
SPARSITY MAXIMIZATION UNDER A QUADRATIC CONSTRAINT WITH APPLICATIONS
IN FILTER DESIGN

Dennis Wei and Alan V. Oppenheim

Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
77 Massachusetts Avenue, Cambridge, MA 02139, USA

ABSTRACT

This paper considers two problems in sparse filter design, the first in-
volving a least-squares constraint on the frequency response, and the
second a constraint on signal-to-noise ratio relevant to signal detec-
tion. It is shown that both problems can be recast as the minimization
of the number of non-zero elements in a vector subject to a quadratic
constraint. A solution is obtained for the case in which the matrix
in the quadratic constraint is diagonal. For the more difficult non-
diagonal case, a relaxation based on the substitution of a diagonal
matrix is developed. Numerical simulations show that this diagonal
relaxation is tighter than a linear relaxation under a wide range of
conditions. The diagonal relaxation is therefore a promising candi-
date for inclusion in branch-and-bound algorithms.

Index Terms— Sparse filters, least squares methods, signal de-
tection, relaxation methods

1. INTRODUCTION

In the efficient implementation of discrete-time filters, it is often de-
sirable to have filters with fewer non-zero coefficients, i.e., sparse
filters, as a means of reducing the costs of implementation, whether
in the form of computation, hardware, or power consumption. The
design of sparse filters under a Chebyshev error criterion in the fre-
quency domain has been examined from a variety of perspectives, in-
cluding integer programming [1] and heuristic approaches [2–4]. In
comparison, the case of a weighted least-squares criterion has not re-
ceived much attention. As discussed in [5], a weighted least-squares
error metric is commonly employed as an alternative to a Chebyshev
metric because of greater tractability and an association with signal
energy or power.

The approximation of desired frequency responses constitutes
one class of filter design problems. Another important context in
which filters are used is in the detection of signals in noisy environ-
ments, where the objective of filtering is to increase the probability
of detection. A widely used measure of performance in detection is
the signal-to-noise ratio (SNR) of the filter output. It is well-known
that the SNR is monotonically related to the probability of detection
in the case of Gaussian noise [6].

In this paper, we consider two problems in sparse filter design,
the first involving a weighted least-squares constraint on the fre-
quency response, and the second a constraint on SNR. In Section
2 it is shown that both problems can be formulated in terms of a
single quadratic constraint, specifically of the form

(b − c)T
Q(b − c) ≤ γ, (1)
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whereb is a vector of coefficients,Q is a symmetric positive definite
matrix, c is a vector of the same length asb, andγ > 0. This
formulation allows for a unified approach to solving not only the
two problems stated but also other problems involving performance
criteria that can be expressed in the form of (1). One example is the
criterion of mean squared error used in estimation, which forms the
basis for such techniques as linear prediction, Wiener filtering, and
least-mean-square adaptive filtering [7].

The design of sparse filters is related to but distinct from the
problem of obtaining sparse solutions to underdetermined linear
equations, which occurs for example in compressive sensing [8].
Although a quadratic constraint is sometimes also used in the un-
derdetermined equations setting, for example to model the presence
of noise, the matrix corresponding toQ is rank-deficient and con-
sequently the set of feasible solutions is qualitatively different from
that specified by (1).

In Sections 3–5, we concentrate on solving the problem of sparse
design subject to (1). WhenQ is a diagonal matrix, a maximally
sparse design can be easily obtained as described in Section 3. In
most other cases, however, the problem is much more difficult and
no polynomial-time algorithm is known. Our focus in this paper is
on developing relaxations of the problem that are efficiently solvable
and lead to strong lower bounds on the true optimal cost, for example
within a factor close to unity. Such relaxations are potentially use-
ful as part of a branch-and-bound procedure for solving the problem
exactly and are the basis of future work. In Section 4, we discuss the
technique of linear relaxation, while in Section 5, we introduce an
alternative method, referred to as diagonal relaxation, in whichQ is
replaced by a diagonal matrix. Numerical experiments presented in
Section 6 demonstrate that the lower bounds resulting from diago-
nal relaxations are often significantly tighter than those from linear
relaxations.

2. FORMULATION OF SPARSE FILTER DESIGN

In this section, we formulate the problems of sparse filter design
with a weighted least-squares error criterion and sparse filter design
for signal detection under a common framework corresponding to

min
b

‖b‖
0

s.t. (b − c)T
Q(b − c) ≤ γ, (2)

where the zero-norm notation‖b‖
0

refers to the number of non-zero
elements inb. The constraint in (2) may be interpreted geometri-
cally as specifying an ellipsoid centered atc. The eigenvectors and
eigenvalues ofQ determine the orientation and relative lengths of
the axes of the ellipsoid whileγ determines its absolute size. An
alternative form for (1) that is used in this section is

b
T
Qb − 2fT

b ≤ β (3)



with f = Qc andβ = γ − cT Qc.

2.1. Weighted least-squares filter design

Consider the design of a causal FIR filter of lengthN with coeffi-
cientsbn and frequency response

H(ejω) =

N−1
∑

n=0

bne
−jωn (4)

chosen to meet a squared-error constraint:

1

2π

∫ π

−π

W (ω)
∣

∣H(ejω) − D(ejω)
∣

∣

2
dω ≤ δ, (5)

whereD(ejω) is the desired frequency response,δ is the desired tol-
erance, andW (ω) is a non-negative and even-symmetric weighting
function. The number of non-zero coefficients is to be minimized.
Substituting (4) into (5), expanding, and comparing the result with
(3), we can identify

Qmn =
1

2π

∫ π

−π

W (ω) cos
(

(m − n)ω
)

dω, (6a)

fn =
1

2π

∫ π

−π

W (ω)D(ejω)ejωn
dω, (6b)

β = δ − 1

2π

∫ π

−π

W (ω)
∣

∣D(ejω)
∣

∣

2
dω, (6c)

wherem andn range from0 to N −1. Equation (6a) defines a posi-
tive definite matrix as long asW (ω) is non-zero over some interval.

2.2. Signal detection

The design of sparse filters for use in signal detection can also be
formulated as in (2). We assume that a signals[n] is to be detected
in the presence of stationary additive noiseη[n] having zero mean
and autocorrelationφηη[m]. The received signal is processed with a
filter of lengthN and sampled atn = N − 1, yielding

y[N − 1] =

N−1
∑

n=0

bn (s[N − 1 − n] + η[N − 1 − n])

when the signal is present. The filter coefficientsbn are chosen such
that the SNR is greater than a pre-specified thresholdρ, where the
SNR is defined as the ratio of the mean ofy[N − 1] given that the
signal is present to the standard deviation ofy[N − 1]. By defin-
ing s ∈ R

N andR ∈ R
N×N according tosn = s[N − 1 − n]

and Rmn = φηη [|m − n|], the problem of sparse design can be
expressed as

min
b

‖b‖
0

s.t.
sT b√
bT Rb

≥ ρ. (7)

While the constraint in (7) cannot be rewritten directly in the
form of (3), we show that problems (7) and (2) are nonetheless equiv-
alent. To establish the equivalence, we determine whether feasible
solutions to (2) and (7) exist when an arbitrarily chosen subset of co-
efficientsbn, represented by the index setZ, is constrained to have
value zero. Givenbn = 0 for n ∈ Z and withY denoting the
complement ofZ, constraint (3) becomes

b
T
YQYYbY − 2fT

Y bY ≤ β, (8)

wherebY is the|Y|-dimensional vector formed from the entries of
b indexed byY (similarly for fY ), andQYY is the|Y| × |Y| matrix
formed from the rows and columns ofQ indexed byY. We consider
minimizing the left-hand side of (8) with respect tobY . If this min-
imum is greater thanβ, then (8) cannot be satisfied for any value of
bY and a feasible solution withbn = 0, n ∈ Z cannot exist. It is
straightforward to show by differentiation that the left side is min-
imized whenbY = (QYY)−1

fY . Consequently the condition for
feasibility is

−f
T
Y (QYY)−1

fY ≤ β. (9)

We refer to an index setY (equivalentlyZ) as being feasible if (9)
is satisfied. Similarly in the case of problem (7),Y is feasible only
if the modified constraint

sT
YbY

√

bT
YRYYbY

≥ ρ

is satisfied when the left-hand side is maximized. The maximizing
values ofbY correspond to a whitened matched filter for the par-
tial signalsY and are proportional to(RYY)−1

sY . The resulting

feasibility condition is
√

sT
Y (RYY)−1

sY ≥ ρ, or after squaring,

s
T
Y (RYY)−1

sY ≥ ρ
2
. (10)

Condition (10) is identical to (9) for allY with the identifications
Q = R, f = s, andβ = −ρ2. It follows that an index setY is
feasible for problem (7) exactly when it is feasible for problem (2),
and therefore the optimal index sets for (2) and (7) coincide.

Stationarity is not a necessary condition for equivalence with
problem (2). In the absence of stationarity, however, the matrixR

may vary with time, resulting in a succession of instances of problem
(7).

3. THE CASE OF DIAGONAL Q

We now shift our focus to solving problem (2) and developing re-
laxations. This section addresses the case in which the matrixQ is
diagonal. A diagonalQ matrix can arise in least-squares filter de-
sign if the weighting in (5) is uniform. In the case of detection,R

and henceQ are diagonal if the noiseη[n] is white.
With Q diagonal, problem (2) becomes

min
b

‖b‖
0

s.t.
N−1
∑

n=0

Qnn(bn − cn)2 ≤ γ. (11)

To solve (11), we first determine whether it is feasible to have a so-
lution with K zero-valued elements. Extending the argument made
in Section 2.2, if the constraint in (11) is not met when the left-hand
side is minimized over allb with K zero-valued entries, then it can-
not be met for any choice ofb with K zero-valued entries. The
minimum is achieved by settingbn = 0 for n corresponding to the
K smallest values ofQnnc2

n andbn = cn otherwise. This yields the
feasibility condition

ΣK

(

{Qnnc
2
n}

)

≤ γ, (12)

whereΣK({Qnnc2
n}) denotes the sum of theK smallestQnnc2

n.
A similarly compact condition is not possible in the case of non-
diagonalQ with no special structure. Based on (9), the correspond-
ing condition is

min
|Y|=N−K

{

−f
T
Y (QYY)−1

fY
}

≤ β.



The number of setsY of sizeN − K is
(

N

K

)

, which can be very
large, and an efficient way of minimizing over all choices ofY is not
apparent.

Problem (11) can be solved by checking the condition in (12)
for successively increasing values ofK starting withK = 0. The
minimum zero-norm is given byN − K∗, whereK∗ is the largest
value ofK for which (12) holds. One particular optimal solution
results from settingbn = cn for n corresponding to theN − K∗

largestQnnc2
n, andbn = 0 otherwise. This solution has an intuitive

interpretation in the context of detection in white stationary noise. In
this case, we haveQ = R ∝ I andcn ∝ fn = s[n], and therefore
the solution is to match only theN − K∗ largest-magnitude values
of the signals[n]. If η[n] is white but non-stationary,Q remains
diagonal and the solution takes into account any weighting due to a
time-varying variance.

4. LINEAR RELAXATION

In the remainder of the paper, we focus on the case of non-diagonal
Q for which an efficient solution to (2) is not available. In this sec-
tion, we derive a linear relaxation of (2) after first reformulating it
as a mixed integer optimization problem. Toward this end, we ex-
press each coefficientbn in terms of its positive and negative parts
asbn = b+

n − b−n , whereb+
n andb−n are non-negative and at least

one is equal to zero. Each pairb+
n , b−n is assigned a corresponding

pair of binary-valued indicator variablesi+n , i−n with the property
thati±n = 0 if b±n = 0 andi±n = 1 otherwise. Hence problem (2) is
equivalent to

min
b+,b−,i+,i−

N−1
∑

n=0

(

i
+
n + i

−
n

)

s.t. (b+ − b
− − c)T

Q(b+ − b
− − c) ≤ γ,

0 ≤ b
+
n ≤ B

+
n i

+
n , 0 ≤ b

−
n ≤ B

−
n i

−
n ∀ n,

i
+
n ∈ {0, 1}, i

−
n ∈ {0, 1} ∀ n.

(13)

The first constraint is the quadratic constraint (1) rewritten in terms
of b+ andb−. The second line of constraints ensures thati+n and
i−n behave as indicator variables. In addition, an optimal solution
to (13) must have at least one ofb+

n , b−n equal to zero for every
n, as otherwise both could be decreased bymin{b+

n , b−n } without
affecting the quadratic constraint while allowing one ofi+n , i−n to be
decreased to zero.

The positive constantsB+
n andB−

n appearing in (13) must be
large enough so that the set of feasible vectorsb is unchanged from
that in (2). Specifically, this requires

B
+
n ≥ max

{

bn : (b − c)T
Q(b − c) ≤ γ

}

=

√

γ
(

Q−1
)

nn
+ cn, (14a)

B
−
n ≥ −min

{

bn : (b − c)T
Q(b − c) ≤ γ

}

=

√

γ
(

Q−1
)

nn
− cn. (14b)

We assume without loss of generality that it is feasible for eachbn to
take a value of zero, and henceB+

n andB−
n are non-negative. The

closed-form solutions to the optimization problems in (14) can be
derived from the associated Karush-Kuhn-Tucker conditions [9].

A linear relaxation of (13) is obtained by allowingi+n andi−n to
take on a continuous range of values between0 and1. The resulting

problem may be simplified to

min
b+,b−

N−1
∑

n=0

(

b+
n

B+
n

+
b−n

B−
n

)

s.t. (b+ − b
− − c)T

Q(b+ − b
− − c) ≤ γ,

b
+ ≥ 0, b

− ≥ 0.

(15)

Thus the linear relaxation in (15) is a quadratically constrained linear
program and its optimal value is a lower bound on the optimal value
of (13). More precisely, since the optimal value of (13) must be an
integer, the ceiling of the optimal value of (15) is also a lower bound.
Note also that the optimal value of (15) is at its highest whenB+

n and
B−

n are set to their minimal values as given in (14).

5. DIAGONAL RELAXATION

As an alternative to linear relaxations, this section discusses relax-
ations of problem (2) in which the matrixQ is replaced by a positive
definite diagonal matrixD, an approach we refer to as diagonal re-
laxation. The quadratic constraint (1) is changed to

(b − c)T
D(b − c) =

N−1
∑

n=0

Dnn(bn − cn)2 ≤ γ. (16)

As seen in Section 3, the problem of sparse design is straightforward
in the diagonal case, thus making it attractive as a relaxation of the
problem whenQ is non-diagonal.

Geometrically, constraint (16) corresponds to an ellipsoid with
axes that are aligned with the coordinate axes. Since the relaxation
is intended to provide a lower bound for the original problem, we
require that this axis-aligned ellipsoid enclose the ellipsoid specified
by (1). It can be shown that the nesting of the ellipsoids is equivalent
toQ−D being positive semidefinite, which we write asQ−D º 0

or Q º D . Because of symmetry, the two ellipsoids can be made
concentric without any loss in the quality of the relaxation.

For everyD satisfying0 ¹ D ¹ Q, minimizing ‖b‖
0

sub-
ject to (16) results in a lower bound for problem (2). Thus the set
of diagonal relaxations is parameterized byD. To determine the
tightest diagonal relaxation possible, i.e., a matrixD∗ such that the
minimum zero-norm associated withD∗ is maximal, the following
optimization problem is solved starting withK = 0:

max
D

ΣK

(

{Dnnc
2
n}

)

s.t. 0 ¹ D ¹ Q, D diagonal. (17)

If the optimal value of (17) is less than or equal toγ, then the con-
dition in (12) holds for everyD satisfying the constraints in (17).
As argued in Section 3, it follows that a feasible solutionb with
K zero-valued elements exists for every suchD. We conclude that
no diagonal relaxation can give a minimum zero-norm greater than
N − K. The value ofK is then incremented by1 and (17) is re-
solved. If on the other hand the optimal value of (17) is greater than
γ for someK = K∗ + 1, then there exists aD∗ for which it is
not feasible to have a solution withK∗ + 1 zero elements. When
combined with the conclusions drawn forK ≤ K∗, this implies
that the minimum zero-norm withD = D∗ is equal toN − K∗.
ConsequentlyN −K∗ is the tightest lower bound achievable with a
diagonal relaxation.

The term diagonal relaxation will refer henceforth to the tightest
diagonal relaxation, and the above procedure will be referred to as
solving the diagonal relaxation. Problem (17) can be recast as a



semidefinite program to which efficient interior-point algorithms as
well as other simplifications may be applied. A detailed discussion
of the solution of (17) is beyond the scope of the current paper.

The solution of the diagonal relaxation suggests a heuristic
method for generating a feasible solution to the original problem
(2). The final matrixD∗ has the property that the sum of theK∗

smallestD∗
nnc2

n is no greater thanγ. This implies that the index
setZ corresponding to theK∗ smallestD∗

nnc2
n is feasible for the

relaxed problem. Using (9), we can check whetherZ (more pre-
cisely, its complementY) is also feasible for problem (2). If it is,
an optimal solution to (2) has been found because the zero-norm
N − K∗ of the solution is equal to the lower bound provided by the
diagonal relaxation. If not,Z is reduced in size to correspond to
theK∗ − 1 smallestD∗

nnc2
n and the feasibility test is repeated. The

size ofZ is successively decreased in this manner untilZ becomes
feasible, at which point a solution has been obtained with zero-norm
equal toN − |Z|.

6. NUMERICAL EXPERIMENTS

Preliminary numerical experiments were performed to evaluate the
quality of the lower bounds resulting from linear and diagonal re-
laxations. The number of dimensionsN was varied between10 and
150, and for each value ofN , the condition numberκ(Q) was set
in turn to

√
N , N , 10N , and100N . One thousand (1000) test cases

were created for each pair ofN andκ(Q). The parameterγ was nor-
malized to1 throughout. The matrixQ was generated by first choos-
ing N eigenvalues distributed uniformly in the logarithmic domain
(i.e., log λ is uniformly distributed) and then scaling to match the
specified condition number. The eigenvalues were combined with
an orthonormal set of eigenvectors oriented randomly and uniformly
over the unit sphere. Given the random orientation of eigenvectors,
the larger the condition numberκ(Q), the fartherQ tends to be
from being diagonal. Each componentcn of the ellipsoid center was

drawn uniformly from the interval
[

−
√

(Q−1)nn,
√

(Q−1)nn

]

to

ensure thatB+
n andB−

n in (14) are non-negative.
The linear relaxation (15) of each test problem was solved us-

ing the functionfmincon in MATLAB. We used a custom solver
for the diagonal relaxation; a general-purpose solver such as SDPT3
[10] can also be used to solve (17). In addition, a feasible solution
was obtained according to the procedure described in Section 5. The
ratio of the optimal cost of each relaxation to the cost of the feasible
solution is used to assess the quality of the relaxation. This ratio, re-
ferred to as the approximation ratio, is a lower bound on the ratio of
the optimal cost of the relaxation to the true optimal cost, the latter
of which is difficult to compute.

In Fig. 1 we plot the average approximation ratios for linear and
diagonal relaxations as functions ofN andκ(Q). For linear relax-
ation, the ratio does not vary much withN or κ(Q) except for a
slight decrease at lowN . In contrast, the ratio for diagonal relax-
ation is markedly higher for lowerκ(Q) as expected sinceQ is on
average closer to being diagonal. Forκ(Q) =

√
N , approximation

ratios between0.78 and0.91 imply that the lower bounds obtained
through diagonal relaxations are quite strong. Moreover, the ratio
also improves with increasingN , so that even forκ(Q) = 100N the
diagonal relaxation outperforms the linear relaxation forN ≥ 20.
The difference is substantial at largeN and is reflected not only in
the average ratios but also in the distributions; asN increases, his-
tograms of optimal values for diagonal relaxations become widely
separated from corresponding histograms for linear relaxations.
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Fig. 1. Average approximation ratios for linear and diagonal relax-
ations. Within each set of curves,κ(Q) =

√
N, N, 10N, 100N

from top to bottom.
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