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Abstract

Optimal decentralized control of the multiple access
broadcast channel is considered. A technique is presented
for upper bounding the throughput of a slotted multiple ac-
cess system with a finite number of users, immediate ternary
feedback, retransmission of collisions, and no buffering.
The upper bound is calculated for the two- and three-user
cases, and it is shown that Hluchyj and Gallager’s optimized
window protocol is effectively optimal for these cases.

1 Introduction

The multiple access broadcast channel (MABC) is a use-
ful model for a variety of packet switched communication
systems. For this channel, there has been considerable inter-
est in the development of efficient protocols for coordinating
the data transmissions of the users. Although several vari-
ations of the MABC have been considered in the literature
(see, e.g., [11—[7]), we focus on a finite-user slotted sys-
tem with immediate ternary feedback, retransmission of col-
lisions, no buffering, and no communication among users;
we refer to this system as the canonical system.

Previous research has exploited the fact that the MABC
protocol design problem can be analyzed as a decentralized
control problem [2]—[7]. However, it has generally been
necessary to adopt simplifications that make the problem
tractable but also removed from the canonical problem. For
example, Schoute [6] and Varaiya [7] both consider decen-
tralized control of the MABC under a delayed sharing pat-
tern and under the assumption that colliding packets incur
a fixed cost rather than requiring retransmission; Rosberg
[5] also assumes a fixed collision cost and no retransmis-
sions, but differs by assuming no information sharing among
controllers, as well as control inputs that depend only on
broadcast feedback. Although these two simplified prob-
lems are easier to analyze, their relationships to the canon-
ical problem are unclear. On the other hand, the simplified
problems considered by Hluchyj and Gallager [4], Grizzle et
al. [2], and Paradis [3] yield solutions that can be used to find
lower and upper bounds on the throughput of the canonical
system. Hluchyj and Gallager consider the canonical sys-
tem and find protocols that are optimal in the class of pro-
tocols known as the window protocols. Since window pro-
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tocols are a subset of the set of all protocols, the through-
put of Hluchyj and Gallager’s optimized window protocol
provides a lower bound to the throughput achievable in the
canonical system. Conversely, Grizzle et al. and Paradis at-
tack the problem of optimally controlling a MABC that is
canonical except for a one-step delay sharing (OSDS) infor-
mation pattern. Because the canonical system does not al-
low any communication among users, its throughput is up-
per bounded by the throughput achievable under OSDS. For
two users, the OSDS bound is very close to the throughput of
the Hluchyj-Gallager optimized window protocol [2]—/4].
Unfortunately, for more than two users, the OSDS bound is
close to neither the throughput of the Hluchyj-Gallager pro-
tocol nor any other known protocol.

‘We introduce new upper bounds on the throughput of the
canonical system via the K -step delay state information pat-
tern, which is similar to the previously considered K-step
delay sharing pattern [8). That is, we calculate the through-
put of a MABC that is canonical except for a K -step delay
state information pattern, and this provides an upper bound
on the throughput of the canonical system. We use the dy-
namic programming method developed by Aicardi et al. [9]
as a starting point for performing this calculation. However,
for the class of systems that includes the MABC with K -step
delay state information, this method is unnecessarily expen-
sive in terms of computation. For this class, we develop a
more computationally efficient version of the algorithm that
that extends its practical utility. As a result of the more ef-
ficient algorithm, we are able to find upper bounds on the
throughput of the canonical system for two and three users
that are tighter than the OSDS bound. The new bounds show
that the performance of Hluchyj and Gallager’s optimized
window protocol is optimal for two users and at least nearly
optimal for three users, where optimality is with respect to
maximizing throughput. In fact, the Hluchyj-Gallager pro-
tocol meets the upper bound for three users when the packet
arriva) probability is moderately large.

The bounding technique we present is quite flexible and
can be adapted to handle a greater number of users as well
as other variations on the problem. Indeed, the bounding
technique applies to the general class of decentralized con-
trol problems with no information sharing and may be useful
in a broad range of other decentralized control and multiple-
access communication problems. For this reason, we first
describe the bounding technique in this general setting and
later focus attention on the MABC.



2 Decentralized Systems with No Sharing

In this section, we describe the class of systems for which
the bounding technique to be described in Section 4 is ap-
plicable. This class of systems consists of decentralized sys-
tems with no sharing, i.e., systems in which no information
is communicated among controllers. We show in Section 5
that the MABC can be regarded as such a system.

Consider a discrete-time stochastic system that is regu-
lated by M decentralized controllers, each with an associ-
ated measurement station. The system state variable z; and
the mth measurement station’s observations yj” evolve for

t=0,1,---,7 — 1 according to the equations
:L‘t+1:ft(xtau%y"'vuiwyvt)y ey
y?:g;n(xt,w;n),m:]_,,,,’M, (2)

where f; and g7" are given functions, u]® represents
the mth controller’s input at time £, and the quantities
To, (UO, wé» o )wfl)w)y Tty (UT—lv w’_'l[’—].? U )w’IM—-l)
are mutually independent primitive random variables whose
distributions are known. At a particular time step ¢, the ran-
dom variables vy, w}, - - - , w are allowed to be statistically
dependent. The vectors ui, vy, wi*, 4, and y]" take values
in the given finite sets U™, V;, W™, X;, and Y, respec-
tively. We assume that these sets are disjoint, e.g., X; N
Xo=0,and WINnY} =01

Each controller produces, according to a pre-designed
control law, an input based only on local observations
from its own measurement station. If the mth controller
is governed at time ¢ by a control law [ then u]"
Y (Y8, v, -+, ). It is this functional dependence of
u]* on only the history of the mth measurement station’s
measurements that makes the problem one of no sharing.

The set of admissible control laws, I'?, is the set of all
functions mapping Y” x - - - x Y™ to U/™. The design objec-

3 : =Mit=T-1
tive is to choose the control laws {y* € IT*}12,% 5
to minimize the total expected cost per stage
1 T-1
T Elhy(@i1,uf, -, ut)], 3)
t=0

where h; is a given real-valued cost function.

3 Notational Conventions

We adopt the convention of using context to distinguish
between values assumed by random variables and the ran-
dom variables themselves. The dependence of densities and
expectations on a choice of control laws v,:; is indicated by
p(+;7vs:) and E[;7s.], respectively. Domains and ranges
of functions are to be inferred from context, but sometimes
may be explicitly given for emphasis or clarity.

To consolidate lists of related symbols, we define y; =
(y%,,.,)ygw)’ Yot W, y), and ysy
(Ys, - y) fort > s. Ift < s, then y,,;, and ¥y, are

1 This assumption is not essential and is present only to facilitate notation
in subsequent sections. Indeed, we will focus on the stationary case, which
is at odds with this assumption, but this difficulty can be ignored.
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emjaty tuples. Moreover, we denote the range of y; by Y; =
[Ty Y™, the range of y7, by Y% = [T;_, Y/", and the
range of y,4 by Y5 = H;:s Y;. Analogous notation will
be used for other variables and their ranges.

It is convenient to define set operations on tuples as fol-
lows. Suppose that A {41, -, A,} is an ordered
collection of disjoint sets such that 4; < < A,
i.e., A; is the “smallest” element of A, while A, is the
“largest.” This ordering of the collection A is only im-
portant for the systematic construction of tuples from sets.
Leta = (a1, - ,an) € []in; Ai be atuple. Letb =
(aj,,---,a;5,),andc = (ag,, - - - , ax,) be tuples which may
be called “sub-tuples” of a. Then define & \ ¢ to be a tuple
consisting of the elements of the set difference {aj; }1_; \
{ag,}}_,, ordered so that an element in the tuple precedes
another if it belongs to a set that is “smaller” than the set to
which the other belongs. Analogous notation holds for bUe,
and b N c. Finally, if d = (ag,,- -+, as,), we denote the
set product [[,_, A, by S(d). In particular, the collection
X ={Ur VWX, X0, |m=1--- Mt =
0,---,T—1}is, by assumption, a collection of disjoint sets.
Let ¥ = (uo.r—1, vo:r—1, Wor—1, To:T, Yo:7—1), and let the
members of X’ have an ordering corresponding to the order-
ing of the elements in the tuple ¥. We may now consider
unions, intersections, and differences of the sub-tuples of ¥
and will do so in the following sections.

4 Bounding Techniques

The only known solution to the decentralized control
problem with no sharing described in Section 2 involves
exhaustive search, which is computationally expensive in
practice and infeasible when the time horizon is infinite.
While we do not develop an explicit solution to this prob-
lem, we present a technique for lower bounding the optimal
cost achievable by the system in Section 2. The bounds are
useful for the evaluation of suboptimal control laws; also,
when a control law happens to achieve the bound, we know
it is optimal.

The optimal cost achievable by a system with the K-
step delay state information pattern, which will be described
shortly, is a lower bound to the optimal cost achievable in
the no-sharing system. This is because more information is
available to controllers under the K-step delay state infor-
mation pattern than under the no sharing pattern. Further-
more, control laws for systems with the K -step delay state
information pattern can be found relatively efficiently {9].
As we will see, however, the algorithmin [9] is more compu-
tationally complex than necessary in the special case when
all measurement stations have some observations in com-
mon. For this special case, we present a more computation-
ally efficient version of the algorithm.

4.1 Systems with K -Step Delay State Information
Under the K -step delay state information pattern, all mea-
surement stations observe the state of the systemn with a K-
step delay. This information pattern is similar to the K -step
delay sharing pattern considered in, e.g., [8]. Indeed, K-



step delay state and K -step delay sharing are equivalent in
the case of noiseless observations, i.e., the case in which z,
can be determined from y;. For this noiseless case, Aicardi
et al. [9] show how to efficiently find optimal control laws
when the input and state spaces are finite. We adapt the al-
gorithm from [9] to the general K-step delay state control
problem.

A system with the K-step delay state information pat-
tern is the same as the system described in Section 2 except
for the following modifications. With §; = (yo.1—1, Zo:t)
and the range of é; denoted by A;, an admissible control
law v, for the K-step delay state problem must have the
form u® = (¥ k.., 61—k ). For convenience, we de-
note (Y2 g4, bt—k) by 2 and ;7 ., X Ay_ g by Z™. The
set of possible control laws for the mth controller at time ¢
is denoted f;", and consists of all possible maps from Z[*
to U[". We also change the cost criterion as follows. Since
we are interested primarily in the infinite horizon scenario,
we assume for convenience that the first K optimal control
laws 0.5 .-1 are given and that the goal is to minimize the
expected cost per stage starting from stage K:

. 1
min —
yex-1€0kr T — K

T-1
E[ Z h, (.131+1, u‘r); 70:T—-1]
=K (4)

Since the first K steps will not affect the limiting behavior,
we can just as well choose an arbitrary set of starting control
laws yo.x-1.

It will be useful to introduce the notion of a “sub-law”
as follows. Let ¥* € T be a control law, and let 7 be
a sub-tuple of ¥, and let N = S(n). A sub-law with re-
spect to N is a map from S(z{™ \ n) to U™, and the set of all

such maps is denoted f‘;’I“N. Define 7{’{‘0 to be the sub-law in

Ly satisfying »7 (8) = v*(BUn), VB € S(=" \ n),
where the elements in the tuple 8 U 7 are assumed to be
in the order required by v;*. Similarly, if ¥* € I‘;’l‘N is
sub-law with respect to NV, # is a sub-tuple of 9, and N =

8(), then 977, is defined to be a sub-law in f‘:”‘Nx 5 sat-

isfying ¥37:(8) = ¥ (BU D), VB € S(" \ (nU 7))
Also define the expansion of a sub-law ¥ € T' ;TN to be

Gin(¥7") = p € IT" such that p(B U 7)) = ¢{*(B), VB €
S(z™ \ 1), Vi € S(1}), where 7 is any element of N. For
convenience, we denote G;’I‘N by G, assuming that a sub-law
always expands into a control law for the corresponding time
and controller. Also, we denote (G(7;,), -, G(%})) by
G(7ﬂﬂ) and (G(73|ﬂ)’ o )G(7t|fl)) by G(7s:t|n)'

We can now state a theorem that characterizes the optimal
control law for a system with K-step delay state. Note that
this theorem is similar to a theorem presented in [9], which
is the analogous theorem for the noiseless observation case.

Theorem 1 Consider the following recursive equations that
characterize optimal control laws for the K -step delay state

system:

Jr(er-k,Y7-k7-1) =0,
Vir-k1-1 € Pr_kr-1)ar_x 6]
Jt(-”ft—K, i-Ki-1, 1/’t)
= Elhi(et41, ) + T (B1— K41, Y- K+ 1:1lye )
|2~ x; G(i—K:1)],
Vibi_k.t € f‘t—K:t|A¢_K 6
Ji(eek, Yi—K1-1)

= min  J(ei-k, Yi-K1-1,%r),
Ye€lvja, g
Vihr—kit—1 € Domkm1|ar g )]

Let yo.x-1 € Lox-1 be given starting optimal control
laws. If control laws yx.r-1 € U'g.r-1 satisfy

Jt(l‘t—Ka Vt—-K:t—1|6yo 5 7t|6t—K) =
JH(@t-k, Ye—Kt-118,_x) (8)

forevery b;_x € Ay_k,andeveryt = K,--. , T —1, then

YK.T—1 are optimal.

Proof: The proof of this theorem follows along the same
lines as the proof of Theorem 2 in Section 4.2. A proof of
a similar theorem is provided in [9]. 0

We can interpret the equations in Theorem 1 as the equa-
tions resulting from applying the dynamic programming al-
gorithm to the following centralized stochastic control prob-
lem. Using the notation of [10}, the state for the central-
ized problem is ¢, = (Ti-k,¥i—Ku-1) € Xi—k X
f‘t—K:t“llAt—K’ the input is v} = ¢, € th(_x, and the
disturbance is w; = (Zi-k+4+1,-k) € Xi—g+1 X Yi—k.
The state transition function f] is defined by

Je(t, uh, wl)
= (xt—K+1, 1/)t—K+1:tly¢_K)v ®
Ve xi-k41 € Xe—g41, Y-k € Yiok,

VK1t € Ui gp1)a, ko

and the cost function g; is defined by

g;(x;-i-l; u;)
= Elhs(@t41, )| - +1; G(Wr— K4 1:2]ys_x )]s
10

Vl‘t—K—H € X k41, V- € Y-k,
Vibr-k41:t € Domkb10)a0x-

Note that the disturbance satisfies the properties of a distur-
bance variable, namely that it is independent of previous dis-
turbances given the current state and the input.

A stationary optimal undiscounted infinite horizon con-
trol law for the K -step delay state problem will exist if this
equivalent centralized control problem has such a station-
ary optimal infinite horizon solution. The conditions under
which such a solution exists are described in [10]. If the
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conditions are satisfied, then an optimal control law can be
found efficiently by known methods, such as Howard’s pol-
icy iteration algorithm [11].

Immediately, we see from this equivalent centralized
stochastic control problem that the state space will likely
be enormous, a situation that makes even the dynamic pro-
gramming algorithm computationally expensive. More pre-
cisely, the size of the state space is

M
|Xt-K X f‘t—K::~1|A,_K[ = IXt—K[' ]___[ IU?lIlY;ZK”'IIa
an

where |Y,”.,_;| grows exponentially with K, implying
that the state space grows doubly exponentially with K. For
a certain class of systems that includes the MABC, the com-
plexity can be substantially reduced, although the growth
rate remains doubly exponential. We describe this class and
the method by which complexity can be reduced in the fol-
lowing subsection.

m=1

4.2 Complexity Reduction

In this section, we demonstrate how substantial computa-
tional savings in the bounding algorithm can be realized by
exploiting the common information inherent in the MABC
problem (viz., the ternary feedback).

A system with common information and K-step delay
state retains the elements of the system in Section 4.1 with
one modification. Namely, the observation 3} can be parti-
tioned into a local observation and a common observation.
Specifically, we can write yi* = (AP, &), for all m
1,---, M, where & is the common observation since ev-
ery controller observes it, and A} is the mth controller’s lo-
cal observation. We denote their ranges by Z; and A}, re-
spectively. The shared information é; can then be written
8: = (€o:4-1, Ao:t—1, To:t), and the control laws take the
form

(12)
(13)

ug' =77 (Uit gty - k)
= ’Y;n()‘;n—Kt y Et—K:i; 61-—-K)-

For future convenience, we denote (6;—x, &~k ) by 8; and
its range by Oy.

Exploiting the common information, we arrive at the
following modified theorem characterizing optimal control
laws.

Theorem 2 Consider the following recursive equationsthat
characterize optimal control laws for the K -step delay state
system with common information.:

Jr(er—k,ér—k.1, Yr—K.7-1) = 0,
Vyr_k7-1 € Lr_gr_1j01 (14)
Jt(il‘t—K,Et—K:t; wt—K:t—laq/)t)
= Elhy(2ry1,us) +
T (Tt K41, S K141, Vem K41t he_ k)
|-k, Et—K 43 G(i-K1)),

Vi Kt € f\t—K:HG; (15)

296

Ji(@emr, Etm Koty YraKt—1)

min  Ji(@i-k, &K, Yo K11, Vi),
Y€l e,

Yepi—kim1 € Do gpmijo, (16)

Letvyy.—1 € Cox— 1 be given optimal control laws. If con-
trol lawsyg . r—1 € Ug.p—1 satisfy

Ji(ei-x, &~k Yi—K:t~1]6;> ’mst)
= Ji (@K, Ei Kty VemK-110,)  (17)

forall 9, = (Aow—xr-1,801, Tou—k) € Oy andt
K,---, T — 1, then yg.7~1 are optimal.

Proof: See reference [12]. a

Again, we can interpret the above equations as the result
of applying dynamic programming to the following central-
ized stochastic control problem. Let the state for the central-
ized problem be

(18)
19)

o) = (oK, &—Kt, ProK1-1)

€ Xk X Ey_xu X ft—K:t-—ll@y
let the input be uf = 9, € ft|@t, and let the disturbance be

(20)
@1

1
wy =A% k41, - K 41041, M—K)
€ XK1 X Zy_kg1a41 X Mok

Define the transition function f}’ by
" "

z”(l't » Ugs w;') = (Z1-r 41, §-K41:041, ¢t—K+1:t])\f_K)a
(22)

and define the cost function g}’ by

g:’:’(x?-;-l: u;’) = E[ht($t+1, )| Tt F41s St K141
G(r-K41:4heex)])- (23)

Again, conditions under which a stationary optimal undis-
counted infinite horizon control law exists for this central-
ized problem are given in [10].

Note that the size of the state space for this centralized
stochastic control problem is now

|Xt—K X By g X f‘t—K:t~1|®¢| =
M
1 Xeoi |- [Bemrcal - J[ 10D Axamal, (24)

m=1

and that |Z;_ k.| is not in the exponent of |U7"| as it would
be had we used the method in Section 4.1. However, the
growth rate of the state space remains doubly exponential
in K since |A .., | grows exponentially with K. Never-
theless, even for small problems, the efficiency of the above
algorithm allows an enormous reduction in required compu-
tation when compared to the algorithm in Section 4.1.



5 Multiple Access Broadcast Channel

In this section, we focus on the canonical MABC and for-
mulate the problem of designing protocols as a decentralized
control problem with no information sharing.

The multiple access broadcast channel is defined as fol-
Tows. Time is discrete and is known by all users; at the start
of each time slot, each of M users makes a decision regard-
ing whether to transmit or not transmit; if two or more users
in the system transmit a packet at the same time, then a colli-
sion results, and no packet is successfully received; if only a
single user transmits a packet, a packet is received success-
fully, while if no user transmits, the channel is wasted; after
every attempt at using the channel, all users are immediately
informed as to whether a collision (two or more users trans-
mit), success (one user transmits), or idle (no users transmit)
occurred; packets arrive during each time slot with proba-
bility p to each user, and each user has no buffer (sometimes
called a single buffer), i.e., he can hold only one packet wait-
ing to be transmitted. All of the above are common and use-
ful assumptions that model the essence of the multiple ac-
cess problem. The goal is to choose protocols so that the
probability of a successfully received packet in each slot,
i.e., the throughput, is maximized.

We introduce notation to facilitate discussion of the
MABC. Let ¢;"~ be the number of packets in the mth user’s
buffer (either 1 or 0) prior to the arrivals for that time slot;
let ¢7** be the number of packets in the mth users’ buffer
(either 1 or 0) after the arrivals for that slot. Let b; be the
feedback after the ¢th slot. Let ai” be the number of arrivals
(either 1 or 0) to user m during the tth slot. The control ap-
plied by the mth user is denoted u}* and specifies whether
the user will (u}” 1) or will not (u{* = 0) transmit a
packet in his buffer. The number of packets transmitted by
user m (although not necessarily received by the receiver) is
s7* (either 1 or 0).

Denoting the Boolean logic operators “and” and “or” by A
and V, respectively, we describe the operation of the channel
as follows:

1.1 : The pre-arrival buffer state is ¢;"* .
t.2 : Arrivals af” to each user occur independently
with probability p.

t.3:

t4:

Post-arrival queue state is ¢t = a* Vv ¢J*~.
Number of packets transmitted
is s = ¢t Aul.
¢.5 : Feedback is b; = min{3"M_ s 2}.
(t + 1).1 : The next pre-arrival buffer state is

[ ifh, =1
gt

otherwise
By assumption, each user may use the history of feedback
broadcasts bg.;—1 and its history of local post-arrival buffer

._.s;n
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states ;" to decide its control input u}.

Let us now put the canonical MABC design problem in
the decentralized control framework of Section 2. Let the
state be x; = (g; ,b:~1). Let the primitive random vari-
ables be v; = a; and w? a?*. Then the state tran-
sition function f; is given by x¢41 = fi(zy, ug,v1) =
(¢(qs , us,a1), Bla; , ue, ar)), where the functions ¢ and 3
are defined as follows:

M
Bler ,ur,ar) = min{ Y _ (¢ Va) Aul), 2} (25)
m=1

¢(Q£_aut’ai)
_ )@ Va) —((¢r Va) Auy) if Bgr , ur,00) =1
q; Va

otherwise (26’)

where binary operations on tuples are performed element by
element. The function g}” relating observations to the state
is defined as y[™ (A7, &) = g7 (e, a) = (¢ V
a*, b;_1), and the cost function h, is defined by

~1
0

ifby =1

, 27
otherwise @n

hi(zegr,us) = {
so that minimizing the expected cost will maximize the
probability of successful packet reception in a slot. As men-
tioned earlier, the control input «}* must be a function of
bo:1—1 and gt i.e., it must be a function of y%,, indicating
that no sharing is allowed.

With these definitions, we have formulated the canoni-
cal MABC protocol design problem as a decentralized con-
trol problem with common information but with no sharing.
The corresponding problem with K-step delay state from
Section 4.2 can now be solved, and the resulting optimal
throughput will provide an upper bound to the throughput
of the canonical MABC.

5.1 Results for Two and Three Users

‘We use Theorem 2 with Howard’s policy iteration algo-
rithm [11] to find the bound described in Section 4.2. The
tightness of the bound increases as the delay K increases,
so it is desirable to compute the bound for the largest K
possible. For reference, with respect to the decentralized
control formulation of the MABC given in Section 5, the
OSDS problem considered by Grizzle et al. [2] and Par-
adis [3] is equivalent to a K -step delayed state problem with
K = 0. For two users, we choose the delay tobe K = 1,
while for three users, we choose a delay of K = 2. These
choices were made because for two users, with K = 1, the
bound meets the performance of the Hluchyj-Gallager pro-
tocol, while for three users, computation prohibits choosing
K>2.

Before using the policy iteration algorithm, we eliminate
all self-contradictory states. For example, the state with sub-
laws that never transmit cannot have a success or collision
feedback associated with it. The remaining states meet a suf-
ficient condition (the “weak accessibility condition” given
in [10]) that guarantees that an optimal stationary infinite-
horizon solution exists.



P Probability of Success Ratio (< 1)
H-G Protocol K =2 Bound
05 .1486 .1486 1.000
.10 2881 2882 9996
15 4099 4103 9989
20 5081 5101 9961
25 5905 5926 9965
28 .6301 6327 9959
29 6421 6446 9961
30 6570 6570 1.000
40 7840 7840 1.000
.50 .8750 .8750 1.000

Table 1: Three-user case: bounds on probability of success with
K = 2 compared to probability of success of Hluchyj
and Gallager’s optimized window protocol (H-G proto-
col).

In the two-user case, numerical calculation of the bound
with K = 1 shows that Hluchyj and Gallager’s optimized
window protocol achieves the bound for KX = 1 to within
machine precision. In the three-user case, numerical calcu-
lations of the bound for K = 2 show that Hluchyj and Gal-
lager’s optimized window protocol approaches the bound
for p < .3 and meets the bound for p > .3. Note that for
p > .2891, the Hluchyj-Gallager protocot is the same as
time-division multiple access (TDMA) [4]. Because much
computation is required for the X' = 2 bound, the bound
is only computed for the values of p in Table 1. For these
values of p, the performance of the optimized window proto-
col is at least 99.59% of the bound, suggesting near optimal-
ity. Numerical calculation of the bound for three users with
K = 1 show that for p > .5, the Hluchyj-Gallager (TDMA)
protocol is optimal. Thus, we conclude that for p > .3, the
Hluchyj-Gallager (TDMA) protocol is optimal.

6 Discussion and Conclusions

We have presented a bounding technique for decentral-
ized control problems with no sharing of information and
showed how complexity of the bound calculation can be re-
duced in the special case of common information. The com-
plexity reduction has allowed us to apply the bound to the
canonical MABC design problem for two and three users.
We have developed results that show that the Hluchyj and
Gallager’s optimized window protocolis effectively optimal
in the two--and three- user cases.

The results open several avenues for further inquiry. That
the Hluchyj-Gallager optimized window protocol is at least
nearly optimal for two and three users suggests that this pro-
tocol may be nearly optimal for more than three users; it
may be fruitful to try to show this analytically. Alternatively,
since the optimized window protocol uses only the common
information [4], i.e., the broadcast feedback, it may be pos-
sible instead to show that no performance loss results from
restricting protocols to the class of protocols that use only
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common information. Another task is to determine p such
that TDMA is the optimal protocol for M > 3 users. It is
known that TDMA is optimal as p — 1, but our results sug-
gest that TDMA is optimal for values of p that are substan-
tially smaller than 1.
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