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Abstract—The theoretical basis for conventional acquisition of
bandlimited signals typically relies on uniform time sampling and
assumes infinite-precision amplitude values. In this paper, we ex-
plore signal representation and recovery based on uniform ampli-
tude sampling with assumed infinite precision timing information.
The approach is based on the delta-ramp encoder which consists of
applying a one-level level-crossing detector to the result of adding
an appropriate sawtooth-like waveformto the input signal. The out-
put samples are the time instants of these level crossings, thus repre-
senting a time-encoded version of the input signal. For theoretical
purposes, this system can be equivalently analyzed by reversibly
transforming through ramp addition a nonmonotonic input signal
into a monotonic one, which is then uniformly sampled in ampli-
tude. The monotonic function is then represented by the times at
which the signal crosses a predefined and equally-spaced set of am-
plitude values. We refer to this technique as amplitude sampling.
The time sequence generated can be interpreted alternatively as
nonuniform time sampling of the original source signal. We derive
duality and frequency-domain properties for the functions involved
in the transformation. Iterative algorithms are proposed and im-
plemented for recovery of the original source signal. As indicated
in the simulations, the proposed iterative amplitude-sampling al-
gorithm achieves a faster convergence rate than frame-based re-
construction for nonuniform sampling. The performance can also
be improved by appropriate choice of the parameters while main-
taining the same sampling density.

Index Terms—Sampling theory, level-crossing sampling, nonuni-
form sampling and reconstruction, iterative algorithms.

I. INTRODUCTION

THE theoretical foundation of conventional time sampling
typically relies on the sampling theorem for bandlimited

signals [1]–[3], which states that bandlimited signals can be per-
fectly represented by infinite-precision amplitude values taken at
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equally-spaced time instants appropriately separated. In this pa-
per, we propose a signal representation based on equally-spaced
amplitude samples with infinite-precision timing information.
We introduce the delta-ramp encoder that generates a time en-
coded version of the input signal and show how this sampling
and reconstruction process can be theoretically analyzed based
on the amplitude sampling concept also introduced in this paper.

Signal representation based on discrete amplitudes and con-
tinuous time has previously been studied and utilized in a number
of contexts. In [4] signal representation consists of the real and
complex zeros of a bandlimited signal. Logan’s theorem [5] char-
acterizes a subclass of bandpass signals that can be completely
represented, up to a scaling factor, by their zero crossings. Prac-
tical algorithms for recovery from zero crossings of periodic sig-
nals in this class have been proposed in [6]. Arbitrary bandlim-
ited signals can also be implicitly described by the zero crossings
of a function resulting from an invertible transformation [7]–
[9]—for example, the addition of a sinewave [10, Theorem 1].
In principle, interpolation is possible through Hadamard’s fac-
torization [11, Chapter 5] although there are more efficient tech-
niques in terms of convergence rate [12]–[15]. Zero-crossings
have also been studied in relation to wavelet transforms [16].
In this case, stable reconstruction can be achieved by including
additional information about the original signal.

The extension from zero crossings to multiple levels, in the
context of data compression, was investigated in [17]. In that
work, a sample is generated whenever the source signal crosses
a predefined set of threshold levels. The time instants of the
crossings and the level-crossings directions were utilized to rep-
resent the signal although time was still quantized due to practi-
cal considerations. A practical continuous-time version of level-
crossing sampling was later proposed in [18]. Asynchronous
delta modulation [19] is, also, in some sense, a precursor of
level-crossing sampling since it generates a positive or nega-
tive pulse at time instants when the change in signal amplitude
surpasses a fixed quantity.

In the context of asynchronous sigma-delta modulation sys-
tems,

In the context of asynchronous sigma-delta modulation sys-
tems, the connection between time-based representation and lo-
cal averages of bandlimited signals was shown in [20] where
frame-based reconstruction can be carried out [21, Theorem 7].
This sampling process can then be viewed as a representation of
a signal as a stream of pulses where processing can be performed
directly in the pulse domain [22].
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Fig. 1. Equivalent representation of the amplitude sampling process.

In this paper, we study the time encoding process of the delta-
ramp encoder (see Fig. 1) and reconstruction from the gener-
ated time sequence. We show that this system can be analyzed
theoretically based on the more general concept of amplitude
sampling with the signal represented by the time sequence of
equally-spaced level crossings of a monotonic transformation
of the input signal as would be generated, for example, by an
amplitude quantizer with equal step sizes. In principle, if a sig-
nal were monotonic, then the crossings of equally-spaced am-
plitude levels would generate an ordered time sequence {tn}
which could be considered as a representation of the signal. Un-
der appropriate conditions, this corresponds to uniform sampling
in amplitude with the signal information contained in the time
sequence {tn}. Nonmonotonic signals can be reversibly trans-
formed into monotonic ones which are then uniformly sampled
in amplitude. We refer to this technique as amplitude sampling.

As discussed in Section II where we introduce the delta-ramp
encoder, when the reversible transformation consists of adding
a ramp with appropriate slope, a practical implementation to
generate the identical ordered time sequence {tn} is the delta-
ramp encoder shown in Fig. 1. The time sequence generated by
the delta-ramp encoder and that obtained by uniform amplitude
sampling after ramp addition are identical. For the theoretical
analysis of the delta-ramp encoder in this paper, we utilize
the interpretation of the time sequence {tn} as derived from
uniform amplitude sampling of the monotonic function obtained
by ramp addition. Section III defines the general concept of
amplitude sampling. In Sections IV, V, and VI we derive duality
as well as time- and frequency-domain properties relating the
functions present in the transformation. The structure of these
functions suggest an iterative reconstruction algorithm for
numerical recovery of the source signal from the amplitude
samples. This algorithm is discussed in Section VII with
simulations and comparisons with frame-based reconstruction
from nonuniform time samples.

Throughout the paper, we refer to f̂ as the Fourier transform
of the function f given by

f̂(ξ) =

∫
R
f(t)e−i2πξtdt, ξ ∈ R. (1)

The Fourier inversion formula then takes the following form

f(t) =

∫
R
f̂(ξ)e+i2πξtdξ, t ∈ R. (2)

Note that the units for ξ can be interpreted to be Hz. We say that
a function f is of moderate decrease or moderate decay if it is

Fig. 2. Illustration of the different waveforms involved in the system shown
in Fig. 1.

continuous and there existsA > 0 such that |f(t)| ≤ A/(1 + t2)
for all t ∈ R.

II. DELTA-RAMP ENCODER

The delta-ramp encoder is represented by the block diagram
depicted in Fig. 1. The level detector produces an impulse at
times at which the input signal reaches the value Δ. For ease of
illustration, assume the ramp-segment generator initiates a ramp
with slope α > 0 that abruptly shifts down by Δ in amplitude
whenever an impulse arrives. Assume α is chosen such that g̃(t)
is monotonic in each interval between successive impulses.

Fig. 2 shows an example of the signals involved in the pro-
cess. By construction, the ramp segments of the function r(t)
present the same slope. This manifests itself in the presence of
an continuous ramp of slope α separated by multiples of Δ for
each corresponding segment. Consequently, the function g̃(t)
satisfies the following

g̃(t) = f(t) + αt− kΔ (3)

for t ∈ (tk, tk+1] and k ∈ Z. Thus,

g̃(tk+1) = Δ = f(tk+1) + αtk+1 − kΔ (4)

which gives (k + 1)Δ = g(tk+1) for all k ∈ Z where g(t) =
αt+ f(t). Consider now the time instants {tn} that satisfy
g(tn) = nΔ = αtn + f(tn). As a result of the one-to-one cor-
respondence between amplitude values and time instants due to
the monotonicity of g(t), it follows that {tk} = {tn}. Thus, the
delta encoder generates impulses at the same time instants at
which g(t) crosses the set of amplitude levels {nΔ}.

In summary, the delta-ramp encoder produces a representation
of the input signal as a sequence of time instants, or time codes.
This time encoding mechanism can be alternatively viewed as
level-crossing sampling of the function g(t) or nonuniform sam-
pling of f(t), i.e. f(tn) = nΔ− αtn. Moreover, the function
g(t), assuming appropriate regularity conditions, has an inverse
function t(g) which is effectively sampled uniformly in the am-
plitude domain with samples corresponding to these time in-
stants. Therefore, the sampling process of the delta-ramp en-
coder can be interpreted as uniformly sampling the function
t(g). In principle, it is possible to generalize this concept by
considering any transformation that generates a monotonic func-
tion g(t). We formalize this concept in the next section.
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Fig. 3. Principle of amplitude sampling based on a transformation φ of the
source signal f resulting in a monotonic function φ(f(t)).

III. PRINCIPLE OF AMPLITUDE SAMPLING

Amplitude sampling and reconstruction as developed in this
paper is then based on the principle of reversibly representing
and then sampling a time function g(t) in the form t(g) and then
sampling in g. This requires that g(t) be monotonic which means
that if the source signal is nonmonotonic, it must first be re-
versibly transformed into a strictly monotonic function through
a transformation φ. As illustrated in Fig. 3, the resulting func-
tion φ(f(t)) is then uniformly sampled. The time instants {tn}
at which φ(f(t)) crosses the predefined set of amplitude values
{nΔ} implicitly represent the source signal, i.e.φ(f(tn)) = nΔ
where Δ > 0 is the separation between consecutive levels. Each
of the time instants is paired exactly with one amplitude level.
Thus, there exists a one-to-one correspondence between ampli-
tude values and time instants. The sequence of time instants to-
gether with knowledge of Δ is sufficient information to describe
the sampling process. Thus, it can be interpreted as a form of
time encoding.

Amplitude sampling corresponds to signal-dependent nonuni-
form time sampling with the sampling density dependent on the
source signal and the choice of the transformation φ.

We have shown in Section II that, when a ramp of appropriate
slope is used, amplitude sampling is equivalent to the samples
generated by a delta-ramp encoder. In fact, it can be shown that
many delta-modulation systems can be interpreted as amplitude
sampling. For a detailed analysis of the latter, the interested
reader is referred to [23, Chapter 4].

IV. TRANSFORMATION BY RAMP ADDITION

There exist a myriad of transformations φ that can potentially
generate a monotonic function from a given f . Among the sim-
plest is the addition of a ramp with a sufficiently large slope. Sup-
pose the original signal f is continuous, and it is possible to con-
struct the strictly monotonic function g(t) = αt+ f(t) for some
α ∈ R. Then, the sampling process consists of the sequence
of time instants {tn} satisfying g(tn) = αtn + f(tn) = nΔ for
some Δ > 0.

As indicated earlier, for analysis purposes in this paper, it is
convenient to interpret the time sequence {tn} as resulting from
sampling uniformly in amplitude the monotonic function u =
g(t) = αt+ f(t). In the context of this transformation, there
exists an inverse function g−1(u) that we choose to express in the

Fig. 4. Illustration of the invertibility of the transformation between f and h
when g(t) = αt+ f(t) and g−1(u) = u/α+ h(u).

form g−1(u) = u/α+ h(u) for some amplitude-time function
h. This interpretation suggests that this transformation can also
be viewed as a mapping from f to the associated function h.

A. Mapping Between f and h

The addition of a ramp represents a mapping, parametrized
by the slope of the ramp, between the original signal and the
functionh. We denote this mapping byMα, i.e.Mαf = hwhich
can be viewed as the addition of the ramp to obtain the monotonic
function g and, after inverting g, subtracting the ramp u/α to
obtain h. The reverse procedure to recover f from h consists of
adding a ramp of slope u/α to h and utilizing the invertibility
of g−1 as well as the correspondence between g and f . This
inverse mapping is denoted by Mα−1 and satisfies Mα−1h = f .
Fig. 4 illustrates the one-to-one correspondence between f and
h. These mappings are also summarized in equation form as [24]

f(t) = − αh(f(t) + αt),

h(u) = − 1

α
f
(
h(u) +

u

α

)
.

(5)

As is evident from Fig. 4 and (5) there is a duality between
Mα and its inverse. It is possible to interpret (5) as a signal-
dependent warping operation that obtains f from h and vice
versa. The addition of a ramp in amplitude sampling also gener-
ates an underlying mapping, dependent on f or h, between time
t and amplitude u. Both mappings can be easily seen from (5)
in its matrix form and the corresponding inverse matrix:(

f(t)
t

)
=

(−α 0
1 1/α

)(
h(u)
u

)
, (6)

(
h(u)
u

)
=

(−1/α 0
1 α

)(
f(t)
t

)
. (7)

The duality implies that any properties ofh inherited by assump-
tions made on f hold for f if the same assumptions are instead
imposed on h.

B. The Sampling Process

Amplitude sampling produces a sequence of time instants cor-
responding to nΔ = g(tn) = αtn + f(tn) where Δ > 0. This
sampling process results then in g−1 and h being uniformly
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sampled in amplitude, i.e.

g−1(nΔ) = nΔ/α+ h(nΔ) (8)

and

h(nΔ) = tn − nΔ/α. (9)

C. Sampling Density

As noted earlier, amplitude sampling in the form presented
here can be viewed as equivalent to nonuniform time sampling.
In this setting, stable reconstruction algorithms typically impose
conditions on the sequence of sampling instants as for example
the Landau rate [25] for bandlimited signals. In order to gain
insight into the time-sampling density inherent in our amplitude-
sampling process, assume the source signal f has a bounded
derivative, i.e. |f ′(t)| ≤ B for some B > 0 and that |α| > B so
that the function g(t) = αt+ f(t) is strictly monotonic. Then
the time between successive samples satisfies the inequality

Δ

|α|+B
≤ |tn+1 − tn| ≤ Δ

|α| −B . (10)

where Δ > 0 is the separation between consecutive amplitude
levels.

The bounds in (10) are consistent with intuition. For example,
assume thatα is positive. The derivative of g is bounded byα+B
which provides the minimum attainable time separation between
crossings. Similarly, the maximum separation is essentially lim-
ited by α−B. The quantization step Δ represents the change in
amplitude necessary to produce a sample. Additionally, when α
achieves sufficiently large values, the bounds for time separation
become closer, or equivalently, the time sequence becomes more
uniform. We can observe this effect in (10) where amplitude is
approximately a scaled version of the time axis.

D. Iterative Algorithm for the Realization of Mα

In this section, we propose an iterative algorithm for the im-
plementation of Mα to generate h(u) from f(t). By duality,
an equivalent algorithm can be used for the implemention of
Mα−1 to generate f(t) from h(u). For ease of illustration, we
consider a modified version of the transformationMα by consid-
ering h̃(u) = −αh(αu). This transformation, which we denote
by M̃α, is then given by:

f(t) = h̃

(
1

α
f(t) + t

)
,

h̃(u) = f

(
− 1

α
h̃(u) + u

)
.

(11)

Equations (11) form the basis for the iterative algorithm for-
malized in the following theorem.

Theorem 1: Let the function f be Lipschitz continuous with
constant < α and suppose that supt∈R |f(t)| ≤ A. Then, the
function values h̃(u) = (M̃αf)(u) for u ∈ R can be obtained
by the iteration

h̃n+1(u) = f

(
u− 1

α
h̃n(u)

)
(12)

for n ≥ 0 where h̃0(u) = f(u) and h̃n(u)→ h̃(u) as n→∞.

Fig. 5. Illustration of the iteration described in Theorem 1 with the initializa-
tion t0 = u0.

The detailed proof is carried out in Appendix A.
As used in the preceding, the value of h̃(u0) can be obtained

from the first equality in (11). In particular, h̃(u0) = f(t∗)where
t∗ is the value that satisfies u0 = t∗ + f(t∗)/α. The solution is
unique since the slope of the ramp, in absolute value, is al-
ways greater than the maximum value of the derivative of f .
As shown in Fig. 5, t0 is the time instant at which the ramp
αt0 − αt intersects the function f(t). In the same way, the
value of the (n+ 1)-th iteration can be viewed as the solu-
tion of αt− (αu0 − f(tn)) = 0. In other words, we iteratively
construct a straight line passing through the point (u0, f(tn)).
The intersection with the horizontal axis then corresponds to the
value of tn+1.

Note that the process for recovering h from f is analogous to
the one presented in Theorem 1, i.e. the iteration takes the form
fn+1(t) = h̃(fn(t)/α+ t).

V. SPECTRAL PROPERTIES

Assumptions made on the source signal f are naturally re-
flected in the structure of h. In this section, we assume that f
is a bandlimited function and derive properties regarding the
spectral content of the amplitude-time function h. The duality
between f and h =Mαf implies that similar conclusions can
be made about f when h is assumed to be bandlimited.

In exploring the spectral content of h we assume that f is
bandlimited to σ rad/s with σ > 0 and bounded in amplitude,
i.e. |f(t)| < A for some A. We further assume that the decay
of f(t) for t real satisfies |f(t)| ≤ A/(1 + t2). In principle, the
extension to square-integrable functions is straightforward. With
our assumptions on f , Bernstein’s inequality [26] provides the
bound |f ′(t)| ≤ Aσ for all t ∈ R. This bound gurantees that the
function u defined as

u = g(t) = αt+ f(t). (13)

will be strictly monotonic whenever |α| > Aσ. The function h
is then given by h(u) = g−1(u)− u/α. From Theorem 2 below
it follows that the decay of the Fourier transform of h, denoted
by ĥ(ξ), satisfies ĥ(ξ) = O(e−2π|ξ|b) as ξ →∞ where b > 0 is
determined by the difference |α| −Aσ.

Theorem 2: Let f(t) : R→ R be a continuous function ban-
dlimited to σ > 0 rad/s. Assume further that |f(t)| ≤ A/(1 +
t2) for all t ∈ R and some A > 0. Construct the function

u = g(t) = αt+ f(t) (14)
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for |α| > Aσ. Then, there exists g−1(u) for all u ∈ R and a
constantC > 0 such that the Fourier transform ofh(u) = g−1(t)
− u/α satisfies |ĥ(ξ)| ≤ Ce−2π|ξ|b for any 0 ≤ b < a such that

a =
|α|
σ

log

( |α|
Aσ

)
− |α| −Aσ

σ
. (15)

and ξ ∈ R.
The detailed proof is carried out in Appendix B.
As anticipated, the rate of decay of the Fourier transform at in-

finity depends on |α| −Aσ. The difference is logarithmic in the
first term and linear in the second one. The larger the difference
the faster the decay at infinity. Note thata > 0 always holds since
|α| > Aσ. Assuming α > 0, this difference is precisely impact-
ing the highest slope portions inh, or, equivalently, the regions in
which f ′ is smallest. The underlying reason being that the deriva-
tive of g−1 is the reciprocal of g, i.e. (g−1(u))′ = 1/g′(g−1(u))
for all u ∈ R. Informally, it is the tilted regions in the shape of h
are responsible, to some extent, for the high-frequency content.

It should be emphasized that any bandlimited function will
naturally be in the class of signals whose spectrum exhibits
at least exponential decay at infinity. However, Theorem 3
stated below asserts that f and h cannot be simultaneously
bandlimited. The precise statement in the description of the
theorem guarantees this property with the possible exception of,
at most, one value of α. For practical purposes, we can ignore
this isolated case.

Theorem 3: Under the conditions of Theorem 2 and unless f
is constant, the function h is nonbandlimited for every α > Aσ
with at most one exception.

The detailed proof is carried out in Appendix C.
In the singular case, in which f is a constant, it can be shown

through the constructive process ofMα by ramp addition thath is
constant as well, specifically, for f = A, then h = −A/α. From
another point of view, according to (5), the function f results,
in general, from h with a nonlinear warping of the independent
variable. When either of the two functions is constant, the warp-
ing is affine. Therefore, in this case, the bandlimited property
is preserved [27]. In our context the conclusion follows directly
from (5) that if either f or h is constant, the other must be also.

More generally, if |α| increases significantly, the warping
function becomes approximately linear since f(t) is negligible
compared toαt, i.e. f(t)≈ −αh(αt). This is consistent with (15)
where an increase of |α| produces a faster decay at infinity of ĥ.

VI. TIME-DOMAIN DECAY PROPERTIES

In some sense,h inherits characteristics of f since it is a ”time-
warped” version of f . In this section, we show the connections
between the properties of f and h in the time domain with the
relationship between f and h as specified in (5) which explicitly
requires that the slope of the ramp added to f and the slope of
the ramp subtracted to obtain h be exact inverses. Intuitively, it is
not surprising that the functionh should present decay properties
similar to those of f once the unbounded growth of the ramp
component has been subtracted. In particular, when the slopes
of the two ramps are reciprocals of each other, the decay of h
will match that of f . Otherwise h does not decay appropriately
on the real line (see Proposition 3 in Appendix D).

Fig. 6. Approximate reconstruction procedure for a bandlimited source signal
f such that h = Mαf . The block D/C is a discrete-to-continuous operation
involving sinc interpolation with period Δ.

The transformationMα also has an impact on theLp norms of
the respective functions with the parameter α playing a crucial
role. It can be shown—refer to Proposition 4 in Appendix D—
that the decay on the real line of both functions is related by

||h||p =
1

α1− 1
p

||f ||p, p ∈ [1,∞]. (16)

Not only doesh belong toLp(R) if f does, but their respective
norms are also related by a scaling factor which is precisely α.
Indeed, for very large values of |α|, the ramp approaches the ver-
tical axis, thus reducing the range of h and decreasing the norm.

In terms of a sense of distance, consider h1 =Mαf1 and
h2 =Mαf2. The transformation Mα preserves the L1 distance
(see Proposition 5 in Appendix D), i.e.

||h1 − h2||1 = ||f1 − f2||1. (17)

By duality, these properties hold irrespective of the role of each
function as an input or output.

VII. RECONSTRUCTION FROM DELTA-RAMP ENCODING

The time encoding performed by the delta-ramp encoder can
be seen, under the amplitude sampling perspective, as signal-
dependent nonuniform time sampling of the source signal f
based on uniform time sampling of the associated amplitude-
time function h. If f is bandlimited, then as was shown in
Section V h is not bandlimited and consequently cannot be
exactly reconstructed through bandlimited interpolation. Our
reconstruction approach begins by initially using sinc interpo-
lation as an approximation. This is then extended to an iterative
algorithm that achieves accurate recovery. Throughout this en-
tire section, we assume that the source signal f is bandlimited
to σ rad/s, and |f(t)| ≤ A/(1 + t2) for A > 0 and all t ∈ R.

A. Bandlimited Interpolation Algorithm (BIA)

The approximate reconstruction of f based on sinc interpo-
lation of h is depicted in Fig. 6. From this approximation to
h an approximation to f is generated through Mα−1 which is
then lowpass filtered since f is assumed to be bandlimited. In
particular, the D/C system is defined by the relationship

hΔ(u) =
∑
n∈Z

h(nΔ)sinc(u/Δ− n). (18)

Note that the samples of h are related to {tn} as h(nΔ) =
tn − nΔ/α, n ∈ Z. The motivation to perform bandlimited in-
terpolation from the samples of h is based on the exponential
decay of its spectrum. Since h is nonbandlimited, the aliasing
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Fig. 7. Block diagram representation of the iterative amplitude sampling re-
construction (IASR) algorithm.

error can be characterized by the following bound (see Proposi-
tion 6 in Appendix E)

||h− hΔ||∞ ≤ C ′

a
e−π

b
Δ (19)

for any 0 ≤ b < a and some C ′ > 0 where a is given in (15).
Then, the error in (19) is then controlled both by the dif-

ference |α| −Aσ and the quantization step size Δ. As already
discussed, increasing the difference |α| −Aσ produces, in some
sense, a function h with a faster high-frequency spectral decay
and therefore one that is more approximately bandlimited. Since
the quantization step size Δ also determines the sampling den-
sity of h, by decreasing Δ the aliasing error of the bandlimited
interpolation is also reduced.

By an appropriate combination of a sufficiently largeα and/or
a sufficiently small Δ, the function hΔ(u) + u/α can be as-
sumed to be invertible. We then obtain fΔ =M1/αhΔ. The
function fΔ is nonbandlimited since hΔ is bandlimited (see
Theorem 3). Thus, we obtain the bandlimited interpolation f̃ by
passingfΔ through a lowpass filter with cutoff frequencyσ rad/s.

B. Iterative Amplitude Sampling Reconstruction (IASR)

The bandlimited interpolation algorithm (BIA) forms the ba-
sis for an iterative algorithm which we refer to as the Iterative
Amplitude Sampling Reconstruction (IASR) algorithm as de-
tailed in Algorithm 1 and illustrated in Fig. 7. The time instants
{tn} represent both samples of f and the associated function
h. Similarly to BIA, the sample values {h(nΔ) = tn − nΔ/α}
are the input to the algorithm assuming we also know the pa-
rameters α and Δ involved in the sampling process. Note that if
the initialization satisfies h0 ≡ 0 and f0 ≡ 0, the first iteration
corresponds precisely to BIA, i.e. f1(t) = ẽ1(t) = f̃(t) for all
t ∈ R. Thus, the emphasis is placed on the reconstruction of
h from its uniform amplitude samples and then the bandlimited
constraint is imposed on the successive approximations to f with
the objective of iteratively reducing the error ||ẽk(t)||2.

C. Simulation Results

In all of the simulations in this section, the source signal f
is chosen as white noise bandlimited to σ rad/s and bounded by
A > 0. The quantization step size Δ and the parameter α are
chosen so that the sampling density is greater than or equal to
the Landau rate [25], which, in our case, is given by π/σ. We

Algorithm 1: IASR Algorithm.

1: Input: {tn}, α, Δ, and σ
2: {h(nΔ)} ← {tn − nΔ/α}
3: Initialize h0 and f0
4: do
5: {ηn} ← {h(nΔ)− hk(nΔ)}
6: ηΔ(u)←

∑
n∈Z ηnsinc(u/Δ− n)

7: eΔ ←M1/αηΔ
8: ẽk ← LPFσ(eΔ) � LPFσ(·) represents a lowpass

filtering operation with cutoff frequency σ rad/s.
9: fk+1 ← fk + ẽk

10: hk+1 ←Mαfk+1

11: while 0 ≤ k < K or ||ẽk||2 > ε �K and ε are
parameters establishing the stopping criteria.

12: return fk

choose as a measure of approximation error the signal-to-error
ratio (SER) given by

SER = 10 log10

( ||f ||22
||f − fk||22

)
(20)

where fk is the k-th iteration.
Since amplitude sampling also implies nonuniform time sam-

pling on the source signal f , we also directly apply a nonuniform
reconstruction algorithm to recover f in order to illustrate the
particular factors influencing the performance of IASR. Specif-
ically, we compare IASR to the Voronoi method developed in
[21, Theorem 8.13] that presents the best tradeoff between con-
vergence rate and approximation error among the frame-based
methods described therein. We chose the Voronoi method since
it has been shown to present a convergence rate approximately
the same as reconstruction from local averages which has been
used in other time encoding techniques for bandlimited signals
[20]. Based on the bounds in (10) for the time instants, it is
straightforward to see that the sampling instants in an amplitude
sampling setting satisfy the requirements of the Voronoi method
for an appropriate choice of the parameters. In particular, it can
be shown that it is sufficient that

Δ

|α| −Aσ >
π

σ
. (21)

In initializing both algorithms, the 0-th iteration in both IASR
and the Voronoi method is assumed to be zero.

In Fig. 8, we have modified separately the parameters α and
Δ. In reducing the value of the quantization step size Δ, the
transformed function αt+ f(t) will clearly cross more ampli-
tude levels per unit of time. Similarly, when the slope of the ramp
added to f is increased in absolute value, it also causes an in-
crease in the level-crossing density. Thus, both effects result in an
increase of the sampling density, and as shown in the figure, the
rate of convergence improves. However, it can be observed that
the rate of convergence is faster in the IASR case. The first iter-
ation in IASR achieves a better approximation than the Voronoi
method although the rate of convergence appears to be highly
insensitive to this change of parameters. On the other hand, the
Voronoi method is significantly impacted by the change in sam-
pling density. Moreover, it requires several iterations until it



2522 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 10, MAY 15, 2019

Fig. 8. Performance comparison between IASR, AWM, and BIA, for a broad-
band input signal bandlimited and bounded; (a) Δ is changed while α is fixed;
(b) α is changed while Δ is fixed.

Fig. 9. Performance comparison between IASR and the Voronoi method when
the bandwidth σ is changed, and α and Δ are fixed.

obtains the same approximation performance as the first itera-
tion in IASR. As shown in Fig. 9 the same conclusions hold if
we increase the oversampling ratio by considering signals with
smaller bandwidths and, at the same time, keepingα andΔfixed.

Thus far, we have focused on modifying the sampling density.
Additionally, due to the structure of the sampling process in
amplitude sampling, it is also possible to keep the sampling
density fixed while changing both α and Δ accordingly. The
rate of convergence in the Voronoi method is determined by

Fig. 10. Performance comparison between IASR and the Voronoi method
when the sampling density is fixed and α and Δ are changed.

the maximal separation between consecutive sampling instants.
With constant sampling density, the performance of the Voronoi
method does not change, as shown in Fig. 10. However, IASR
presents an improvement in the rate of convergence. This is not
surprising since the difference |α| −Aσ has increased, which
likely results in a better approximation of the sinc interpolation
in IASR.

When the input signal is highly oversampled, we have em-
pirically observed that the Voronoi method has a faster rate of
convergence. Nevertheless, when the sampling instants become
increasingly sparse approaching the Landau rate, IASR performs
significantly better.

In summary, overall, IASR appears to have better performance
than the Voronoi method in terms of speed of convergence when
the sampling density approaches the Landau rate. Changes in the
sampling density have a higher impact on the convergence in the
Voronoi method than in IASR. Moreover, IASR performance
can also be improved by increasing the difference |α| −Aσ
while keeping the sampling density invariant. In [24], a scal-
ing of the input signal also produces an increase in the speed of
convergence. This performance improvement of IASR over the
Voronoi method may be due to the characteristics of the sampling
instants. Specifically the sampling instants in IASR inherently
incorporate the amplitude sampling structure and therefore con-
tain more information initially than more general nonuniform
sampling would. In some sense, this may suggest that IASR is
designed to more effectively exploit the structure of this partic-
ular sampling process which implicitly is signal dependent and
consequently signal information is implicitly embedded in both
the sampling times and the sample values.

D. Computational Complexity

In the previous results, we have compared the performance
of both algorithms in terms of convergence rate. Regarding op-
erations per iteration, the IASR algorithm consists mainly of
bandlimited interpolation, a lowpass filtering operation, and the
two transformations Mα and M1/α. The bandlimited interpola-
tion can be equivalently seen as a lowpass filtering operation.
From a theoretical perspective, both transformations Mα and
M1/α only entail the addition of a ramp where the inverse can
be interpreted through a relabeling of the axes t and u = g(t).
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Fig. 11. Performance comparison between IASR and the Voronoi method
based on computation time for a specific hardware and software implementation.
The solid markers represent the reconstruction accuracy of the corresponding
iteration.

However, in practice, we have considered in our simulations
uniformly oversampled finite-length signals. Thus, in a practical
setting, transformations of the form Mα take uniform samples
to nonuniform samples. Due to the oversampling, we chose to
perform linear interpolation to obtain an approximation to the
corresponding uniform samples.

The Voronoi method mainly consists of a zero-order hold
and a lowpass filtering operation. Then, obtaining the function
values at the nonuniform instants of time, i.e. fk(tn), requires
additional computation since they are not directly given by the
first two operations.

Fig. 11 shows a comparison of the reconstruction accuracy
in terms of computation time for both methods. It is important
to emphasize that these results depend on the software imple-
mentation and the hardware platform. In this case, we used the
MATLAB environment. Among the several ways of simulating
a lowpass filtering operation, we utilized the FFT and IFFT al-
gorithms. From the simulations performed, we observe that the
computation time per iteration is comparable. This suggests that
the conclusions drawn above—i.e. when considering reconstruc-
tion accuracy versus number of iterations—can also apply here.

VIII. CONCLUSION

We presented the delta-ramp encoder, a form of time encod-
ing where the time sequence generated is directly related to
both uniform and nonuniform sampling of the corresponding
associated signals. This sampling process can be analyzed the-
oretically as amplitude sampling which represents a signal with
equally-spaced amplitude values and infinite-precision timing
information by reversibly transforming the source signal. This
transformation provides the perspective of viewing amplitude
sampling as uniform sampling of an associated amplitude-time
function or equivalently as nonuniform time sampling of the
source signal. The properties of both functions are connected
by a duality relationship. Similarly, an iterative algorithm for
recovery was proposed and evaluated that exploits the particular
characteristics of the sampling instants in amplitude sam-
pling. As opposed to more general nonuniform reconstruction
algorithms, the convergence rate can be improved while main-
taining the sampling density constant.

APPENDIX A
PROOF OF THEOREM 1

According to (11), obtaining h̃(u0) for some fixed u0 ∈ R is
equivalent to finding some t∗ ∈ R such that u0 = t∗ + f(t∗)/α
since h̃(u0) = f(t∗). Therefore, we have to find the roots of

t = u0 − 1

α
f(t) � vu0

(t) (22)

for t ∈ R. It is easy to see that vu0
(t) is Lipschitz continu-

ous for some constant K < 1. Furthermore, there always exists
some ε ≥ A/α such that vuo

: I → I where I = [u0 − ε, u0 +
ε]. Thus, the Banach fixed-point theorem [28] guarantees the
uniqueness and existence of a solution. Moreover, it ensures
convergence with the following bounds for the error

|tn+1 − t∗| ≤ K|tn − t∗| (23)

for n ≥ 0 where t0 ∈ I and tn+1 = vu0
(tn). Then, the iteration

can be equivalently expressed in terms of the functional compo-
sition form as

h̃n+1(u0) = f

(
u0 − 1

α
h̃n(u0)

)
. (24)

Since u0 was chosen arbitrarily, the same conclusions hold for
any u0 ∈ R. �

APPENDIX B
PROOF OF THEOREM 2

For ease of notation, we will substitute the real variable t by
x throughout the proof of the theorem (i.e. we will refer to f(x)
instead of f(t)). Then, the complex variable z ∈ C is expressed
as z = x+ iy for x, y ∈ R. We will also use the complex vari-
ablew = u+ iv foru, v ∈ R when appropriate. Define the open
disk in the complex plane centered at zo and of radius r > 0 as

Dr(zo) = {z ∈ C : |z − zo| < r} (25)

and use Dr(zo) for its closure.
Let us introduce some concepts that will be used throughout

the proof. A function complex differentiable at every point in a
region Ω ⊆ C is said to be holomorphic in Ω. If the function is
holomorphic over the whole complex plane, it is referred to as
entire. An entire function f is of exponential type if there exists
constants M, τ > 0 so that |f(z)| ≤Meτ |z| for all z ∈ C. If
σ = inf τ taken over all τ satisfying the latter inequality, it is
said to be of exponential type σ.

We first introduce several results that will become useful in
the proof of the theorem.

Lemma 1: Let f be a holomorphic function in some region
Ω ⊆ C with power series f(z) =

∑∞
n=0 an(z − zo)n at zo ∈ Ω.

Consider a disk of radius R centered at zo such that Ω contains
the disk and its closure. If a1 
= 0 and

|a1| >
∞∑

n=2

|an|nRn−1, (26)

then f is injective in any open disk of radius r ≤ R.
Proof: Without loss of generality assume zo = 0, thus the

power series expansion of f around the origin is given by f(z) =∑∞
n=0 anz

n for all z ∈ Ω. Take z1, z2 ∈ DR(0) ⊂ Ω such that
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z1 
= z2 and recall that for any z, w ∈ C the following identity
holds

(zn − wn) = (z − w)(zn−1 + zn−2w + · · ·
· · ·+ zwn−2 + wn−1).

(27)

We can write∣∣∣∣f(z2)− f(z1)z2 − z1

∣∣∣∣ =

∣∣∣∣∣a1 +
∞∑

n=2

an
zn2 − zn1
z2 − z1

∣∣∣∣∣

=

∣∣∣∣∣a1 +
∞∑

n=2

an(z
n−1
2 + zn−22 z1 + · · ·

· · ·+ z2z
n−2
1 + zn−11 )

∣∣∣

≥ |a1| −
∞∑

n=2

|an|nRn−1.

where the last inequality follows from the reverse triangle in-
equality and the fact that |z1|, |z2| ≤ R. Thus, if |a1| −

∑∞
n=2

|an|nRn−1 > 0, then f(z2)− f(z1) 
= 0 and f(z) is injective
in Dr(zo) for any r ≤ R. �

Proposition 1: Let f : U → V be a bijective continuous
function. Consider a set Ω such that its closure Ω is strictly
contained in U , then f(∂Ω) = ∂f(Ω).

Proof: Consider x ∈ ∂Ω, which is clearly a limit point of
Ω. We know there exist a convergent sequence xn → x where
xn 
= x for n ≥ 1 and xn ∈ Ω. By continuity, f(xn)→ f(x)
is a convergent sequence in V . As f is a bijection from U to
V , f(xn) 
= f(x) for all n ≥ 1, thus f(x) ∈ f(Ω). Moreover,
f(x) 
= f(x′) for all x′ ∈ Ω, therefore f(x) ∈ ∂f(Ω) for all x ∈
∂Ω. It follows that f(∂Ω) ⊆ ∂f(Ω).

Now, we claim that for every y ∈ ∂Ω there exists an x ∈ ∂Ω
such that y = f(x). Imagine this is not true and there ex-
ists an xo ∈ U \ ∂Ω such that yo = f(xo). From our previ-
ous discussion, it is clear that xo cannot be in Ω, then imagine
xo ∈ U \ Ω. Since f is continuous and bijective, we can choose
a sufficiently small ε > 0 such that f−1(Dε(yo)) ⊂ Dδ(xo) and
Dδ(xo) ∩ Ω = ∅ for some δ > 0. However, as yo is a point
in the boundary, it holds that Dε(yo) ∩ f(Ω) 
= ∅. Thus, there
exist an x1 ∈ Ω such that f(x1) = y′ for some y′ ∈ Dε(yo).
At the same time, there also exists an x2 ∈ f−1(Dε(yo)) such
that f(x2) = y′, where x1 
= x2. This contradicts the bijec-
tivity assumption, thus f(∂Ω) ⊇ ∂f(Ω) which together with
f(∂Ω) ⊆ ∂f(Ω) gives f(∂Ω) = ∂f(Ω). �

Proposition 2: Suppose f(z) is an entire function of expo-
nential type σ such that |f(x)| ≤ A/(1 + x2) for all x ∈ R.
Then, the following bound holds for all z ∈ C

|f(z)| ≤ Aeσ|y|

1 + x2
. (28)

Proof: By assumption, |f(z)| ≤ Aeσ|z| for all z ∈ C. Con-
struct the function F (z) = (1/A)(1 + x2)eiσzf(z), then F is
bounded by 1 on the positive imaginary and positive real axis.
If we consider the first quadrant Q = {z ∈ C : x > 0, y > 0},
it is clear that there exists constantsC, c > 0 such that |F (z)| ≤
Cec|z| for z ∈ Q. We conclude by the Phragmén-Lindelöf the-
orem [11, Chapter 4, Theorem 3.4] that |F (z)| ≤ 1 for all z in

Q. This implies that |f(z)| ≤ Aeσy/(1 + x2) for z ∈ Q. Us-
ing the same argument, one can show that the same is true in
the second quadrant. For the third and fourth quadrants we use
instead the function F (z) = (1/A)(1 + x2)e−iσzf(z), which
shows that (28) also holds for y ≤ 0. �

The function f is of moderate decrease and bandlimited to
[−σ, σ] rad/s. By the Paley-Wiener theorem [11, Chapter 4,
Theorem 3.3] [29, Theorem X], f is an entire function of
exponential type σ. Then, using Bernstein’s inequality [26],
|f ′(x)| ≤ σA. Now, we can split the proof of the theorem in
three steps.

Step 1: We claim that the function u = g(x) = αx+ f(x)
admits a real analytic inverse function whenever α > σA. It is
clear that g(x) is analytic for all x ∈ R since it is the sum of
two analytic functions on the whole real line. Moreover, g(x) is
a strictly increasing monotone function because |f ′(x)| ≤ Aσ
and α > Aσ, which implies g′(x) > 0. The Real Analytic In-
verse Function theorem [30, Theorem 1.4.3] guarantees that for
a point xo where g′(xo) 
= 0, there exists a neighborhood Jo of
xo and a real analytic function g−1 defined on an open interval
Io containing g(xo) satisfying (g−1 ◦ g)(x) = x for x ∈ Jo and
(g ◦ g−1)(u) = u for y ∈ Io. Since g′(x) 
= 0 for all real x, it is
always possible for any given x1 ∈ R to find an x2 /∈ J1 such
that J1 ∩ J2 
= ∅. Thus, by analytic continuation, we conclude
that g−1(u) is analytic on the whole real line.

Step 2: We show that the function g−1(w) is analytic in a
region containing the horizontal strip

Sa =
{
w ∈ C : |Im(w)| < a,

where a =
α

σ
log

(α
σ

)
− α− σ

σ

}
.

(29)

The function g(z) = αz + f(z) is an entire function of expo-
nential typeσ and admits a power series expansion aroundx ∈ R

g(z) = αz +

∞∑
n=0

f (n)(x)

n!
(z − x)n (30)

for all z ∈ C. By Bernstein’s inequality [26], the derivatives of
f are bounded on the real line by |f (n)(x)| ≤ Aσn. We now
look for a region where g(z) is injective. Using Lemma 1, g(z)
is injective in a disk of radius R > 0 whenever

|α+ f ′(x)| > A

R

∞∑
n=2

n
(σR)n

n!
= Aσ(eRσ − 1) (31)

or, equivalently

R <
1

σ
log

(
1 +
|α+ f ′(x)|

Aσ

)
. (32)

The right-hand side of this expression is lower bounded by (1/σ)
log(1 + (α−Aσ)/Aσ) > 0, since |f ′(x)| ≤ Aσ < α for all
x ∈ R. Thus, it is always possible to choose a disk of positive
radius satisfying this lower bound such that g(z) is injective.

Let us fix an R satisfying this lower bound. Remember that
holomorphic functions are open mappings, i.e. they map open
sets to open sets. Thus, g(z) maps an open disk of radius R to
the open set g(DR(x)). By continuity, g(DR(x)) is also con-
nected sinceDR(x) is connected. Therefore, the mapping g(z) :
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DR(x)→ g(DR(x)) represents a holomorphic bijection, thus
its inverse is also holomorphic. Moreover, the inverse agrees with
g−1(u) for real u ∈ g(DR(x)). Thus, it represents the analytic
continuation of g−1(u) onu ∈ g(DR(x)). In fact, we can always
choose a disk DR(x

′) such that g(DR(x)) ∩ g(DR(x
′)) 
= ∅,

where the inverse functions defined on their respective images
take the same value in the intersection for real u. Again, by
analytic continuation, we can analytically extend g−1(u) to
g(DR(x)) ∪ g(DR(x

′)). Repeating this process for all real x,
we obtain the analytic continuation of g−1(u) in the open set
Ω = ∪x∈Rg(DR(x)).

We want to find an a > 0 such that Sa ⊆ Ω. Using Lemma 1,
the boundary of the disk ∂DR(x) is mapped bijectively to ∂g
(DR(x)). Therefore, the largest radius ρ for a disk centered at
g(x) such that Dρ(g(x)) ⊆ g(DR(x)) for all x ∈ R is given by

ρ = inf
x∈R

sup
|z−x|=R

{|g(z)− g(x)| :

D|g(z)−g(x)|(g(x)) ⊆ g(DR(x))}.
(33)

We can use the power series expansion of g around x to find a
lower bound for ρ in the following manner

|g(z)− g(x)| =
∣∣∣∣∣α(z − x) +

∞∑
n=1

an(z − x)n
∣∣∣∣∣

≥ αR−
∞∑

n=1

Aσn

n!
Rn = αR−A(eRσ − 1).

for |z − x| = R. The right-hand side of the last expression
represents a strictly concave function of R, thus the maximum
is achieved for

R =
1

σ
log

( α

Aσ

)
> 0 (34)

which is positive as α > Aσ and satisfies the upper bound in
(32). Setting the value of R as in (34), we can write

|g(z)− g(x)| ≥ ρ ≥ α

σ
log

( α

Aσ

)
−
(α−Aσ

σ

)
(35)

for all x ∈ R and |z − x| = R. This implies that Sa ⊆ Ω for
any a such that

a ≤ α

σ
log

( α

Aσ

)
−
(α−Aσ

σ

)
. (36)

Step 3: We show that h(w) is of moderate decay on each
horizontal line |Im(w)| < a, uniformly in |y| < a. First, we note
that since f is an entire function of exponential type σ and is of
moderate decrease along the real line, by Proposition 2

|f(z)| ≤ Aeσ|y|

1 + x2
(37)

for all z ∈ C. Let us now fix an R satisfying (34), then we
have a bijection from DR(x

′) to g(DR(x
′)) for some x′ ∈ R.

Therefore, z = g−1(w), wherew ∈ g(DR(x)) and z ∈ DR(x
′).

Since |y| < R for z ∈ DR(x
′), we also have |f(z)| = |αz −

g(z)| ≤ AeσR/(1 + x2), or equivalently

|w − αg−1(w)| ≤ AeσR

1 + (g−1(u))2
(38)

whenever w ∈ g(DR(x)) and z ∈ DR(x
′). Using the reverse

triangle inequality in the previous expression for real w, we can
also obtain

|g−1(u)| ≥ |u|
α
− AeσR

α
. (39)

which is true for all u ∈ R since x = g−1(u) holds for all real x
and u as shown in the first step of the proof. Define the function
for all real u

ψ(u) =

{
|u|/α−AeσR/α if |u|/α > AeσR/α

0 otherwise
(40)

which clearly satisfies |g−1(u)| ≥ |ψ(u)|. Make β = 1/α and
multiply both sides of (38) by 1/α to see that |h(w)| = |w/α−
g−1(w)|. Combining these expressions, we can then write for
some A′ > 0 and w ∈ g(DR(x

′))

|h(w)| ≤ AeσR/α

1 + g−1(u)2
≤ AeσR/α

1 + ψ(u)2
≤ A′

1 + u2
(41)

As our choice of x′ was arbitrary, this is true for any x′ ∈ R and
|h(u+ iv)| is of moderate decrease along horizontal lines.

Therefore, the function h(w) is analytic on the strip Sa and
it is of moderate decrease on each horizontal line |Im(w)| = v,
uniformly in |v| < a, as long as β = 1/α. By [11, Chapter 4,
Theorem 2.1], we conclude that there exists a constant C > 0
such that |ĥ(ξ)| ≤ Ce−2πbξ for any 0 ≤ b < a. �

APPENDIX C
PROOF OF THEOREM 3

Construct the function g(z) = αz + f(z) where f is not con-
stant. By Picard’s little theorem [31, 16.22], there exists at most
one value α > Aσ that f ′(z) does not take. For the rest of them,
there always exists a zo ∈ C such that g′(zo) = α+ f ′(zo) = 0.
Then, it is possible to write

g(z)− a0 = (z − zo)2[a2 + a3(z − zo) + a4(z − zo)2 + . . .].
(42)

Therefore, the function g(z)− ao has a zero of order ≥ 2 at zo.
By the Local Mapping Theorem [32, Chapter 3, Theorem 11], g
is n-to-1 near zo for n ≥ 2. Using the argument of analytic con-
tinuation of local biholomorphisms in the proof of Theorem 2,
we conclude that the analytic extensions of h around g(zo) are
multivalued. This excludes the possibility ofh being entire, thus,
the restriction of h to the real line cannot be bandlimited.

If f(z) = C for some C > 0, then h(u) = −C/α, which is
bandlimited in the distributional sense. �

APPENDIX D
TIME-DOMAIN DECAY PROPERTIES

Proposition 3: Under the conditions of Theorem 2, construct
h(u) = g−1(u)− βu for u ∈ R and some β ∈ R. Then, the
function h is of moderate decrease if and only if β = 1/α.

Proof: The backward direction, i.e. assuming β = 1/α, has
been proved in Theorem 2. For the forward direction, assume
on the contrary that β 
= 1/α. From (38), we have the following
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bound ∣∣∣|g−1(u)| − |u|/α
∣∣∣ ≤ A/α. (43)

Therefore, using the reverse triangle inequality and the previous
expression, we arrive at the following for large enough u

|h(u)| = |g−1(u)− βu| ≥
∣∣∣|g−1(u)| − β|u|

∣∣∣
≥

∣∣∣|u|
∣∣∣β − 1

α

∣∣∣− A

α

∣∣∣.
(44)

Clearly, the right-hand side grows linearly without bound. Thus,
|h(u)| is unbounded for β 
= 1/α and cannot be of moderate
decrease. �

Proposition 4: Under the conditions of Theorem 2, the fol-
lowing relationship holds

||h||p =
1

α1− 1
p

||f ||p (45)

whenever 1 ≤ p <∞.
Proof: Using (5) and the change of variables u = f(t) + αt,

it is clear that for any even number p

||h||pp =

∫
R
h(f(t) + αt)p(f ′(t) + α)dt

=
1

αp

∫
R
f(t)pf ′(t)dt+

1

αp−1 ||f ||pp.
(46)

We now show that the first term on the right-hand side van-
ishes. First note that by the fundamental theorem of cal-
culus,

∫
R f

′(t)dt = 0 for any continuous function satisfying
lim|t|→∞ f(t) = 0. Thus, we arrive at the following

∫
R
f(t)pf ′(t)dt =

1

p+ 1

∫
R
(f(t)p+1)′dt = 0 (47)

since f(t)p+1 is also of moderate decay. Therefore, ||h||p =
||f ||p/α(p−1)/p.

Now, for any number p ≥ 1, we can choose a collection of
intervals such that f(t) ≥ 0 for t ∈ (an, an+1) and f(t) ≤ 0 for
t ∈ (bm, bm+1) for all m,n ∈ Z. Thus, we can write∫

R
|f(t)|pf ′(t)dt =

∑
n∈Z

∫ an+1

an

f(t)pf ′(t)dt

−
∑
m∈Z

∫ bm+1

bm

f(t)pf ′(t)dt.

(48)

For each n ∈ Z, we then have that∫ an+1

an

f(t)pf ′(t)dt =
f(t)p+1

p+ 1

∣∣∣an+1

an

= 0 (49)

since f(an)p+1 = 0 for all n ∈ Z. The same is true for the sec-
ond term of the right-hand side of (48). Note that we allow to
have intervals of the form (c,∞) or (−∞, d) for any c, d ∈ R
and the same holds true since lim|t|→∞ f(t)p+1 = 0 for p ≥ 1.
Therefore, ∫

R
|f(t)|pf ′(t)dt = 0 (50)

and ||h||p = ||f ||p/α(p−1)/p for any number p ≥ 1. �

Proposition 5: Under the conditions of Theorem 2, the fol-
lowing relationship holds

||h1 − h2||1 = ||f1 − f2||1 (51)

where h1 =Mαf1 and h2 =Mαf2.
Proof: Note that |h1(u)− h2(u)| = |g−11 (u)− g−12 (u)| and

|f1(t)− f2(t)| = |g1(t)− g2(t)|, thus by Fubini’s theorem [33,
Theorem 4.1.6] we arrive at the following

||h1 − h2||1 =

∫
R
|g−11 (u)− g−12 (u)|du =

∫
R2

1Γdtdu

||f1 − f2||1 =

∫
R
|g1(t)− g2(t)|dt =

∫
R2

1Λdtdu

where

Γ = {(t, u) ∈ R2 : t ∈ R,

min{g1(t), g2(t)} ≤ u ≤ max{g1(t), g2(t)}}
Λ = {(t, u) ∈ R2 : u ∈ R,

min{g−11 (u), g−12 (u)} ≤ t ≤ max{g−11 (u), g−12 (u)}}.
For an arbitrary (to, uo) ∈ Γ, to ≤ max{g−11 (uo), g

−1
2 (uo)} and

to ≥ min{g−11 (uo), g
−1
2 (uo)} since g1 and g2 are strictly in-

creasing. This implies that Γ ⊇ Λ. Using the same reasoning,
we obtain Γ ⊆ Λ which implies that Γ = Λ. Thus, the integrals
are the same. �

APPENDIX E

Proposition 6: If hΔ is the bandlimited approximation to h,
then there exists a C ′ > 0 such that

||h− hΔ||∞ ≤ C ′

a
e−π

b
Δ (52)

for any 0 ≤ b < a where a = α
σ log( α

Aσ )− α−Aσ
σ .

Proof: Since h(u) is continuous and of moderate decrease,
ĥ(ξ) is also continuous. Moreover, we know from Theorem 2
that |ĥ(ξ)| ≤ Ce−b2π|ξ| for some C > 0 and 0 ≤ b < a where
a is defined in (15). Clearly, ĥ is Lebesgue measurable and ab-
solutely integrable. Thus, by the generalized form of Weiss’s
theorem [34] we can bound the approximation error as

|h(u)− hΔ(u)| ≤ 2

∫
|ξ|>1/2Δ

|ĥ(ξ)|dξ

≤ 4C

∫
ξ>1/2Δ

e−2πξbdξ =
4C

2πb
e−π

b
Δ

(53)

for all u ∈ R. �
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