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A Functional Composition Approach to Filter

Sharpening and Modular Filter Design
Sefa Demirtas and Alan V. Oppenheim

Abstract—Designing and implementing systems as an intercon-
nection of smaller subsystems is a common practice for modu-
larity and standardization of components and design algorithms.
Although not typically cast in this framework, many of these
approaches can be viewed within the mathematical context of
functional composition. This paper re-interprets and generalizes
within the functional composition framework one such approach
known as filter sharpening, i.e. interconnecting filter modules
which have significant approximation error in order to obtain
improved filter characteristics. More specifically, filter sharpening
is approached by determining the composing polynomial to
minimize the infinity-norm of the approximation error, utilizing

the First Algorithm of Remez. This is applied both to sharpening
for FIR, even-symmetric filters and for the more general case of
subfilters that have complex-valued frequency responses includ-
ing causal IIR filters and for continuous-time filters. Within the
framework of functional composition, this paper also explores the
use of functional decomposition to approximate a desired system
as a composition of simpler functions based on a two-norm on
the approximation error. Among the potential advantages of this
decomposition is the ability for modular implementation in which
the inner component of the functional decomposition represents
the subfilters and the outer the interconnection.

Index Terms—Functional composition and decomposition,
modular filters, filter sharpening

I. INTRODUCTION

BUILDING large systems from an interconnection of

smaller modules is a common practice in signal pro-

cessing as this approach benefits from the relative simplicity

of designing submodules, captures the capabilities and the

sophistication of larger systems and often results in highly

modular structures. One such application is filter sharpening

[1], which corresponds to linear interconnections of replicas

of a given subfilter to obtain improved overall frequency

characteristics. The subfilters may, for example, be designed

offline with desired precision and complexity. Filter sharpening

provides a flexible alternative to designing a high-order sharp

filter for a variety of specifications, for which each design

would otherwise take valuable resources in the context of an

application. Filter sharpening is currently utilized efficiently

in a number of applications including prefilter and equalizer
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design [2]–[4] as well as more sophisticated decimation filters

than those obtained by simple cascading [5]. However, the

traditional methods that have been proposed for filter sharp-

ening [1], [6]–[10] are rather restrictive in that they rely on

and require the subfilters to be Type-I FIR filters1 with real-

valued coefficients, which are characterized in time domain

by an even symmetry around an integer sample M such

that they have an even-symmetric and real-valued frequency

response after a time shift by M . These methods consider a

variety of optimality criteria such as yielding maximally flat

responses around frequencies where the subfilter magnitude

response is zero or unity [1], [8], [10] or minimizing the l2-

norm of the approximation error [6]. Even though a commonly

preferred optimality criterion for filter approximations is the

minimization of the maximum deviation from the ideal filter

response, i.e. the l∞-norm of the error, this has only been

considered previously in [7].

In this paper, we revisit filter sharpening from a system-

atic point of view that re-interprets it in the framework of

functional composition. This framework corresponds to the

application of one function to the results of another function.

Conversely, functional decomposition is directed at expressing

a given function as a composition of other functions, usually

of lower order or complexity. The approach in this paper,

based on functional composition, removes the restrictions on

the types of the filters that can be sharpened and also presents a

systematic framework for designing modular filters with mini-

max optimality guarantees for this unrestricted set of subfilters.

Furthermore, the functional composition framework utilizes a

rich mathematical literature on polynomial decomposition that

leads to methods for designing modular FIR filters without

the need to specify a subfilter, at the expense of trading

the minimax optimality guarantee for a locally optimal mean

squared error solution.

Section II reviews the traditional approaches to filter sharp-

ening and discusses their shortcomings. Filter sharpening is

expressed as functional composition in Section III for which

a set of methods are provided to obtain the optimal gains for

the sharpening interconnection network. Section IV presents

functional decomposition as a more general means than filter

sharpening to obtain modular filters where a subfilter is not

necessarily pre-specified.

1A Type-I FIR filter is a linear phase filter with the impulse response
h[n], n = 0, 1, 2, . . . , 2M that satisfies h[n] = h[2M−n], and its frequency
response can be expressed as a zero-phase response multiplied with e−jωM

[11]. Such a filter can be time advanced by M samples to obtain a non-causal
filter with an even-symmetric and real-valued frequency response.

https://www.rle.mit.edu/dspg/pub_journal.html
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II. BACKGROUND

The traditional approaches to filter sharpening, beyond the

strategy of cascading replicas, typically consider only Type-

I FIR subfilters with real-valued coefficients, and embed

their replicas within a network of adders and gains resulting

in transfer functions with the form of a weighted sum of

powers of the subfilter transfer function. More specifically, the

zero-phase response of the resulting sharpened filter can be

represented in the functional form F (G̃(ejω)) where G̃(ejω)
is the even-symmetric zero-phase response of the subfilter to

be sharpened, and F (·) is a polynomial reflecting the specifics

of the interconnections. The traditional methods do not apply

to a large class of IIR filters, continuous time filters or even

to other types of FIR filters since they cannot be time shifted

by an integer amount to obtain an even-symmetric zero-phase

response.

Well known methods for sharpening a Type-I FIR filter

with a zero-phase response G̃(ejω) include cascading the filter

with itself to obtain G̃2(ejω), and a more general approach

based on twicing as proposed by Tukey [12] which results

in the effective zero-phase response 2G̃(ejω) − G̃2(ejω).
These methods reduce ripples in either the passband or the

stopband while having the adverse behavior in the other band.

Kaiser and Hamming [1] refer to the polynomial F (·) as the

amplitude change function and provide a general formula to

yield higher order polynomials to sharpen G̃(ejω) in both

bands with a focus on yielding a maximally flat design around

frequencies where |G̃(ejω)| is zero or unity.

The results in [1] on sharpening of Type-I FIR filters have

led other authors [6]–[10], [13], [14] to approach this problem

in a more structured way, often referring to the overall design

after sharpening as a tapped cascaded interconnection of FIR

subfilters. The method in [7] constitutes an important bench-

mark to part of the work we present here when G̃(ejω) is pre-

specified since it can be interpreted in the form of functional

composition. Furthermore, it considers the l∞ norm for the

approximation error to an ideal filter response and obtains

the optimal sharpening coefficients. In order to illustrate the

approach proposed in [7], consider a subfilter with a zero-

phase response G̃(ejω) satisfying

xp1 ≤ G̃(ejω) ≤ xp2, ω ∈ ΩP (1a)

xs1 ≤ G̃(ejω) ≤ xs2, ω ∈ ΩS , (1b)

where ΩP and ΩS are the union of pass-band and stop-

band frequency intervals, xp1 and xp2 are the minimum and

maximum values of G̃(ejω) in its passband, and xs1 and

xs2 are the minimum and maximum values in its stopband,

respectively. For a pre-specified order K for the polynomial

F (x), sharpening with respect to the l∞ norm reduces to

finding the optimal Kth order polynomial to approximate

Q(x) =

{

1, xp1 ≤ x ≤ xp2

0, xs1 ≤ x ≤ xs2
(2)

with respect to the same norm. More specifically, for the

composition F (G̃(ejω)), G̃(ejω) will map every value of ω

in its passband to the interval [xp1, xp2] and F (x) will map

that value as close to unity as possible since it is the optimal

Kth-order polynomial approximation to Q(x). Therefore the

composition F (G̃(ejω)) approximates unity in the passband.

The same argument follows for the stopband. This polynomial

approximation problem can be solved directly using the Remez

Exchange Algorithm. However, in [7], this has been recast

as a Parks-McClellan FIR lowpass filter design problem by

utilizing Chebyshev polynomials and introducing scaling and

offset coefficients to G̃(ejω) such that the inverse cosine of

its extremum values correspond to the actual band edges of a

prototype low pass filter, the solution of which in turn invokes

the Remez Exchange Algorithm for a very efficient solution

to determine the unique optimum.

Although the traditional methods proposed for sharpening

filters have all emphasized the convenience of using several

subfilters to build more sophisticated filters, they either involve

restrictions on the subfilters or consider less preferable opti-

mality criteria. For example, the method in [1] uses its degrees

of freedom to provide a flat response at frequencies where

G̃(ejω) is zero and unity. Although this method successfully

suppresses sufficiently small ripples, it typically does not for

larger ripples that are inherent in low order subfilters as it

relies on vanishing higher order derivatives of the proposed

amplitude change functions which can remain non-negligible

in a Taylor series approximation in the vicinity of zero and

unity. Moreover, the amplitude change function F for a given

order is fixed for any subfilter and is not customized based on

the subfilter. The method in [6] considers the l2-norm optimal-

ity, a criterion that is known to possibly lead to solutions with

narrow but very large deviations from an ideal response. A

commonly preferred norm for filter approximations, the l∞-

norm, that was considered in [7] will also be the focus in

this paper. Furthermore, all of these existing methods require

a Type-I FIR subfilter and do not extend sharpening to more

general filters such as non-symmetric filters, and discrete-time

or continuous-time IIR filters, most of which do not have zero-

phase responses after an appropriate time shift. The method

developed in Section III will be applicable to this most general

case of subfilters.

III. FUNCTIONAL COMPOSITION FOR FILTER SHARPENING

A. Revisiting Sharpening as Composition

In the functional composition form of F (G(·)), F and G

are unrestricted as long as the range set of G lies in the

domain on which F is defined. As functional composition

can efficiently capture and concisely represent a sequence of

operations on an input, functional compositions are ubiquitous

in several disciplines such as mathematics, computer science,

and engineering and has been studied and exploited in different

applications such as modeling deformable media in computer

graphics [15], robotic arm manipulation [16], [17], symbolic

computation and root finding algorithms in mathematics [18]–

[20], creating artificial reverberations for audio [21] and de-

signing IIR filters as a tapped cascaded interconnection of

identical allpass subfilters [22] among many others.

Although it is natural and straightforward to interpret fil-

ter sharpening from a functional composition perspective,

their analyses did not historically originate from this broader
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perspective and have not previously taken advantage of the

underlying mathematics and structure. In this section, we

introduce and explore an approach to filter sharpening which

follows the formalism of functional composition, extending

and generalizing our work in [23]. This approach removes

the restrictions on the types of filters that can be sharpened,

considers minimax optimality guarantees, and provides an al-

ternative and systematic perspective to the existing approaches.

Moreover, the functional composition approach to sharpening

allows the extension of the analysis to cases for which the

composition is designed to approximate an ideal filter in its

magnitude response rather than its total complex frequency

response, a commonly used constraint, for example, when

designing continuous-time filters.

Restricting F to be a polynomial, the functional form of

a sharpened filter transfer function will be a composition,

F (G(z)) =
∑

fkG
k(z), where G(z) is the transfer function

of any subfilter and specifically is not restricted to being

Type-I FIR or having a real-valued frequency response. The

filter sharpening problem can be expressed as finding the

optimal composing polynomial F (·) of a desired order K that

minimizes the error between the resulting filter response and

the desired filter response. More specifically, in this section

the coefficients fk of F will be chosen to minimize the l∞
norm of the approximation error,

minimize
f

∆

subject to

∥

∥

∥

∥

∥

H(ejω)−

K
∑

k=0

fkG
k(ejω)

∥

∥

∥

∥

∥

∞

≤ ∆,
(3)

where H(ejω) is the desired filter response. This problem can

be solved in a straightforward manner for any finite set of

frequency points using linear or convex optimization tech-

niques. Methods for solving it on a continuum of frequency

points on a closed (hence compact) subset of ω ∈ [−π, π] are

discussed below. A very special subclass of this problem is

that for which G(ejω) = e−jω , in which case F (G(ejω))
is the frequency response of the FIR filter F (e−jω). This

then corresponds to the traditional FIR filter design problem.

The Parks-McClellan FIR filter design algorithm [24] places

a symmetry constraint on the coefficients of F and solves this

special case using the Remez Exchange Algorithm [25]. The

coefficient symmetry constraint leads to the representation of

the problem in terms of real sinusoids, which satisfy the Haar

condition [25], [26], a restrictive condition required for the

Remez Exchange Algorithm.

B. Sharpening for a Desired Frequency Response

We remove the coefficient symmetry and the Haar condition

constraints and explore sharpening subfilters G(ejω) that are

more general than a unit delay by exploiting a less efficient but

more general algorithm, namely the First Algorithm of Remez

[25], summarized in Algorithm 1. This algorithm solves the

optimization problem

minimize
f

∆

subject to

∥

∥

∥

∥

∥

D(x)−

K
∑

k=0

fkUk(x)

∥

∥

∥

∥

∥

∞

≤ ∆,
(4)

where x takes values from a compact set S, and D(x) and

Uk(x), k = 0, 1, . . . ,K are continuous functions on S. More

specifically, it yields the minimax-optimal linear combination

coefficients fk for a set of continuous functions Uk(x) to

approximate a desired continuous function D(x) on S. A set

of polynomial coefficients fk to optimally sharpen G(ejω) can

be obtained by regarding the parameter x as the frequency ω,

setting D(·) = H(ejω), Uk(·) = Gk(ejω) and S as the union

of passbands and stopbands which needs to be a closed subset

of [−π, π].

ALGORITHM 1: First Algorithm of Remez

Input: Uk(x), k = 0, 1, . . . ,K; D(x), and S

Output: f∗ = argmin
f

∥

∥

∥

∥

∥

D(x) −

K
∑

k=0

fkUk(x)

∥

∥

∥

∥

∥

∞

.

Begin (i = 1)

0. Choose S [i] = {x0, x1, . . . , xm} ⊂ S for any m such that

m ≥ K and the matrix [Uk(xn)]k,n, k = 0, 1, . . . ,K;

n = 0, 1, . . . ,m has column rank K + 1.

1. Set f [i] = argmin
f

{

max
x∈S(i)

∣

∣

∣

∣

∣

D(x)−

K
∑

k=0

fkUk(x)

∣

∣

∣

∣

∣

}

.

2. Find x[i] = argmax
x∈S

∣

∣

∣

∣

∣

D(x)−

K
∑

k=0

f
(i)
k Uk(x)

∣

∣

∣

∣

∣

.

3. Set S [i+1] ← S [i] ∪ {x[i]} and i← i+ 1, go to Step 1.

In Algorithm 1, the minimax error is guaranteed to con-

verge to the optimal value and the algorithm yields a set

of coefficients fk, k = 0, 1, . . . ,K that attains this value

even when Uk(x), k = 0, 1, . . . ,K do not satisfy the Haar

conditions, or these function and D(x) are not real-valued,

unlike the requirements in the Remez Exchange Algorithm. In

fact, when the Haar condition is not met, any clustering point

of the sequence of parameter vectors f will attain the optimal

solution. If the Haar condition is also satisfied, the iterative

procedure will yield in the limit the unique optimal coefficients

fk, k = 0, 1, . . . ,K ( [25], page 97). Step 1 of the algorithm,

since restricted to a finite and discrete set of points, is a linear

optimization problem if the functions involved are real-valued,

or a convex optimization problem if complex-valued, and can

be easily solved. In this paper, we used the free packages

CVX [27], [28] and YALMIP [29] for specifying and solving

these optimization problems in a MATLAB environment. The

algorithm can be terminated based on a pre-specified threshold

on the change in the minimax error.

Although functional composition for filter sharpening does

not require G(ejω) to be a Type-I FIR filter, the example in

Figure 1 is chosen with these constraints in order to show

the improvement of the technique over the original filter
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Fig. 1. The zero-phase response of a 10th-order Type-I FIR filter G(ejω),
and that of the resulting filters after sharpening with 7th-order polynomials.
The polynomials were obtained using the method proposed in [1], the method
proposed in [7] and the functional composition approach stated in (3).

sharpening method described in [1], which inherently carries

these constraints. More specifically, in Figure 1, G(ejω) is the

zero-phase response of a 10th-order low-pass Type-I FIR filter

obtained using the Parks-McClellan filter design algorithm

with ΩP = [0, 0.36π] and ΩS = [0.42π, π]. This filter was

sharpened using 7-th order polynomials F (·) obtained using

the method in [1] and using the functional composition ap-

proach described here, which yields a superior sharpening par-

ticularly where the subfilter exhibits large ripples. In general,

the relative improvement of the frequency response becomes

more prominent as the subfilter exhibits larger deviations from

the ideal response, which is usually the case with low order

subfilters. A linear phase FIR filter with the same order as

the 70th-order sharpened filters in the example of Figure 1

can of course be designed directly with the Parks-McClellan

algorithm, and would exhibit better frequency response charac-

teristics than these sharpened filters. However, filter sharpening

emphasizes building modular filters with relatively simple and

low order subfilters that are straightforward to implement or

readily available as opposed to designing a high order custom

filter for each specific application.

Since the method in [7] is also known to yield the minimax

optimal sharpening error when G(ejω) is the zero-phase

response of a Type-I filter, the sharpened filter obtained using

this method is also included in Figure 1 as a benchmark.

Although they utilize different tools, the functional composi-

tion approach and the method in [7] both yielded the same

approximating function even though the lack of the Haar

condition for the set {Gk(ejω), k = 0, 1, 2, . . . ,K} suggests

the optimal approximating function may not be unique. In

order to gain further insight into this result, the representation

of filter sharpening as functional composition can be used

to show that the minimax-optimal F is in fact unique and

that both methods will yield the same sharpened filter for

real-valued G(ejω). More specifically, the filter sharpening

problem given in (3) can be re-stated as

minimize
f

max
ω∈ΩP∪ΩS

∣

∣

∣

∣

∣

H(ejω)−
K
∑

k=0

fkG
k(ejω)

∣

∣

∣

∣

∣

(5)

which, if there exists a function Q(x) that is continuous on

G(ΩP ∪ΩS) such that Q◦G(ejω) = H(ejω), is equivalent to

minimize
f

max
ω∈ΩP∪ΩS

∣

∣

∣

∣

∣

(

Q(x)−

K
∑

k=0

fkx
k

)

◦G(ejω)

∣

∣

∣

∣

∣

(6)

or

minimize
f

max
x∈G(ΩP∪ΩS)

∣

∣

∣

∣

∣

Q(x) −

K
∑

k=0

fkx
k

∣

∣

∣

∣

∣

. (7)

Here, G(ΩP∪ΩS) denotes the image set of G over the union of

its passbands and the stopbands. For example, for the desired

response H(ejω) satisfying

H(ejω) =

{

1, ω ∈ ΩP

0, ω ∈ ΩS
, (8)

if G(ΩP ) and G(ΩS) are disjoint sets as would be expected

from any meaningful subfilter, Q(x) in fact exists and becomes

Q(x) =

{

1, x ∈ G(ΩP )
0, x ∈ G(ΩS)

, (9)

which is equivalent to equation (2) as obtained by the analysis

given in [7]. This manipulation implies that the filter sharp-

ening problem reduces to the simple case of approximating

Q(x) with a K-th order polynomial F (·), which not only has

a unique solution even if {Gk(ejω), k = 0, 1, 2, . . . ,K} does

not satisfy the Haar conditions but also can be very efficiently

solved using the Remez Exchange Algorithm as exploited in

[7]. Since the set of optimal sharpening coefficients is unique,

both the functional composition method and the method in [7]

lead to the same solution for real-valued G(ejω).
For complex-valued G(ejω), solving for a polynomial ap-

proximation to Q(x) in (9) on G(ΩP ) and G(ΩS) is not as

straightforward as in the real case since these are subsets of

the complex plane and not necessarily the real line. More

specifically, the Remez Exchange Algorithm cannot be applied

directly in this case. On the other hand, although not as effi-

cient as the Remez Exchange Algorithm, the First Algorithm

of Remez can still be used in this general case to find the

optimal sharpening coefficients while none of the existing

filter sharpening methods remain applicable except for simple

cascading.

C. Sharpening for a Desired Magnitude Response

A general disadvantage of composing complex-valued func-

tions when compared to those that are real-valued is the addi-

tional requirement of matching the phase of the approximating

function F (G(ejω)) =
∑

k fkG
k(ejω) to that of H(ejω). Due

to this additional requirement, even the optimally-sharpened

filter may not be satisfactory when the functional composition

approach is applied directly. The approximation quality may

improve significantly if only the magnitude response of the

filter is desired to be approximated with that of a composition
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in an application. This relaxation of the phase matching con-

straint arises in certain signal processing contexts, for example

in the design specifications of IIR filters both in discrete and

continuous domains. These applications can potentially benefit

from an extension of the functional composition approach to

cases for which the approximation quality is specified with

respect to the difference between |H(ejω)| and |F (G(ejω))|.
Consider a variant of the filter sharpening problem stated

as

minimize
f

∆

subject to

∥

∥

∥

∥

∥

∣

∣H(ejω)
∣

∣ −

∣

∣

∣

∣

∣

K
∑

k=0

fkG
k(ejω)

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∞

≤ ∆,
(10)

or equivalently as

minimize
f

∆

subject to

∥

∥

∥

∥

∥

M(ω)ejΘf (ω) −
K
∑

k=0

fkG
k(ejω)

∥

∥

∥

∥

∥

∞

≤ ∆.
(11)

with M(ω) = |H(ejω)| and Θf is the phase function in the

equality

K
∑

k=0

fkG
k(ejω) =

∣

∣

∣

∣

∣

K
∑

k=0

fkG
k(ejω)

∣

∣

∣

∣

∣

ejΘf (ω). (12)

The problem stated in (11) is no longer convex in fk, k =
0, 1, . . . ,K , and in its current form cannot be expressed and

solved with the same approach used for the problem stated

in (3). Algorithm 2 below provides an alternative iterative

procedure for determining a locally optimal solution to this

problem utilizing the approach for the problem stated in (3)

in one of its steps. Similar to Algorithm 1, the iterations can

be terminated based on a pre-specified threshold on the change

in the approximation error.

ALGORITHM 2

Input: Gk(ejω); M(ω) =
∣

∣H(ejω)
∣

∣; an arbitrary Θ[0](ω)

Output: A local optimum for

f
∗ = argmin

f

∥

∥

∥

∥

∥

M(ω)ejΘf (ω) −
K
∑

k=0

fkG
k(ejω)

∥

∥

∥

∥

∥

∞

.

Set i = 1.

1. Set f [i] = argmin
f

∥

∥

∥

∥

∥

M(ω)ejΘ
[i−1](ω) −

K
∑

k=0

fkG
k(ejω)

∥

∥

∥

∥

∥

∞

.

2. Set Θ[i](ω) = argmin
Θ(·)

∥

∥

∥

∥

∥

M(ω)ejΘ(ω) −

K
∑

k=0

f
[i]
k Gk(ejω)

∥

∥

∥

∥

∥

∞

3. Set i← i+ 1, go to Step 1.

The first two steps of Algorithm 2 correspond to alternating

projections of a function between the sets U and V where

U = {P (ω) s.t. P (ω) =

K
∑

k=0

akG
k(ejω), ak ∈ R} (13)

and

V = {R(ω) s.t. R(ω) = M(ω)ejΘ(ω), ∀ real Θ(ω)}, (14)

which result in an iterative search for a function in the span of
{

Gk(ejω)
}

that has a magnitude as close to M(ω) = |H(ejω)|
as possible. The first step is equivalent to approximating a

desired filter response M(ω)ejΘ
[i−1](ω) by sharpening G(ejω),

which can be formulated as (3) and solved using the First

Algorithm of Remez as described previously. The optimal

phase Θ(ω) for the second step of Algorithm 2 can be

shown to be the phase of the optimal approximating function
∑

k f
[i]
k Gk(ejω) obtained in the first step. More specifically,

for any ω, the square of the objective function in the second

step of Algorithm 2 becomes

∣

∣

∣

∣

∣

M(ω)ejΘ(ω) −

K
∑

k=0

f
[i]
k Gk(ejω)

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

M(ω)ejΘ(ω) −

∣

∣

∣

∣

∣

K
∑

k=0

f
[i]
k Gk(ejω)

∣

∣

∣

∣

∣

ejΘ
[i]
f

(ω)

∣

∣

∣

∣

∣

2

=|M(ω)|
2
+

∣

∣

∣

∣

∣

K
∑

k=0

f
[i]
k Gk(ejω)

∣

∣

∣

∣

∣

2

−2 |M(ω)|

∣

∣

∣

∣

∣

K
∑

k=0

f
[i]
k Gk(ejω)

∣

∣

∣

∣

∣

cos
(

Θ(ω)−Θ
[i]
f
(ω)
)

(15)

where the first equality follows from the definition of Θ
[i]
f
(ω)

in equation (12) and the second equality follows from the

law of cosines. The same optimal choice of Θ(ω) = Θ
[i]
f
(ω)

minimizes this objective function for every frequency ω, hence

it is the solution for the second step of this algorithm.

It is well known that if the two sets U and V are both convex

with a non-empty intersection, the sequence of functions ob-

tained during this iterative procedure of alternating projections

would converge to a function in U ∩V yielding ∆ = 0 in (11),

or, if the intersection is empty, converge to the closest point

of U to V attaining the global minimum of ∆. Although the

lack of convexity in V prevents establishing such guarantees

as in the First Algorithm of Remez, the minimax error at

each iteration, denoted as ∆[i], is a non-increasing sequence.

Specifically, during the i-th iteration, the approximation error

in Algorithm 2 satisfies [30]

∆[i−1] =

∥

∥

∥

∥

∥

M(ω)ejΘ
[i−1](ω) −

K
∑

k=0

f
[i−1]
k Gk(ejω)

∥

∥

∥

∥

∥

∞

≥

∥

∥

∥

∥

∥

M(ω)ejΘ
[i−1](ω) −

K
∑

k=0

f
[i]
k Gk(ejω)

∥

∥

∥

∥

∥

∞

≥

∥

∥

∥

∥

∥

M(ω)ejΘ
[i](ω) −

K
∑

k=0

f
[i]
k Gk(ejω)

∥

∥

∥

∥

∥

∞

= ∆[i], (16)

where the first inequality follows from the minimization at

Step 1 and the second inequality follows from the minimiza-

tion at Step 2. Since the sequence ∆[i] is bounded below by

zero, it is going to converge and possibly to a positive value

∆opt. Furthermore, choosing the same set of initial frequency

points each time Step 1 invokes the First Algorithm of Remez
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Fig. 2. The magnitude responses of a 4-th order elliptic bandpass filter G(z),
the filter obtained by simply cascading G(z) ten times and the modular filter
obtained by composing G(z) with a 10-th order polynomial F (·) obtained by
functional composition to approximate the desired response in its magnitude.

guarantees to have the sequence of coefficient vectors f
[i] to

be bounded [30].

Figure 2 illustrates the magnitude response of a 4th-

order elliptic bandpass subfilter G(ejω) designed with pass-

band edge frequencies of 0.45π and 0.63π, maximum

passband ripple of 1dB and minimum stopband atten-

uation of 40dB. Following the procedure in Algorithm

2, this filter is sharpened with a 10th-order polynomial

F (·) to minimize
∥

∥|H(ejω)| − |F (G(ejω))|
∥

∥

∞
rather than

∥

∥H(ejω)− F (G(ejω))
∥

∥

∞
, where |H | is unity on ΩP =

[0.45π, 0.63π] and zero on ΩS = [0, 0.38π] ∪ [0.70π, π]. The

response of the filter that is obtained by simply cascading ten

replicas of the subfilter is also included in Figure 2 for com-

parison. The functional composition approach to approximate

the desired response in its magnitude yields a much better

response when compared to the cascade.

Figure 3 illustrates the errors at each iteration of Algorithm

2 during the computation of the optimal coefficients for fk for

the sharpening of G(z) in the example of Figure 2. Starting at

two different initial phase functions Θ[0](ω), both curves have

a non-increasing trend consistent with the analysis in (16).

This figure also shows that different initial conditions lead to

different initial errors as well as final error levels. Therefore,

in such problems, different initial guesses may be tried until a

satisfactory error level is achieved with increasing number of

iterations. The coefficients for F in Figure 2 were chosen as

those obtained by the procedure corresponding to the smaller

error curve in Figure 3.

An additional advantage of using composition for sharpen-

ing an IIR subfilter is stability. Composition with a polynomial

F (·) introduces new zeros and no new poles, but only in-

creases the multiplicity of the existing poles. This ensures that

stability is not compromised through composition, a guarantee

that lacks in practice in designing high order filters directly.
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Fig. 3. The approximation error values ∆[i] at each iteration in Algorithm
2 while sharpening the subfilter G(z) given in Figure 2 starting with two

different initial phase functions Θ[0](ω). Each of these were chosen as the

phase of the function given by
∑10

k=0 f̃kG
k(ejω) with f̃k chosen randomly

from a standard normal distribution.

IV. FUNCTIONAL COMPOSITION AND DECOMPOSITION

FOR MODULARITY

Sharpened filters obtained by functional composition as

described in the previous sections can be implemented as

a tapped cascaded interconnection of subfilters where each

delay element in the direct form implementation of an FIR

filter F (z) is replaced by the subfilter G(z) as illustrated in

Figure 4. In addition to the motivating benefits of designing

filters by sharpening simple subfilters, this structure has the

advantage of being highly modular and flexible. For example,

Nakamura [31] proposed varying the tap coefficients and using

different subfilters to obtain programmable FIR filters and

adjustable magnitude responses. Moreover, the subfilters can

be designed and fabricated offline with desired technology

and accuracy. Although the multiplication rate increases in

such structures, Saramaki [7] emphasized the advantage of a

reduced number of distinct multiplications and the possibility

to use multiplexing in order to implement all subfilters using

the same chip. From a design perspective, modular designs

are also being increasingly promoted in VLSI designs where

the overall system is often divided into either identical or few

distinct sub-systems with a reduced emphasis on the number of

multiplications or delay elements [32]. This has the advantage

of requiring a smaller number of different designs as well as

the possibility of independent and efficient verification of sub-

systems [32], [33].

In order to obtain modular filter structures when a sub-

filter is not pre-specified and hence functional composition

cannot be invoked, functional decomposition techniques can

be used to represent or approximate the desired response as

a composition of simpler functions. A simple and suboptimal

decomposition method is to approximate the desired response

by a low order filter using a portion of the degrees of freedom

that are available, with the remaining degrees of freedom

used to sharpen this filter. Saramaki [7] proposed a more

systematic approach to obtaining a filter as a tapped cascaded
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Fig. 4. (a) The direct form implementation of an FIR filter F (z) using
a tapped delay line. (b) A generalized tapped delay line where the delays
are replaced by another filter G(z), often referred to as a tapped cascaded
interconnection of subfilters.

interconnection of identical subfilters even when a subfilter is

not pre-specified, which can be also viewed as composition.

An alternative approach to designing modular filters without

a pre-specified subfilter is to exploit known functional de-

composition algorithms. A well studied class of functions for

which several decomposition algorithms exist are polynomials

[18], [34]–[39]. These methods allow representing a given

decomposable polynomial H(z) as the composition of lower

order polynomials F (G(z)), or approximating it with a de-

composable one when it is non-decomposable. Modular filter

design using polynomial decomposition techniques applied to

FIR filters as examples follow. However this approach only

yields locally optimum l2-error solutions for the cases in

which an exact decomposition is unavailable. An overview

of the most common approaches to exact and approximate

decompositions of polynomials are given in [40] and the

sensitivities of composition and decomposition to coefficient

perturbations are evaluated in [41].

To illustrate modular filter design using functional decompo-

sition, consider a 30-th order Parks-McClellan low-pass filter

with the passband and stopband edges of 0.20π and 0.24π,

respectively. Figure 5a shows the impulse responses of the

original filter and its approximate decomposition2 F (G(z))
obtained by the method described in [37] where

F (z) = −0.0526+ 0.0649z−1 − 0.0359z−2− 0.0021z−3

+0.1160z−4− 0.0226z−5 + 0.0049z−6 (17)

and

G(z) = −0.1037+ 0.1759z−1 + 0.2667z−2 + 0.3432z−3

+0.4321z−4 + 0.7834z−5. (18)

Figure 5b depicts the corresponding magnitude responses. Al-

though the approximate polynomial decomposition optimizes

the approximation with respect to the l2 norm and the impulse

responses differ significantly, the magnitude response of the

approximation still exhibits the general characteristics of the

original low-pass filter magnitude response. However, this

similarity does not always hold in general due to the difficulty

2The functions in this section are polynomials in z−1, and composing these
polynomials refer to replacing z−1 with other polynomials.
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Fig. 5. The comparison of a 30-th order low-pass Parks-McClellan filter H(z)
with the passband and stopband edges of 0.20π and 0.24π, respectively, with
its approximate decomposition F (G(z)): (a) the impulse responses (b) the
magnitude responses.

of finding a nearby decomposable polynomial to any given

non-decomposable polynomial. Moreover, the approximation

in this case does not have the symmetry in the coefficients

thereby losing the desirable linear phase property of the Parks-

McClellan filter.

One approach to approximating Type-I FIR filters consists

of first expressing the original frequency response as a poly-

nomial in cosω and then decomposing this polynomial rather

than decomposing the z-transform directly. More specifically,

the Fourier transform of an even-symmetric filter H(ejω) with

order 2L and symmetric around n = L can be represented as

Hshifted(e
jω)=

L
∑

n=−L

hshifted[n]e
−jω

=hshifted[0]+

L
∑

n=1

2hshifted[n]cosnω (19)

after a time shift of L samples, where the time shift can be

reversed by appropriate buffering once the filter is designed.
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Expanding each term in the sum using the Chebyshev poly-

nomials leads to a polynomial in cosω as in

Hshifted(e
jω) =

L
∑

n=0

bn(cosω)
n. (20)

In other words, the frequency response of the time shifted filter

becomes B(cosω), where B is a polynomial with coefficients

bn and of order L. An approximate decomposition obtained

using any approximate polynomial decomposition method

such as the ones in [37], [38], [40] and given by

B(x) ≈ B̂(x) = F (G(x)) (21)

suggests a modular representation of the FIR filter as a tapped

cascaded interconnection of subfilters where coefficients of

F are the tap coefficients and G(cosω) corresponds to an

even-symmetric subfilter. However, the frequency responses

B(cosω) and B̂(cosω) were significantly different in simu-

lations even in cases where the coefficients of B̂(x) were a

good approximation to those of B(x). This is expected since,

in general, the proximity of the coefficients of two polynomials

with respect to the l2 norm implies that their values are close

with respect to the same norm when evaluated on the unit

circle due to Parseval’s theorem, and not necessarily on the

interval [−1, 1] ⊂ R from which cosω assumes values.

In cases where the symmetry of a given filter is required

to be preserved by the approximate decomposition, a third

approach to performing the decomposition that also yields

an acceptable approximation to the frequency response is to

divide the impulse response before the decomposition into two

subsequences which are related to each other through time

reversal. More specifically, the z-transform of the time shifted

filter can be expressed as

Hshifted(z) = C(z) + C(z−1), (22)

where coefficients of C(z) are those of hshifted[n] for n ≥

0 with the exception that its constant term is
hshifted[0]

2 . An

approximate decomposition of C(z) as in

C(z) ≈ F (G(z)) (23)

yields

Hshifted(z) ≈ F (G(z)) + F (G(z−1)) (24)

the coefficients of which are guaranteed to be symmetric.

The implementation of this decomposable approximation leads

to the modular structure given in Figure 6. Although this

implementation requires two different subfilters, namely G(z)
and G(z−1), they are related through a time reversal which

does not require the design of an additional subfilter. For on-

line applications, this design can be used by introducing a

buffer stage at the input to re-introduce causality.

As an illustration, the method of symmetric decomposition

in equation (24) was applied to the Parks-McClellan filter

Fig. 6. The implementation of an even-symmetric FIR filter using an
approximate decomposition of the form given in equation (24).

given in Figure 5. The polynomial C(z) corresponding to this

polynomial is given by

C(z) = 0.1105 + 0.2039z−1 + 0.1572z−2 + 0.0939z−3

+0.0307z−4− 0.0173z−5− 0.0412z−6

−0.0402z−7− 0.0215z−8 + 0.0042z−9

+0.0260z−10 + 0.0370z−11 + 0.0364z−12

+0.0281z−13 + 0.0192z−14− 0.0597z−15, (25)

which was approximated as the composition of

F (z) = 0.1862 + 0.2261z−1 + 0.0020z−2 − 0.0068z−3

−0.0132z−4 + 0.0097z−5 (26)

and

G(z) = −0.3359 + 0.8847z−1 + 0.7099z−2 + 0.4192z−3.

(27)

Figure 7a illustrates the original response and its symmet-

ric approximation obtained using this approach where the

symmetry around n = 15 was preserved as desired. As

seen in Figure 7b which depicts the corresponding magnitude

responses, the low-pass characteristics of the original filter

were also preserved in this example with a slight widening

of the transition region.

V. CONCLUSIONS AND FUTURE WORK

In this paper, functional composition is introduced as a

broader and more systematic perspective in which to view,

analyze and design modular filters and as an alternative to the

traditional filter sharpening techniques. Algorithms for obtain-

ing optimal gains to sharpen pre-specified filters are given.

These algorithms can accommodate constraints on either fre-

quency or magnitude responses. The functional composition

view point removes the constraints on the subfilters as well as

providing minimax (l∞) optimality guarantees. Furthermore,

functional decomposition is shown to be a broader approach

and an alternative to obtaining modular filters even when a

subfilter is not pre-specified.
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Fig. 7. The comparison of the 30-th order low-pass Parks-McClellan filter
H(z) with the passband and stopband edges of 0.20π and 0.24π, respectively,
with its approximate decomposition F (G(z))+F (G(z−1)): (a) the impulse
responses (b) the magnitude responses.

Although not the focus in this paper, the same tools devel-

oped for filter sharpening can be applied to the more funda-

mental problem of designing FIR filters with nonlinear phase

to minimize the maximum deviation from a desired response

by selecting the subfilter as a unit delay, i.e. G(ejω) = e−jω.

The desired response H(ejω) is also not restricted to being

real-valued or piecewise-constant. Moreover, continuous-time

filters for which the frequency response is defined on the entire

real line can also be sharpened using these tools by trans-

forming the problem into a compact frequency interval using

the bilinear transformation. More specifically, the responses

of both the subfilter and the desired filter defined on the

real line can be mapped to the interval [−π, π], an operation

that preserves the minimax approximation error profile before

invoking the First Algorithm of Remez.
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