequency-shaped dither, both Type I1I
and Type 1V, is particularly useful for oversampled dithered filters
because the dither noise can be shaped into the stop-band of gq4[n].
This can significantly increase the SNR at the output using an ef-
fect similar to sigma-delta noise-shaping. Though frequency-shaped
dither is not discussed in this paper, the interested reader is referred
to [7] for a preliminary development.

5. OVERSAMPLED TYPE I DITHERED FILTERS

In Type I oversampled dithered filters d[n] is independent in time
and across taps, i.e. E{d;[n]d;[n+ m]} = 076;;0[m]. Substituting



into Eqn.(17), the upsampled dither noise auto-correlation can be
expressed as:

N—-1
Reye,[m] = A Y~ 0757 Ry [0]6[m)] (18)

1=0

Which is white and equivalent to the standard Type I dither noise
auto-correlation, Rec[m], from Eqn.(8). This is intuitively sensible
because the oversampled dither noise is from the same number of
noise sources with the same means.

Since the noise spectrum is identical, the optimal design of Type
I oversampled dithered filters is the same as that for standard ones.
Specifically, if allowed, the optimal scaling, K, is the same. Over-
sampling does not add any new degrees of freedom that can be ex-
ploited using Type I dither.

At the output, the Type I dither noise spectrum is:

_&
I

Accordingly, the SNR is L times higher than that of a standard
implementation:

Serer (ejw)

(19)

2
SNR, = 121} {yg ) _ . snr, (20)
1

Intuitively, oversampled coefficient dithering can be interpreted
as the average of L standard dithered filters running independently.
The averaging reduces the dither noise variance while keeping the
desired output unchanged.

Note that there is no theoretical limit to oversampling gain. It
can be used to arbitrarily improve the output SNR — well beyond
that of a static fixed-point implementation. In addition, the dither
noise still remains white and uncorrelated with the input. In practice
though, the hardware constraints will impose a limit, i.e. with larger
L the tapped delay-line must be longer and dither processes must
run faster. All in all, oversampled dithered filters offer a powerful
alternative to static fixed-point coefficient quantization.

6. NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of Type I dithered filters
using an example. In our example, the input x[n] is a WSS DT
ARMA process generated by shaping white Gaussian noise through
a filter:

Glz) = E=20)(z= %) @)

(z = po)(z —p1)

withzg = e ,po = 0.9, and p1 = —0.6. The desired continuous-
valued filter is a N = 33 tap, linear-phase, Parks-McClellan low-
pass filter designed using the specifications: H (/) = 1 for w, =
[0,37/16] and H (e*) = 0 for ws = [57/16, 7).

Our goal is to implement a fixed-point implementation of this
filter where each coefficient has been quantized to one-bit. Mathe-
matically, in our dithered implementation this implies that taps can
only take binary values b;[n] = {0,1} and A = 1. Such a filter
is essentially multiplier-less, the coefficient multiplies are replaced
with switches.

We design a scale optimized Type I dithered implementation by
solving the optimization of Eqn.(12) . We implement a standard
Type I dithered filter and an oversampled Type I dithered filter with
L = 4. For each, we simulate the dithered filter in MALTAB and
generate two million samples of the dither noise e[n] or ez, [n]. Peri-
odogram averaging with a Hamming window of size 2048 with 50%

Jm/2
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overlap is used to approximate 2048 samples of the power spectrum
See(w). The MSE is estimated numerically by averaging the squared
difference between y[n], the desired output of the continuous-valued
filter, and [n] output of the dithered filter.

Figure 6 illustrates the results of Type I standard dithered imple-
mentation. Figure 6(a) illustrates Se.(e’*). As expected, it is white
with height given by Eqn.(8). Figure 6(b) illustrates a section of the
output, §[n], in the time domain along with the desired output, y[n].
The output of the dithered filter is a degraded version of the desired
output y[n]. For this example the SNR is 7.18 dB.

Figure 7 illustrates the same results for the Type I oversampled
dithered implementation. As expected, the error spectrum is still
white, but the noise floor has been reduced due to oversampling
gain. There is a small amount of distortion in the error spectrum
near w = 7 due to the use of non-ideal rate-conversion filters. In the
time-domain, the output of the oversampled BRF, §[n], more closely
follows the desired output, y[n]. The SNR is 13.52 dB, illustrating a
6.34 dB oversampling gain over the standard Type I implementation.

Figure 4(a) illustrates the Type I standard dithered filter SNR
scaling for this particular example as a function of /NV. As expected,
the MSE grows on the order O(\/N ). The error scaling is slower
than the worst-case, Eqn.(13) by a large multiplicative factor.

As noted in Section 3, even though the MSE increases with IV,
with more taps we can implement a better filter. For this Parks-
McClellan example, we can measure the the filter performance using
the max ripple error. Figure 5 illustrates the max ripple error as a
function of V for our filter specifications. It decays quickly with V.
The system designer must make a tradeoff between the max ripple
error in Fig.5 and the SNR in Fig.4 to choose an operating point.

Figure 3 illustrates the SNR as function of oversampling rate,
L, for this example. As expected, the SNR grows as 10log,, L
on the dB plot. Figure 3 also illustrates the SNR of a static fixed-
point filter with one-bit coefficients. It is constant as a function of L.
With about 4x oversampling we can outperform the static fixed-point
filter, while still having uncorrelated, white dither noise.
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Fig. 3. SNR as a function of oversampling rate ,L, for one-bit Type
I dithered implementation of the example of Section 6.
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Fig. 4. SNR as a function of N for one-bit standard Type I dithered
implementation of the example of Section 6.
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Fig. 5. Max ripple error as a function of N for continuous-valued
implementation of the example of Section 6.
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Fig. 6. Error power spectrum and time-domain output for the one-bit
Type I standard dithered implementation of the example of Section
6.
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Fig. 7. Error power spectrum and time-domain output for the one-
bit Type I oversampled dithered implementation of the example of
Section 6. L = 4.



