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Abstract—A filter design algorithm is presented that can be
viewed as a generalization of filter sharpening with guaranteed
minimax optimality and that leads to an efficient modular
topology. The structure consists of repetitive usage of a given
sub-filter in a fashion similar to a traditional tapped-delay line.
In cases where a sub-filter is not specified a priori, a low order
sub-filter that approximates the given filter specifications can
be used in this structure. The transfer functions of the overall
modular filters obtained with this algorithm can be expressed
mathematically as the functional composition of two transfer
functions. This mathematical formulation creates a convenient
framework to analyze and reduce sensitivity with respect to
coefficients of the sub-filter or the tap coefficients without altering
the characteristics of the overall design.

I. INTRODUCTION

The development of VLSI technology has reduced the
emphasis on minimizing the number of multiplications and
the number of delay elements in designing filters and has
caused a shift toward structures characterized by concurrency
[1]. Moreover, VLSI designers are increasingly advocating
modularity and regularity in their designs, for example by
dividing the overall system into either identical or few distinct
sub-systems. This strategy has the advantage of a reduced
number of different designs as well as the possibility of
independent and efficient verification of sub-systems [2].

In this paper, we present a filter design algorithm that
incorporates the desirable properties of modularity. It is based
on interconnecting through additions and gains copies of a
given low order, easily implementable and computationally
efficient sub-filter Gpzq in order to obtain a sophisticated over-
all filter Hpzq with sharper frequency response characteristics
than Gpzq. Our approach can be viewed as a generalization
of and a more formal approach to filter sharpening as has
been considered by several authors including Tukey [3] and
Kaiser and Hamming [4]. In our approach, minimax optimality
guarantees can be established. The resulting overall design
Hpzq has a regular structure similar to that of a traditional
tapped delay line with the delay elements replaced by the
given sub-filter Gpzq. The proposed design procedure yields
the optimal tap parameters fk, k “ 0, 1, . . . ,K where K
is the length of the tapped line, which also is the order of
desired sharpening in the context of filter sharpening. The
parameter K is either pre-specified or determined by hardware
constraints. The overall design procedure can be viewed as
embedding the sub-filter Gpzq in an FIR filter F pzq, where
F pzq is implemented as a tapped delay line as illustrated in
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Fig. 1: (a) An FIR filter F pzq “
řK

k“0
fkz

´k implemented
using a tapped delay line. (b) Embedding Gpzq into F pzq to

obtain Hpzq “
řK

k“0
fkG

kpzq.

Figure 1.

In cases where a sub-filter is not pre-specified, we propose
designing a relatively high order filter Hpzq in two steps,
where the second step consists of applying sharpening to a
low order approximation Gpzq obtained in the first step. This
approach yields a desirable modular design. Furthermore, it
can exhibit much sharper frequency response characteristics
with the same number of distinct multipliers than that of a
traditional design when the number of multipliers for the low
order approximation Gpzq and the number of tap coefficients
are chosen close to each other. One disadvantage of this
approach is an increase in the total number of multiplications
compared to a traditional design, although with many current
technologies, minimizing the number of multiplications can
be less critical than other metrics such as power consumption,
regularity and modularity.

When the presented filter design approach is viewed as a
generalization of filter sharpening as proposed by Tukey [3],
Kaiser and Hamming [4], Gpzq in Figure 1 corresponds to
the filter to be sharpened and F pzq to the amplitude change
function. The z-transform of the overall filter Hpzq can be
conveniently expressed as the functional composition of a
polynomial F pzq and a polynomial or a rational function
Gpzq in z´1. A formal mathematical framework of polynomial
composition can be exploited to find equivalent compositions
and improve robustness of Hpzq to coefficient quantization
and perturbation without changing its frequency domain char-
acteristics when both F and G are polynomials [5].

In Section II, the proposed minimax modular filter design
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algorithm is presented as a generalization of filter sharpening
and the procedure to obtain the optimal tap coefficients fk
is described. The methodology is extended in Section III to
designing higher order filters where a sub-filter to be sharpened
is not necessarily pre-specified. In Section IV, the properties
of modular filters obtained using the proposed method are
discussed. In Section V, the mathematical representation of
these modular filters as the functional composition of two
transfer functions is exploited to reduce sensitivity with respect
to their coefficients in the special case when both transfer
functions are polynomials.

II. OPTIMAL FILTER SHARPENING

There have been numerous ad hoc approaches to sharpening
a specified filter with frequency response Gpejωq in order
to obtain an overall magnitude response that has smaller
deviations from unity in its passband and from zero in its
stopband [3], [4]. The simplest approach is to cascade the
filter with itself to obtain a response G2pejωq, but this has an
adverse effect in the passband since squaring will increase
the deviation from unity. Tukey proposed a method called
twicing which involves filtering the input with Gpejωq and
adding back to the input the residual between the input and
the output before a second stage of filtering. The effective
frequency response in this case becomes

Htwpejωq “ p1 ` p1 ´ GpejωqqqGpejωq

“ 2Gpejωq ´ G2pejωq
(1)

Kaiser and Hamming [4] observed that the effective trans-
formation 2x´x2 that is being applied to Gpejωq in this case
has a desirable attenuating effect on the passband deviations
from unity but an undesirable magnification effect on stopband
deviations from zero, the exact opposite effects observed with
the transformation x2. They explained the effect of these
transformations through the value of their slope at x “ 0 for
stopband and x “ 1 for passband; a zero slope will attenuate
the magnitude of deviations and a slope that is greater than
unity will increase the deviations. Therefore, they proposed us-
ing transformations Apxq, or amplitude change functions, with
vanishing first (and also higher order, if desired) derivatives at
both x “ 0 and x “ 1 in addition to the constraint Ap0q “ 0
and Ap1q “ 1, which guarantees mapping the stopband to
zero and the passband to unity. For example, the smallest
order polynomial transformation satisfying these constraints
is 3x2 ´ 2x3.

Although Kaiser and Hamming’s approach is more system-
atic than the previous attempts, it is not efficient for sharpening
filters that have large deviations from the desired values at the
passband and stopband as the methodology assumes only small
deviations and ignores higher order terms in the corresponding
Taylor series. Moreover, their technique assumes that the filter
impulse response is real valued. Therefore its applicability is
quite restricted. Even in that case, no optimality guarantees
can be established with respect to the Chebyshev or L2 norms
as to whether there exist other amplitude change functions of
the same order that better suppress the deviations.

We propose a more systematic formulation of the filter
sharpening problem that leads to an optimality guarantee with
respect to the Chebyshev or minimax norm. This approach can
be formulated as

minimize
f

ε

subject to }Dpωq ´
K
ÿ

k“0

fkG
kpejωq}8 ď ε

(2)

where Gpejωq is the possibly complex frequency response of
the filter to be sharpened, K is the maximum allowed degree
of the sharpening transformation polynomial and

|Dpωq| “

"

1, ω P ΩP

0, ω P ΩS
(3)

where ΩP and ΩS are the passband and stopband of Gpejωq,
respectively. This formulation is a special case of a class of
semi-infinite optimization problems (SIP) stated as

minimize
f

ε

subject to }Dpωq ´
K
ÿ

k“0

fkUkpωq}8 ď ε
(4)

where Ukpωq, k “ 0, 1, . . . ,K are general functions of
ω. Algorithms to obtain the optimal coefficients fk exist
when these are all continuous functions of ω. By choosing
Ukpωq “ Gkpejωq, the resulting optimal coefficients fk, k “
0, 1, . . . ,K correspond to the tap coefficients in Figure 1
and Hpejωq becomes the functional composition F pGpejωqq,

where F is the polynomial given by F pxq “
řK

k“0
fkx

k.

When Dpωq has a linear phase and Ukpωq “ e´jkω ,
the optimization problem (4) takes a simpler form that can
utilize the alternation theorem and Remez exchange algorithm
for its efficient solution [6]. For the same set of functions
Ukpωq but nonlinear-phase Dpωq, a number of approaches
have been developed to solve this optimization problem in
the context of complex FIR filter design. These approaches
include using linear programming on a dense discrete subset
of r´π,πs; generalized Remez algorithms; single or multiple
exchange algorithms that solve a discrete sub-problem with
optimality guarantees on the entire interval r´π,πs and It-
erative Weighted Least Square, —see Section 2.2 in [7] for
a comprehensive overview. Some of these algorithms can be
extended to the case of more sophisticated choices for Ukpωq
than a simple complex exponential as in the case of filter
sharpening.

A particularly simple algorithm that is straightforward to
extend for general continuous complex basis functions Ukpωq
is the First Algorithm of Remez [8]. This is a single exchange
algorithm which starts with a discrete set of frequencies in the
interval r´π,πs, computes the optimal approximating function
for those points and repeats the process after adding the
frequency of maximum deviation to the next set of constraint
points. This procedure is stated in Algorithm 1. At each itera-
tion i, the vector of optimal tap coefficients f piq is guaranteed
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to be in a bounded subset of RK`1, therefore the sequence
of vectors f piq is guaranteed to have at least one clustering
point. Moreover, any of these clustering points will be an
optimal choice for the tap coefficients with the same maximum
approximation error as the other cluster points [8].

Although the First Algorithm of Remez stated in Algorithm
1 does not theoretically specify a stopping condition for
the iterations and requires manually selecting one of the
clustering points, our experience suggests that it is sufficient
to continue the iterations until the change in the maximum
value of the approximation error becomes smaller than a pre-
specified tolerance value and then choose the resulting f piq.
This algorithm was used for an assessment of the modular filter
design algorithm proposed in this paper due to its simplicity as
it only requires solving a finite linear program (or quadratic if
Dpωq and Ukpωq are complex) at its first step. More efficient
and sophisticated algorithms exist for the solution of semi-
infinite optimization problems similar to problem (4).

ALGORITHM 1

Input: Ukpωq, k “ 0, 1, . . . ,K and Dpωq,

Output: f˚ “ argmin
f

}Dpωq ´
K
ÿ

k“0

fkUkpωq}8.

Begin (i “ 1)

0. Choose Ωpiq “ tω0,ω1, . . . ,ωmu Ă r´π,πs such that

m ě K and the matrix rUkpωnqsk,n, k “ 0, 1, . . . ,K;

n “ 0, 1, . . . ,m is full rank.

1. Set f piq “ argmin
f

#

max
ωPΩpiq

|Dpωq ´
K
ÿ

k“0

fkUkpωq|

+

.

2. Find ω1 “ arg max
ωPr´π,πs

|Dpωq ´
K
ÿ

k“0

f
piq
k Ukpωq|.

3. Set Ωpi`1q Ð Ωpiq Y tω1u and i Ð i ` 1, go to Step 1.

The solution for problem (4) is unique if the basis functions
Ukpωq satisfy the Haar condition [8], [9], in which case
Algorithm 1 will converge to the unique optimum [8]. A set
of functions Ukpωq, k “ 0, 1, 2, . . . ,K is said to satisfy the
Haar condition on r´π,πs if each Ukpωq is continuous and if
the matrix

V “

»

—

—

—

—

—

–

U0pω0q U1pω0q U2pω0q . . . UKpω0q
U0pω1q U1pω1q U2pω1q . . . UKpω1q
U0pω2q U1pω2q U2pω2q . . . UKpω2q

...
U0pωKq U1pωKq U2pωKq . . . UKpωKq

fi

ffi

ffi

ffi

ffi

ffi

fl

(5)

is full rank for every set tωk P r´π,πs, k “ 0, 1, 2, . . . ,Ku
where all ωk are distinct. In the context of filter sharpening,
Ukpωq “ Gkpejωq where Gpejωq is the filter to be sharpened.
Therefore the matrix V will be a Vandermonde matrix which
is always full rank if each row is distinct for every choice
of tωk, k “ 0, 1, . . . ,Ku in r´π,πs, or equivalently Gpejωq
is invertible on this interval. Although the Parks-McClellan
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Fig. 2: The frequency response of a 10th-order filter Gpejωq
before and after sharpening with two different 7th-order
transformation polynomials. The polynomials were obtained
using Kaiser and Hamming’s proposed method in [4] and our
proposed algorithm.

algorithm can be easily extended to the case where the Haar
condition is satisfied by Gkpejωq, k “ 0, 1, . . . ,K and Gpejωq
and Dpωq are real, neither is required to obtain an optimal
solution for equation (2) using Algorithm 1.

Figure 2 illustrates the comparison of frequency responses
of a 10th order low-pass filter Gpejωq obtained using the
Parks-McClellan filter design algorithm with ΩP “ r0, 0.35πs
and ΩS “ r0.45π,πs, the response of the sharpened filter
with a 7th-order transformation using Kaiser and Hamming’s
method [4] and the sharpened filter with the optimal 7th

order polynomial obtained using minimax filter sharpening
algorithm that we propose. This example clearly shows that
the proposed optimal approach to the filter sharpening problem
yields a better frequency response over the entire interval
especially where the sub-filter exhibits large ripples.

III. TWO-STEP MODULAR FILTER DESIGN

In the design of a linear phase FIR filter Hpejωq, a
desirable modular structure similar to the one in Figure
1 can be obtained by seeking an approximation of the
form F pGpejωqq such that the maximum approximation error
}Hpejωq´F pGpejωqq}8 is minimized. The problem of finding
the best approximation to a real and continuous function over
an interval using polynomial composition of given orders has
been addressed in [10]. However, it was shown that counting
the alternations of the approximation error in general does
not characterize the best approximation using composition of
polynomials unlike the case of a single polynomial as the best
approximation which can be identified using the alternation
theorem. This task is more formidable when the function to
be approximated is complex and the desired orders of the
composing polynomials are not pre-specified. Therefore, we
depart to a heuristic and greedy two-step approach to obtain
such modular filter structures consisting of obtaining a sub-
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Two−Step Modular Design

Parks−McClellan

Fig. 3: The comparison of a 24th-order Parks-McClellan filter
and a modular filter obtained using the two-step filter design
algorithm with a 7th-order polynomial and a 10th-order Parks-
McClellan filter. Both designs can be shown to have the same
number of distinct multipliers while the modular design has
superior frequency response characteristics.

filter G and then an optimal F rather than jointly optimizing
them. This algorithm starts with splitting the allowed filter
order P , which can be viewed as the number of available
distinct multipliers or degrees of freedom, between these two
components. The sub-filter is designed as the optimal zero-
phase FIR filter with its N allocated degrees of freedom, and
the remaining M “ P ´ N degrees of freedom are used to
choose the coefficients of F to improve the frequency response
characteristics of Gpejωq using Algorithm 1, which yields the
optimal choice since the sub-filter is already determined. In
our simulations, the best results using this heuristic algorithm
seem to be obtained when the degrees of freedom for F and
Gpejωq are chosen close to each other for low-pass and high-
pass linear phase FIR filters.

In Figure 3, a 24th-order zero-phase Parks-McClellan low-
pass filter with passband r0, 0.30πs and stopband r0.34π,πs
is compared to a composition of a 7th order polynomial
F and a 10th order sub-filter Gpejωq, where Gpejωq is
also a Parks-McClellan filter with the same passband and
stopband edge frequencies as the 24th order filter. Even-order
Parks-McClellan filters can be implemented using distinct
coefficients as many as one plus half of their order due
to their symmetry, therefore both of these designs can be
shown to be implemented using the same number of distinct
multipliers. The compositional design yields a considerably
superior frequency response characteristics. In general, the
total number of multiplications in a compositional design of
Figure 1 is greater than a direct form implementation with the
same number of distinct multipliers, M `N `1. However, the
compositional design has a desirable modular structure and a
minor increase in the number of multiplications is often not
the primary concern in the current VLSI design technology
[1].
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Fig. 4: The approximation errors to an ideal low pass filter with
passband and stopband edge frequencies 0.40π and 0.45π,
respectively. A low (10th)order filter Gpeq with the same
passband and stopband edges is used repetitively in tapped
line with tap coefficients fk, k “ 0, 1, . . . ,M : (a) M “ 4
with uniform weight. (b) K “ 4 with relative passband error
weight of three. (c) M “ 6 with uniform weight. (b) K “ 6
with relative passband error weight of three.

As an example of the convenience of modularity that results
from designing filters using the proposed two-step design
procedure, consider that a low order low pass filter Gpejωq
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is obtained in the first step. A sharper low pass filter with
the same passband and stopband edges can be obtained by
choosing appropriate tap coefficients fk, k “ 0, 1, . . . ,M
that will minimize the maximum deviation from the desired
response. If the need to have sharper characteristics in one
of the bands than the other band arises during an application
or equivalently an explicit weight function is specified, it will
suffice to re-compute the tap coefficients consistent with the
weight function without altering the filter Gpejωq. If even
sharper characteristics are desired in both bands, then new
blocks of Gpejωq and their corresponding tap coefficients can
simply be appended to the tapped structure to increase the
overall filter order. Figure 4 illustrates several different error
functions resulting from approximating an ideal low pass filter
with a passband edge 0.40π and a stopband edge of 0.45π.
In Figure 4a, the tap coefficients fk, k “ 0, . . . , 4 are chosen
to minimize the maximum error using four blocks of Gpejωq,
where Gpejωq is a 10th order low pass filter with a passband
edge 0.40π and a stopband edge of 0.45π. In the case where
the passband error is assigned to have a weight of three times
that of the error in the stopband, the tap coefficients fk, k “
0, 1 . . . , 4 can be changed to obtain the error profile given in
Figure 4b. By allowing the use of two more blocks of Gpejωq,
the tap coefficients fk, k “ 0, 1, . . . , 6 can be chosen to obtain
smaller errors with similar weight functions as illustrated in
Figure 4c and 4d. Although in these examples the weighted
errors have equi-oscillatory behavior, this is not necessarily
the case for general frequency responses and weight functions
as best approximation by polynomial composition is not in
general characterizable by equi-oscillations [10].

IV. PROPERTIES OF MODULAR FILTERS

The frequency response of a modular filter Hpejωq can be
expressed as the functional composition of a polynomial F
with another polynomial or a rational function Gpejωq in ejω.
This can be explicitly stated as

Hpejωq “ f0`f1Gpejωq`f2G
2pejωq`¨ ¨ ¨`fKGKpejωq (6)

and corresponds to the impulse response

hn “ f0 ` f1gn ` f2pgn ˚ gnq ` ¨ ¨ ¨ ` fKpgn ˚ ¨ ¨ ¨ ˚ gnq (7)

where “˚” corresponds to convolution of discrete time se-
quences. From equation (7), it follows that the filter Hpejωq
obtained as the composition of a polynomial F and a causal
filter Gpejωq is also causal. Stability of the composition can
be deduced similarly when Gpejωq is stable since F has a
finite order.

An important and desirable property for filters is that they
not introduce dispersion, i.e. they have zero or linear phase.
Linear-phase FIR filters can be obtained by composing any
polynomial F with a zero phase filter Gpejωq, the impulse
response of which is even-symmetric around zero. Each term
in equation (7) can be shown to be even-symmetric around
zero and hence the over all impulse response. The filter can
be cascaded with delays appropriately to obtain a causal and

linear-phase filter with the same magnitude response. For
Gpejωq with odd-symmetric impulse responses, the composed
filter obtained this way will be linear phase if either all
odd-indexed coefficients or all even-indexed coefficients are
zero. This follows from the fact that an odd number of self
convolutions of the sequence gn are odd-symmetric and an
even number of self convolutions are even symmetric; and in
general sum of odd symmetric and even symmetric sequences
not necessarily remain symmetric in either type.

For modular filters obtained as a composition as in Figure
1, the design effort has to be allocated only for one block,
namely Gpejωq. This could be argued to possibly induce a
sensitivity problem since an error in the design of Gpejωq such
as a perturbation in is coefficients could significantly affect
the overall behavior of the filter. However, the compositional
form of the transfer function Hpejωq “ F pGpejωqq offers
the flexibility to choose an equivalent design with much
less sensitivity to the coefficients of either F or G. This is
particularly easy to analyze in the case where Gpejωq is FIR
as described in the next section.

V. COEFFICIENT SENSITIVITY

Sensitivity of the frequency response of Hpejωq to the
perturbations in the coefficients of F and Gpejωq can be
defined as [5]

SUÑH “ max
∆u

E∆h{Eh

E∆u{Eu
(8)

where U is either F or G depending on which is being per-
turbed, u is the coefficient vector of U , ∆u is an infinitesmall
perturbation vector, } ¨ } indicates l2 norm and

Eu “

ż π

´π

|Upejωq|2 dω (9)

or equivalently
Eu “ uTu “ }u}22. (10)

This sensitivity corresponds to the worst case amplification
of a perturbation in the coefficients of F or G. When G is
an FIR filter, the sensitivities can be obtained in closed form
using their coefficients. Note that equation (7) suggests a linear
relationship between f and h, the coefficient vectors of F and
H , given by

h “ Cf (11)

where the kth column of matrix C consists of pk ´ 1q self-
convolutions of gn.

A. Formulation of SFÑH

A perturbation ∆f in f will result in a change in h given
by

∆h “ C∆f . (12)

The sensitivity of the composed filter with respect to F
becomes, using equation (8), (11) and (12),

SFÑH “ max
∆f

||C∆f ||22
||∆f ||22

||f ||22
||Cf ||22

. (13)
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For a given F and G, the factor
||f ||2

2

||Cf ||2
2

is constant. The

maximum value of
||C∆f ||2

2

||∆f ||2
2

is equal to σ2
C,max, where σC,max

is the maximum singular value of C. Therefore equation (13)
becomes

SFÑH “ σ2
C,max

||f ||22
||Cf ||22

. (14)

B. Formulation of SGÑH

The relationship between the coefficient vectors g and h is
nonlinear, however in the case of infinitesmall perturbations
∆g, we have [5]

∆h “ D∆g (15)

where D is an pMN ` 1q ˆ pN ` 1q Toeplitz matrix the first
column of which consists of the coefficients of the polynomial
Dpxq with zero padding of length N . Here M and N are the
orders of F and G, respectively, and

Dpxq “ F 1pGpxqq. (16)

The sensitivity of the composed filter with respect to G
becomes, using equations (8) and (15),

SGÑH “ max
∆g

||D∆g||22
||∆g||22

||g||22
||h||22

. (17)

As in the previous section, for a given F and G,
||g||2

2

||h||2
2

is

constant. The maximum value of
||D∆g||2

2

||∆g||2
2

is σ2
D,max, where

σD,max is the maximum singular value of D. Therefore
equation (17) becomes

SGÑH “ σ2
D,max

||g||22
||h||22

. (18)

C. Equivalent low-sensitivity representations

The convenient compositional representation of modular
filters allows to obtain infinitely many equivalent compositions
of the form

F pGpzqq “ pF ˝ λ´1q ˝ pλ ˝ Gqpzq “ F̄ pḠpzqq, (19)

where λpzq “ az`b is any first order polynomial. It has been
shown that by careful choice of a and b in λ, an identical
frequency response F̄ pḠpejωqq with much lower coefficient
sensitivities can be obtained [5].

VI. CONCLUSION

A modular filter design algorithm that can be viewed as
a generalization of and a more systematic approach to filter
sharpening is presented. Sharpened filters are shown to have
transfer functions in the form of a polynomial composed with
the transfer function of the sub-filter to be sharpened. The
algorithm yields the coefficients of a polynomial that has
minimax optimality guarantees in that no other polynomial of
the same order suppresses better the deviations in the passband
and the stopband. In an implementation, the coefficients of the
polynomial correspond to the tap coefficients in a structure
similar to a tapped delay line. The algorithm can be general-
ized to cases where a sub-filter is not pre-specified, and sharper

characteristics than traditional designs can be obtained using
the same number of degrees of freedom to design the overall
filter. A convenience of modularity is shown where it allows
to change error weights in different bands by simply changing
the tap coefficients and not altering the basic sub-filter in
the overall implementation. Finally, a property of polynomial
composition is exploited to reduce sensitivity of the modular
filters with respect to perturbations in the sub-filter coefficients
or the tap coefficients without changing the overall frequency
response.
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