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ABSTRACT

Soliton solutions to nonlinear wave equations have been
recently proposed as signaling waveforms in a variety of
communication contexts. One such system modulates the
relative positions or amplitudes of multiple solitons gener-
ated by a nonlinear ladder circuit. At the receiver, there
are inherent difficulties in the problems of parameter esti-
mation and detection of soliton signals due to the nonlinear
coupling imposed by the soliton dynamics. In this paper,
we demonstrate that the ladder circuit can act as a tuned
receiver for the component solitons, naturally decoupling
them so that the detection and estimation problems can be
solved with standard techniques. We develop robust and
asymptotically efficient algorithms for maximum likelihood
parameter estimation and present a technique for general-
ized likelihood ratio test detection.

1. INTRODUCTION

Solitons arise in a variety of natural phenomena includ-
ing water waves, anharmonic crystal lattice vibrations, and
pressure waves in liquid-gas bubble mixtures [1}. They are
also present in a number of man-made media such as super-
conducting transmission lines and optical transmission in
nonlinear fibers [2]. Several intriguing experiments have
also been conducted using nonlinear circuits to generate
soliton carrier signals for modulation of information [3]-{8].

Solitons are stable, localized solutions to nonlinear wave
equations that propagate with constant shape and velocity.
The collision of two solitons reveals a particle-like behavior
as each emerges from the collision virtually unchanged. In
fact, solitons can be viewed as the normal modes of cer-
tain nonlinear systems as these solutions satisfy a nonlinear
form of superposition. Although these systems are nonlin-
ear, they are exactly solvable through a technique known as
“inverse scattering,” which decouples the nonlinear modes
and can be viewed as an analog of the Fourier transform [9].

The prevalence of systems exhibiting soliton behavior,
both natural and man-made, indicates a wide range of con-
texts in which one is interested in solving basic signal pro-
cessing problems with soliton signals. In particular, the
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Figure 1. Diode ladder implementation of the Toda Lattice.

problems of parameter estimation and detection arise nat-
urally in the analysis of modulation system performance.
In this paper, the problems of parameter estimation and
detection of soliton signals in the presence of additive cor-
ruption are considered. We will work in the framework of
the Toda lattice circuit shown in Fig. 1, where z, = 1/s?
is a “double capacitor.” In [4}, it is shown that the diode
ladder circuit satisfies the Toda lattice equations [10],

d? . . . ,
e In(1 + 4n) = (fn-1 — 2in + in+1), (1)

where i, is the current through the nth diode, i¢ = #in, and
for simplicity, the parameters of all circuit elements have
been normalized to unity. A single soliton will propagate
along the lattice when the input is

iin(t) = Bsech”(B(t — 6)), )

which results in (1) having the solution

in(t) = Bsech? (B(t - 6) — pn), )

with the dispersion relation 8 = sinh(p). Note that the soli-
tons propagate with a velocity, ¢ = 3/p, that is dependent
on the scale parameter, 8. This implies that tall, narrow
solitons travel faster than short, wide solitons.

For the remainder of this paper, a simplified channel
model will be assumed, in which a received waveform,
r(t) = s(t) + n(t) comprises the transmitted signal, s(t),
in stationary white Gaussian noise, n(t), with power No.
When r(t) is the input to the Toda lattice circuit, i.e.
io(t) = r(t), the signal in(t) = sn(t) + nn(t) may be de-
fined as the nth diode current comprising soliton and noise
components s»(t) and n.(t) respectively. It can be shown
that at high signal-to-noise ratios, the soliton component is
relatively unaffected by the noise while the noise component
is Gaussian and low pass [6].
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Figure 2. A two-soliton solution to the Toda lattice.

We will focus our attention on the two-soliton signal,

(t) = Bisech?(m) + B2sech?(n2) + Asech? (11 )sech?(n2)
S = T (Cosh(¢/2) + sinh(¢/2) tanh(m) tanh(na))2

A =sinh($/2) (81 + 53) sinh($/2) + 2818 cosh($/2)) ,

. (sinh((pr — p2)/2)
¢=ln (Sinh((p1—+ P 2)/2)) ’ )

where §; = sinh(p;) and 7; = B;(t —6;). In Fig. 2, the diode
currents, i,(t), are plotted as a function of time and node
index for £1 = sinh(2) and B2 = sinh(1.5). Note that as the
tall soliton passes through the short soliton, the amplitude
of their nonlinear superposition is actually smaller than the
sum of their individual amplitudes. It can be shown [6] that
when the two solitons precisely overlap, §; = &2, both peak
power and average power are minimized. The nonlinear in-
teraction of the component solitons can also enhance the
parameter estimation error performance[6]. Both of these
properties make the superimposed solitons particularly at-
tractive for a variety of communications contexts.

2. ESTIMATION ALGORITHMS

2.1. General Approach

In this section we will present and analyze the performance
of several algorithms for estimating the parameters of soli-
ton signals. Consider the problem of estimating the posi-
tion, 4, of a single soliton,

s(t; §) = B*sech?®(B(t — 4)), (5)

with the parameter 8 known. For observations in station-
ary white Gaussian noise, the maximum likelihood (ML)
estimate is given by the value of the parameter 6 that max-
imizes the correlation,

0= arg;na,x /; r(t)s(t; 0)dt. (6)

i

It is well-known that an efficient way to perform the cor-
relation (6) with all of the replica signals s(t;6) over the
range dmin < 0 < dmax, is a matched filter.

When the signal r(t) contains a multi-soliton signal,
s(t;3,8) and we wish to estimate the parameter vector §,
the estimation problem becomes more involved. If the com-
ponent solitons are well separated in time, then the max-
imum likelihood estimator for the positions of each of the

r(t)—> | LPF |— iin(t) — | Toda [— in(t)

Figure 3. Toda lattice receiver model.

component solitons would again involve a matched filter
processor followed by a peak-detector for each soliton.

If the component solitons are not well-separated and are
therefore nonlinearly combined, such as on the 10th node
in Fig. 2, a better approach is needed. The estimation of &1
and d2 should not be performed independently. The maxi-
mum likelihood processor would correspond to a minimiza-
tion of the difference between the observed signal r(t) and
a replica signal s(t; 8,8) over the parameter space,

5 = argmin / Y (¢ 0) - o 8,007t @)
8 t;

The estimation problems can be conveniently decoupled
by preprocessing the signal r(t) with the Toda lattice. By
setting 4in(t) = 7(t), as the signal i, (t) propagates through
the lattice, the component solitons will naturally separate.
Since the noise component remains Gaussian and low pass
[5] the ML estimator, 4y, (in), reduces to a set of matched
filters, one for each of the component solitons. The invert-
ibility of the lattice equations via inverse scattering guar-
antees that the ML estimate d,;; (r(t)) will be the same as
the estimate dy; (in(t)). This is base on the well-known
invariance property of the ML estimator.

For the purposes of our simulations, we assume that the
receiver comprises a low pass filter followed by a Toda lattice
circuit as shown in Fig. 3 and that the bandwidth, 27/A,
of the low pass filter in Fig. 3 is wide enough to pass the
soliton component of r(t) completely. The input #in () to
the Toda lattice circuit then comprises the soliton signal in
low pass Gaussian noise. Simulations of the algorithms were
performed using a Runge-Kutta integration routine with a
fixed step size, A. To model the effects of the noise, an i.i.d.
Gaussian random sequence, w(kA) ~ N(0,02), was added
to the samples of the input sequence i, (kA) resulting in an
effective white noise power of No = Ac?2,.

2.2. Position estimation

If the component solitons separate by the Nth node, the
signal will appear to be a linear superposition of two soli-
tons,

sn(t) ~ Plsech®(Bi(t~d1)—pN —¢/2)  (8)
+  Bisech®(Ba(t — 62) — paN + ¢/2), (9) :

where ¢/2 is a shift incurred due to the nonlinear interac-
tion. Matched filters can now be used to detect the arrival
of each soliton at the Nth node. We formulate the estimate

31 = (t‘ﬁm —_ Mﬂ"l‘_(ﬁ/z) , 82 — (ttllV,Z - pZNﬁ‘; ¢/2> ,
(10)

where t% ; is the time of arrival of the sth soliton at node
N. The performance of this algorithm for a two-soliton
signal with 8 = [sinh(2), sinh(1.5)] is shown in Fig. 4. As
would be expected, the position estimates of the tall soliton
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Figure 4. The CRB for 61 and 82 are shown with solid
and dashed lines, while the estimation error results of 100
Monte-Carlo trials are indicated with o’ and ’z’ marks, re-
spectively.

are superior to those of the short soliton. However, since
the solitons in r(t) are overlapping, the Cramér-Rao bound
(CRB) for the position of the small soliton is, in fact, less
than that of the larger[6]. Note that although the error
variance of each estimate appears to be a constant multiple
of the CRB, the estimation error variance approaches the
CRB in an absolute sense as No — 0, indicating that the
estimates are asymptotically efficient.

A sufficient statistic for the estimation of 3 based on ob-
servations of a single soliton in Gaussian noise does not exist
due to the highly nonlinear manner in which the parame-
ter appears both in the time and the amplitude scales of
the signal [6]. Although an ML solution might be found
by numerical maximization of the likelihood function, such
a solution would be computationally intensive. However,
through the framework of inverse scattering, we can obtain
estimates that appear empirically to be both unbiased and
asymptotically efficient.

2.3. Inverse Scattering Based Estimation

Inverse scattering theory for the Toda lattice demonstrates
that the eigenvalues of the matrix,

On-2

@n-2 bp-1 Gn-

n n—1 n—1 , (11)
An—1 bn Qn

L(t) =

are time-invariant, where a, = %e(”"_”""")/z, bn = Un/2,
and v, (t) are the node voltages for any solution to the Toda
lattice [10]. Further, the eigenvalues of L(t) for which |X:| >
1 correspond to soliton solutions, with 8; = {/A? — 1.

A natural algorithm for jointly estimating the parameters
B; for a single or multi-soliton solution arises. By processing
the received signal r(t) with the Toda lattice, the sequences
a,, and b, may be obtained from measurements of the cir-
cuit. The parameter estimation algorithm now amounts to
the estimation of the eigenvalues of L(t).

The algorithm performance for the joint estimation of the
parameters 31 = sinh(2) and §; = sinh(1.5) of a two-soliton
signal is shown in Fig. 5.
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Figure 5. The CRBs for i and B2 are shown with solid
and dashed lines, while the estimation error results of 100
Monte-Carlo trials are indicated with ’o’ and ’z’ marks, re-
spectively.

3. DETECTION OF SOLITON SIGNALS

The problem of detecting a single soliton or multiple non-
overlapping solitons falls within the theory of classical de-
tection. When the signal 7(¢) contains a multi-soliton signal
in which the component solitons are not resolved, the clas-
sical approach to detection becomes more complex. If the
relative positions of the component solitons are known a pri-
ori, then the detection problem reduces to deciding which
among several possible signals is present. For a two-soliton
signal in stationary white Gaussian noise, n(t), we have

Hy : r(t) =n(1),

Hi : r(t) =s:1(t) + n(t),

Hy : r(t) = s2(t) + n(?t),
Hyz o r(t) = s12(t) + n(t),

where s1(t), s2(t), s12(t) are soliton 1, soliton 2 and the two-
soliton signals respectively. If the relative positions of the
solitons are unknown, then the signal s12(t) will vary signif-
icantly as a function of the relative separation, d; — &z (see
Fig. 2). The general problem of detection with an unknown
parameter, d, can be handled in a number of ways. If the
parameter can be modeled as random and the distribution
for the parameter is known, ps(d), along with the distribu-
tions p,is,# (R|4, H;) for each hypothesis, then the Bayes or
Neyman-Pearson criteria can be used. Unfortunately, even
when the distribution for the parameter J§ is known, the
likelihood ratios cannot be found in closed form.

Another approach that is commonly used is to assume
that the value of the unknown parameter ¢ is equal to its ML
estimate. Such techniques are called “generalized likelihood
ratio tests” (GLRT) and perform well in practice when the
likelihood function has a sharp peak near its maximizing
value, 8y, If we employ a GLRT for the multi-soliton
detection problem, we are again faced with the need for an
ML estimate of the positions, 8,,,. A standard approach
would involve turning the current problem into one with
hypotheses Ho, H1, and H> as before, and an additional M
hypotheses—one for each value of the parameter § sampled
over a range of possible values. Additionally, the complexity
of the detection problem increases exponentially with the
number of component solitons, Ny, resulting in a hypothesis
testing problem with (M + 1)+ hypotheses.
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Fortunately, as with the estimation problems, the detec-
tion problems can be decoupled by preprocessing the signal
(t) with the Toda lattice. If the component solitons sepa-
rate as viewed on the Nth node in the lattice, the detection
problem can be more simply formulated using the signal
in(t). Again, the invertibility of the lattice equations im-
plies that the GLRT decision based on r(f) must be the
same as that based on ix(t). In the high signal-to-noise
ratio limit, the noise component of the signal is essentially
low pass and Gaussian. Therefore, the GLRT based on
the signal in (t) reduces to a simple form involving only N
matched filters.

3.1. Simulations

For simplicity, we consider a hypothesis test between Ho
and Hj2, where the separation of the two solitons, §; — da,
varies randomly in the interval {—1/82,1/8:]. The detec-
tion processor comprises a Toda lattice of N = 20 nodes,
with the detection performed based on the signal i10(t). To
implement the GLRT, we search over a fixed time interval
about the expected arrival time for each soliton and select
the maximum matched filter output for each. In this man-
ner we obtain a sequence of 1000 Monte-Carlo values of the
processor output for each soliton under each hypothesis. A
set of Monte-Carlo runs has been completed for each of 3
different levels of the noise power, Ng.

The receiver operating characteristic (ROC) for the soli-
ton with B2 = sinh(1.5) is shown in Fig. 6. For comparison,
we also show the ROC that would result from a detection of
the soliton alone at the same noise level and with the time-
of-arrival known. The detection index, d = 1/ E/Njy, is indi-
cated for each case, where F is the energy in the component
soliton. The corresponding results for the larger soliton are
qualitatively similar, although the detection indices for the
soliton with 8 = sinh(2) alone are 5.6,4, and 3.3 respec-
tively, therefore the detection probabilities are considerably
higher for a fixed probability of false alarm. Note that the
detection performance for the small soliton is well modeled
by the theoretical performance for detection of the smaller
soliton alone.

4. CONCLUSIONS

In this paper we have developed algorithms for parameter
estimation and detection of soliton signals in the presence
of additive white Gaussian corruption. Each of these al-
gorithms exploits the Toda lattice as a tuned receiver for
soliton signals, naturally decoupling the component solitons
as they propagate. At high signal to noise ratios, the noise
component of the solution to the lattice equations remains
low pass and Gaussian and is decoupled from the solitons.
This allows for maximum likelihood time-delay estimation
and GLRT detection to be performed after preprocessing
of the received signal. The resulting estimation algorithms
are unbiased and asymptotically approach the Cramér-Rao
bounds.

One outstanding issue is the determination of appropriate
bounds on the theoretical performance of the GLRT for the
detection of soliton and multi-soliton signals. Another po-
tentially interesting area of research includes a theoretical
investigation of the performance of the inverse scattering
based algorithms for parameter estimation. The lack of a
sufficient statistic for estimation of the parameter 3 stems

B,=sinh(1.5)
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Figure 6. A set of empirically generated ROCs are shown
for the detection of soliton 2 under His. The theoretical
ROCs for detection of the soliton under H, are indicated
with dashed lines, along with the detection indices, d.

from the highly nonlinear manner in which the parameter
appears both in the time-scale and the amplitude scale of
the signal. Such signals have attracted increasing atten-
tion in the research literature, and have been shown to lend
themselves naturally to multi-scale processing.
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