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ABSTRACT whereb is a vector of coefficients) is a symmetric positive definite

This paper considers two problems in sparse filter design, the firstir- atrix, cisa vector of the.s.ame length & andy. > 0. This
volving a least-squares constraint on the frequency response,&and rmulation allows for a unified approach to .50"’"?9 not only the
second a constraint on signal-to-noise ratio relevant to signal detefV0 problems stated but also o_ther problems involving perform_ance
tion. Itis shown that both problems can be recast as the minimizatioﬁr!ter!a that can be expressed in the fqrm Of (1)'. One example is the
of the number of non-zero elements in a vector subject to a quadrat '“?”0“ of mean sql_Jared error used in e_st_lmatlop, Wh'C.h fo_rms the
constraint. A solution is obtained for the case in which the matrix asis for such techniques as linear prediction, Wiener filiering, and
in the quadratic constraint is diagonal. For the more difficult non-€ast-mean-square adaptlvg fllter!ng [71. o

diagonal case, a relaxation based on the substitution of a diagonal "€ design of sparse filters is related to but distinct from the

matrix is developed. Numerical simulations show that this diagonaP’©P/em of obtaining sparse solutions to underdetermined linear
relaxation is tighter than a linear relaxation under a wide range ofduations, which occurs for example in compressive sensing [8].

conditions. The diagonal relaxation is therefore a promising candi'—a‘lth(mgJh a quadratic_ constra_int s sometimes also used in the un-
date for inclusion in branch-and-bound algorithms. derdetermined equations setting, for example to model the presence
of noise, the matrix corresponding @ is rank-deficient and con-

Index Terms— Sparse filters, least squares methods, signal desequently the set of feasible solutions is qualitatively different from

tection, relaxation methods that specified by (1).
In Sections 3-5, we concentrate on solving the problem of sparse
1. INTRODUCTION design subject to (1). Whe is a diagonal matrix, a maximally

sparse design can be easily obtained as described in Section 3. In
In the efficient implementation of discrete-time filters, it is often de-most other cases, however, the problem is much more difficult and
sirable to have filters with fewer non-zero coefficients, i.e., spars@o polynomial-time algorithm is known. Our focus in this paper is
filters, as a means of reducing the costs of implementation, wheth@n developing relaxations of the problem that are efficiently solvable
in the form of computation, hardware, or power consumption. Theand lead to strong lower bounds on the true optimal cost, for example
design of sparse filters under a Chebyshev error criterion in the frewithin a factor close to unity. Such relaxations are potentially use-
guency domain has been examined from a variety of perspectives, ifll as part of a branch-and-bound procedure for solving thelenob
cluding integer programming [1] and heuristic approaches [2—4]. Irexactly and are the basis of future work. In Section 4, we discuss the
comparison, the case of a weighted least-squares criterion has not teehnique of linear relaxation, while in Section 5, we introduce an
ceived much attention. As discussed in [5], a weighted least-squaredternative method, referred to as diagonal relaxation, in wlidh
error metric is commonly employed as an alternative to a Chebysheeplaced by a diagonal matrix. Numerical experiments presented in
metric because of greater tractability and an association with sign&@ection 6 demonstrate that the lower bounds resulting from diago-
energy or power. nal relaxations are often significantly tighter than those from linear

The approximation of desired frequency responses constituteelaxations.

one class of filter design problems. Another important context in
which filters are used is in the detection of signals in noisy environ- 2. FORMULATION OF SPARSE FILTER DESIGN
ments, where the objective of filtering is to increase the probability
of detection. A widely used measure of performance in detection it this section, we formulate the problems of sparse filter design
the signal-to-noise ratio (SNR) of the filter output. It is well-known ith a weighted least-squares error criterion and sparse filter design

that the SNR is monotonically related to the probability of detectionfor signal detection under a common framework corresponding to
in the case of Gaussian noise [6].

In this paper, we consider two problems in sparse filter design, min |[bll, st (b- c¢)'Qb —c) <~, (2)
the first involving a weighted least-squares constraint on the fre- b
quency response, and the second a constraint on SNR. In Sectighere the zero-norm notatidib||, refers to the number of non-zero
2 it is shown that both problems can be formulated in terms of &|ements inb. The constraint in (2) may be interpreted geometri-
single quadratic constraint, specifically of the form cally as specifying an ellipsoid centeredeatThe eigenvectors and
b0 — ) < 1 eigenvalues ofy determine the orientation and relative lengths of
( °) Ql ©) <7, @) the axes of the ellipsoid while determines its absolute size. An
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with f = Qc andg = v — ¢ Qec. whereby is the|Y|-dimensional vector formed from the entries of
b indexed byY (similarly for fy), andQyy is the|Y| x || matrix

2.1. Weighted least-squares filter design formed from the rows and columns @ indexed byy. We consider
minimizing the left-hand side of (8) with respectltg . If this min-
Consider the design of a causal FIR filter of lengfhwith coeffi-  imum is greater thay?, then (8) cannot be satisfied for any value of
cientsb,, and frequency response by and a feasible solution with, = 0, n € Z cannot exist. It is
N1 ;tr_aiggtfok:watr)d to s(h(gw b)y_(lii;feregtiation thattl thﬂe1 left Sidd? is ;nin-
w —jwn imized whenby, = . Consequen e condition for
H(e™) =) bue @ feasibiltyis e ey
=0 —fy (Quy) ' fy < 8. ©)
chosen to meet a squared-error constraint: We refer to an index se€¥ (equivalentlyZ) as being feasible if (9)
1 x . - ?s satisfieo_l._ Similarly i_n the case of problem (3),is feasible only
> / W (w) |H(eJW) _ D(eJW)’ dw < 6, (5) if the modified constraint
- S§by N
whereD(e’) is the desired frequency responéés the desired tol- \/m =P

erance, and¥ (w) is a non-negative and even-symmetric weighting
function. The number of non-zero coefficients is to be minimized.is satisfied when the left-hand side is maximized. The maximizing
Substituting (4) into (5), expanding, and comparing the result withvalues ofby, correspond to a whitened matched filter for the par-

(3), we can identify tial signalsy and are proportional to{)Ryy)*1 sy. The resulting
1 [ feasibility condition is /sT, (Ryy) ™ 'sy > p, or after squaring,
Qmn = 2—/ W (w) cos((m — n)w)dw, (6a)
ﬂ'
1 o o sy (Ryy) sy > p°. (10)
fo=gp [ W@D(E) dv, (6D)  Condition (10) is identical to (9) for al with the identifications

. Q =R, f =s,andB = —p?. It follows that an index seY is
B=05— 1 W (w) |D(ej“’)’2 dw, (6c) feasible for problem (7) exactly when it is feasible for problem (2),
2m J_ . and therefore the optimal index sets for (2) and (7) coincide.
Stationarity is not a necessary condition for equivalence with
problem (2). In the absence of stationarity, however, the m&rix
may vary with time, resulting in a succession of instances of problem

(7).

wherem andn range fromd to N — 1. Equation (6a) defines a posi-
tive definite matrix as long @/ (w) is non-zero over some interval.

2.2. Signal detection

The design of sparse filters for use in signal detection can also be 3. THE CASE OF DIAGONAL Q

formulated as in (2). We assume that a sig¢jal is to be detected ) ) )

in the presence of stationary additive noige] having zero mean We now shift our focus to solving problem (2) and developing re-

and autocorrelatiot,, [m]. The received signal is processed with a laxations. This section addresses the case in which the n@tisx

filter of length NV and sampled at = N — 1, yielding diagonal. A diagonaQ) matrix can arise in least-squares filter de-
sign if the weighting in (5) is uniform. In the case of detectidb,

N-1 and hencd) are diagonal if the noisg[n] is white.
y[N —1] = Z bn (SIN =1 —n]+n[N —1—n)) With Q diagonal, problem (2) becomes
n=0 N-1
when the signal is present. The filter coefficielytsare chosen such min ||bl|, s.. Z Qnn(by — cn)Q <. (12)
b

that the SNR is greater than a pre-specified threshpldhere the
SNR is defined as the ratio of the meany@iV — 1] given that the i ) - )
signal is present to the standard deviatioryi¥ — 1]. By defin- To solve (11), we first determine whether it is feasible to have a so-

n=0

ings € RN andR € RV*YN according tos, = s[N — 1 — n !ution With K zz_ero-valued elt_am_ents. E_xtending the argument made
and Ry = ¢y [Im — n|], the problem of sparse design can be in Se_ctlon 22 if the constra_lnt in (11) is not met w_hen the If_sft-hand
expressed as side is minimized over ab with K zero-valued entries, then it can-
not be met for any choice db with K zero-valued entries. The
. s’b minimum is achieved by setting, = 0 for n corresponding to the
min [blly st bTRb 2 p- @) K smallest values af),...c2 andb,, = ¢, otherwise. This yields the

feasibility condition

While the constraint in (7) cannot be rewritten directly in the )
form of (3), we show that problems (7) and (2) are nonetheless-equi Sk ({Quncn}) <, (12)
alent. To establish the equivalence, we determine whether feasible 9 5
solutions to (2) and (7) exist when an arbitrarily chosen subset of covhereXk ({@nncy,}) denotes the sum of tha smallestQnnc;,.
efficientsh,, represented by the index s&t is constrained to have A Similarly compact condition is not possible in the case of non-
value zero. Giverb, = 0 for n € Z and with )’ denoting the _dlagonaI_Q_ Wli.:h no special structure. Based on (9), the correspond-
complement ofZ, constraint (3) becomes ing condition is

. T 1
b3 Quyby — 2f5by < 8, € VN K {1 Q) 't} <6



The number of set® of size N — K is (I’Z) which can be very problem may be simplified to

large, and an efficient way of minimizing over all choice9bis not
N-1

apparent. ) b by

Problem (11) can be solved by checking the condition in (12) o Z (B* + B)
for successively increasing values &f starting with X' = 0. The ’ n=0 " " (15)
minimum zero-norm is given bV — K*, whereK™ is the largest st. (bt —=b™ —¢)"Q(b" —b™ —¢) <7,

value of K for which (12) holds. One particular optimal solution
results from setting,, = ¢, for n corresponding to thé&v — K*

5 B X X X e
Iargestchn,.andbn = 0 otherwise. This solution has an |ntu.|t|ve Thus the linear relaxation in (15) is a quadratically constrained linear

r‘brogram and its optimal value is a lower bound on the optimal value
of (13). More precisely, since the optimal value of (13) must be an
integer, the ceiling of the optimal value of (15) is also a lower bound.
Note also that the optimal value of (15) is at its highest wBgnand

%; are set to their minimal values as given in (14).

b"™ >0 b >0.

this case, we hav® = R « I ande¢,, « f, = s[n], and therefore
the solution is to match only th&y — K™ largest-magnitude values
of the signals[n]. If n[n] is white but non-stationaryQ remains
diagonal and the solution takes into account any weighting due to
time-varying variance.

5. DIAGONAL RELAXATION
4. LINEAR RELAXATION
) ) As an alternative to linear relaxations, this section discusses relax-
In the remainder of the paper, we focus on the case of non-diagongligns of problem (2) in which the matr® is replaced by a positive

Q for which an efficient solution to (2) is not available. In this sec- yefinite diagonal matrisD, an approach we refer to as diagonal re-
tion, we derive a linear relaxation of (2) after first reformulating it |axation. The quadratic constraint (1) is changed to

as a mixed integer optimization problem. Toward this end, we ex-

press each coefficiemt, in terms of its positive and negative parts N-1
asb, = b — b, , whereb, andb,, are non-negative and at least (b—c)"D(b—-c) = Do (bn — ¢n)* < 7. (16)
one is equal to zero. Each pait, b, is assigned a corresponding ne0

pair of binary-valued indicator variableg, i, with the property . ) o ]
thati; = 0if bf = 0 andi; = 1 otherwise. Hence problem (2) is As seen in Section 3, the problem of sparse design is straightforward

equivalent to in the diagonal case, thus making it attractive as a relaxation of the
problem wherQ is non-diagonal.
N-1 Geometrically, constraint (16) corresponds to an ellipsoid with
min Z (i +1in) axes that are aligned with the coordinate axes. Since the relaxation
btboitim = is intended to provide a lower bound for the original problem, we

+ - T + - require that this axis-aligned ellipsoid enclose the ellipsoid specified

L. -b - -b —¢)< (13) . g .

st (b b ) Qb b s by (1). It can be shown that the nesting of the ellipsoids is equivalent
0<by <Biiy, 0<b, <Byi, Vn, to Q — D being positive semidefinite, which we write@s-D = 0
it e{0,1}, i €{0,1} v or Q > D . Because of symmetry, the two ellipsoids can be made
" e ’ ' concentric without any loss in the quality of the relaxation.

The first constraint is the quadratic constraint (1) rewritten in terms ~ For everyD satisfyingd < D =< Q, minimizing [b|, sub-

of b* andb~. The second line of constraints ensures tifaand  j€ct to (16) results in a lower bound for problem (2). Thus the set

i behave as indicator variables. In addition, an optimal solutior?f diagonal relaxations is parameterized By To determine the

to (13) must have at least one bf, b, equal to zero for every fightest diagonal relaxation possible, i.e., a maldik such that the

n, as otherwise both could be decreasednbiyi{b; ,b;; } without minimum zero-norm associated wil* is maximal, the following

affecting the quadratic constraint while allowing onepfi;, to be  OPtimization problem is solved starting wifki = 0:

decreased to zero. 9 .

The positive constant;” and B;, appearing in (13) must be ~ "5* Si({Danci}) st 0<D=Q, Ddiagonal (17)
large enough so that the set of feasible vectois unchanged from

that in (2). Specifically, this requires If the optimal value of (17) is less than or equahtothen the con-
dition in (12) holds for evenyD satisfying the constraints in (17).
B > max {bn :(b— c)TQ(b —¢) < 7} As argued in Section 3, it follows that a feasible solutierwith
K zero-valued elements exists for every siizhWe conclude that
= ’Y(Q‘l) + ¢n, (14a)  no diagonal relaxation can give a minimum zero-norm greater than
n N — K. The value ofK is then incremented by and (17) is re-
B, > —min {bn t(b—¢c)'Q(b—c) < ’Y} solved. If on the other hand the optimal value of (17) is greater than
~ for someK = K™ + 1, then there exists ®* for which it is
= W(Q_l)nn ~ Cn- (14b) ot feasible to have a solution withi* + 1 zero elements. When

combined with the conclusions drawn f&f < K™, this implies
We assume without loss of generality that it is feasible for éadio that the minimum zero-norm with) = D* is equal toN — K™.
take a value of zero, and hen& and B;, are non-negative. The ConsequentlyV — K* is the tightest lower bound achievable with a
closed-form solutions to the optimization problems in (14) can bediagonal relaxation.
derived from the associated Karush-Kuhn-Tucker conditions [9]. The term diagonal relaxation will refer henceforth to the tightest
A linear relaxation of (13) is obtained by allowinigj andi,, to  diagonal relaxation, and the above procedure will be referred to as
take on a continuous range of values betw@and1. The resulting  solving the diagonal relaxation. Problem (17) can be recast as a



semidefinite program to which efficient interior-point algorithms as
well as other simplifications may be applied. A detailed discussior
of the solution of (17) is beyond the scope of the current paper.

The solution of the diagonal relaxation suggests a heuristic
method for generating a feasible solution to the original problerr
(2). The final matrixD* has the property that the sum of th&*
smallestD},,,c2 is no greater thar. This implies that the index
set Z corresponding to thé&™ smallestD;:, 2 is feasible for the
relaxed problem. Using (9), we can check whetBe(more pre-
cisely, its complemend) is also feasible for problem (2). If it is,
an optimal solution to (2) has been found because the zero-nori
N — K™ of the solution is equal to the lower bound provided by the
diagonal relaxation. If notZ is reduced in size to correspond to
the K* — 1 smallestD};,,c2 and the feasibility test is repeated. The
size of Z is successively decreased in this manner ufitltecomes
feasible, at which point a solution has been obtained with zero-norr
equal toN — | Z|.

approximation ratio

6. NUMERICAL EXPERIMENTS Fig.

Preliminary numerical experiments were performed to evaluate th
quality of the lower bounds resulting from linear and diagonal re-
laxations. The number of dimensiofpswas varied betweet0 and
150, and for each value akV, the condition numbek(Q) was set
inturntov/N, N, 10N, and100N. One thousandl(00) test cases
were created for each pair 8f andx(Q). The parametey was nor-
malized tol throughout. The matrik) was generated by first choos-
ing N eigenvalues distributed uniformly in the logarithmic domain
(i.e., log A is uniformly distributed) and then scaling to match the
specified condition number. The eigenvalues were combined with(2]
an orthonormal set of eigenvectors oriented randomly and uniformly
over the unit sphere. Given the random orientation of eigenvectors,
the larger the condition number(Q), the fartherQ tends to be
from being diagonal. Each componentof the ellipsoid center was

drawn uniformly from the interva[— V(Q )n, \/(Qfl)nn} to

ensure thaB;" andB;, in (14) are non-negative.

The linear relaxation (15) of each test problem was solved us-
ing the functionfmincon in MATLAB. We used a custom solver
for the diagonal relaxation; a general-purpose solver such as SDPT3
[10] can also be used to solve (17). In addition, a feasible solution[5]
was obtained according to the procedure described in Section 5. The
ratio of the optimal cost of each relaxation to the cost of the feasible
solution is used to assess the quality of the relaxation. This ratio, re{e)
ferred to as the approximation ratio, is a lower bound on the ratio of
the optimal cost of the relaxation to the true optimal cost, the latter
of which is difficult to compute.

In Fig. 1 we plot the average approximation ratios for linear and
diagonal relaxations as functions &f and«(Q). For linear relax-
ation, the ratio does not vary much wifli or x(Q) except for a
slight decrease at low. In contrast, the ratio for diagonal relax-
ation is markedly higher for lowet(Q) as expected sincg is on
average closer to being diagonal. F¢Q) = /N, approximation
ratios betweer.78 and0.91 imply that the lower bounds obtained
through diagonal relaxations are quite strong. Moreover, the rati
also improves with increasiny, so that even fok(Q) = 100N the
diagonal relaxation outperforms the linear relaxation for> 20.
The difference is substantial at lar@e and is reflected not only in
the average ratios but also in the distributionspaicreases, his-
tograms of optimal values for diagonal relaxations become widely
separated from corresponding histograms for linear relaxations.
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1. Average approximation ratios for linear and diagonal relax-
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