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Abstract—In processing continuous-time signals by digitalmeans,
it is necessary to represent the signal by a digital sequence. There
are many ways other than periodic sampling for obtaining such a
sequence. The requirements for such representations and some ex-
amples are discussed within the framework of simulating linear
time-invariant systems. The representation of digital sequences by
other digital sequences is also discussed, with particular emphasis
on the use of such representations to implement a nonlinear warping
of the digital frequency axis. Some applications and hardware imple-
mentation of this digital-frequency warping are described.

I. INTRODUCTION

ITH THE increasing speed and decreasing cost of

digital hardware, digital methods are playing an im-

portant role in signal processing. In some applica-
tions, the input and output are continuous-time signals but
the processing is digital. In such cases, the input must first be
represented by a sequence; after this sequence is processed,
the output sequence must then be reconverted to a continu-
ous-time signal. In other instances (such as spectral analysis),
the objective of the signal processing is a set of measurements
on a continuous-time signal; the input must be converted to
a digital sequence but it is unnecessary to convert back to a
continuous-time signal. There is, of course, a variety of ap-
plications in which the signals to be processed are inherently
discrete signals. If conceptually useful, they can be viewed as
representing continuous-time signals; however, this often in-
troduces additional complications that may not be warranted.
An example of such a signal is arithmetic roundoff noise or
limit cycles generated in a digital filter. :

When the signal processing involves a continuous-time
input or output, the continuous-time signal must be repre-
sented by a discrete-time signal, i.e., a sequence. The most
common procedure when the continuous-time signal is band-
limited is to choose the sequence values to be samples of the
continuous-time function equally spaced in time. This repre-
sentation is commonly referred to as periodic sampling. There
are, however, many ways other than periodic sampling in
which a continuous-time function can be represented by a
sequence. :

In this paper a class of representations of continuous-time
functions by sequences is discussed. In addition, a parallel
notion is developed—the representation of a sequence by
other sequences. Many of the results presented appear else-
where by the present authors and by others. Thus to some ex-
tent this paper can be considered as a review of these results.
A major objective is to provide this review within a common
framework and, toward this end, results of other authors are
combined with our own results and point of view.
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In Section 11, a discussion of the discrete representation of
continuous-time signals for the digital simulation of linear
time-invariant continuous-time filters is presented, and several
examples of such representations are discussed. In Section III,
discrete representation of discrete-time signals is discussed,
corresponding to the represention of one digital sequence by
another digital sequence. The development of the representa-
tion of discrete-time signals parallels closely the development
of the representation of continuous-time signals. For the repre-
sentation of continuous-time signals, it is shown that requiring
the representation to map linear time-invariant continuous-
time systems to linear shift-invariant discrete systems is
equivalent to requiring that the representation map the La-
place transform of the continuous-time signals to the z-trans-
form of the discrete-time signal by a substitution of variables.
Consequently, in addition to its application to simulation,
such a representation is useful in instances such as spectral
analysis where it is desirable for the analog frequency axis to
map to the digital-frequency axis. |

In the representation of discrete-time signals by other dis-
crete-time signals, the notion of mapping the z-transform by a
substitution of variables assumes the major emphasis. In par-
ticular, it is possible to maintain the form of the spectrum for
a discrete-time signal but transform the frequency axis in a
nonlinear manner. The ability to do this has potential applica-
tion in a number of contexts, such as unequal resolution and
vernier spectral analysis, and the correction of the frequency
distortion inherent in divers’ speech due to the effect of pres-
sure and the content of their breathing mixture.

II. DISCRETE REPRESENTATION OF
CoNTINUOUS-TIME SIGNALS

In this section, the discussion is directed toward the simu-
lation of signal processing techniques which can be carried out
with a linear time-invariant filter. While there are many ex-
amples of signal processing which do not fall into this category,
linear filtering does represent a wide class of signal-processing
problems. Just as linear time-invariant filtering plays an im-
portant role in continuous-time signal processing, linear shift-
invariant digital filtering plays an important role in digital
signal processing. The reason for this lies partly in the fact
that linear time-invariant systems, either in the continuous-
time or in the discrete-time cases, are analytically manageable
and consequently much insight into processing signals with
such systems has been gained. For this reason it is desirable to
choose a discrete representation for continuous-time signals
which will permit linear time-invariant systems to be imple-
mented digitally with linear shift-invariant discrete systems.
This is similar to the condition imposed by Steiglitz in demon-
strating the isomorphism between digital and analog signal
processing [1].

A linear time-invariant filter is conveniently characterized
in terms of the convolution integral so that if x(¢), y(¢), and
h(t) are the system input, output, and impulse response, re-
spectively, then
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o0

8Q) = F@h(t = 1)dr & f(5) @ h(1) (1)

where ® is used to denote continuous-time convolution. Let
us denote the discrete representation of f(#), g(¢), and h(t) by
Fny gn, and h,, respectively. We want fr, gn, and h, to corre-
spond to the input, output, and unit sample response of a dis-
crete linear shift-invariant system, so that g, must be the dis-
crete convolution of f, and 7,:

+o0
g = 2 fihnx Dfu * hn (2)

k=—w

where + is used to denote discrete convolution.

The validity of (2) for any f, and k, implies that the repre-
sentation of a continuous-time function by a sequence must
be linear, i.e., if x, and y, are the representations of x(f) and
y(#), then x,-+cya is the representation of x(t) +cy(t) where ¢
is an arbitrary constant. This “linearity property” can be de-
rived as follows. Let f, denote the discrete representation of
f(#) =x(t)+cy(@). Then from (1) and (20

gt) = f( ® k()

gn = Jfn * I

since

J@) = 2(t) + cx(d),

f6) = x(®) ® k() + cy() ® k(D)
so that

o= i Py Y, &
= [ % + cya] * I 3)
Since we require (3) to hold for any ka,, it follows that
Jii— 2, b oy

Now let us express an arbitrary sequence f, as a linear com-
bination of weighted delayed unit samples:

P

k=—w

where 8, represents a sequence whose values are zero except
for n=Fk so that 8o=1. Let ¢x(f) denote the continuous-time
function represented by the sequence 8, . Then by virtue of
the linearity property previously derived,

FOy= 3 it

k=—c0

or, for convenience, changing the summation index,

= 3 $dul0. )

n=—cwo

Alternatively, with Fz(s) and ®.(s) designating the Laplace
transforms of f() and ¢.(¢), then

+oo
Fi(s) = 25 [a®u(s)- ®)

n——oo

The relationship between f(f) and f, in (4) can be viewed as
an expansion of f(#) in terms of a set of functions {pn(d) }; for
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convenience we will require that given the set of functions
{¢n(t) }, the sequence f, representing f(¢) is unique. This then
requires that the set of functions {o(t)} be linearly indepen-
dent, i.e., that any one of the functions is not expressible as a
linear combination of the others. In this discussion, we have
not assumed that the set of functions {¢,(#) } is complete, but
we have assumed that f(¢) is in the space spanned by {0 (0) }.

Equations (1) and (2) can now be used to derive necessary
and sufficient conditions on the set of functions {®n(s)} in
(5). Toward this end, let G1(s), Fr(s), and H1(s) denote the
Laplace transforms of g(#), f(t), and A(#), respectively. Then
(1) can be rewritten as

Gr(s) = Fr(s)H(s)- (6)

From (5) and its counterparts for Gr(s) and Hi(s), it follows
that

0 -+

PIEDIN S XOLAOR (7)

r=—w k=—wx

> £.2.(5) =

n=—o0

If we carry out the substitution of variables n=7-+#% on the
right-hand side of (7), the equation can be rewritten as

D g Dals) =

n=—w

—+co —+o0

Z Z fkhn;kcbn_k(\?)@k(s). (8)
n=—ow k=—cw0

But using (2) to express the left-hand side of (8) in terms of
fa and A, we obtain

o0

SIS

n=—w k=—w

—+c0

LTS e, s (B ()

n=—w k=—w

In order that (9) may hold for any sequences fi and kn_g, we
require that

®,(s) = Bp_r(s)Pr(s) (10)

or equivalently
P, (5)Pm(s) = D 1m(5) (11)

from which a general form for the functions {®,(s)} can be
derived. In particular,

®,11(s) — ‘1’1(5)‘1%(5) =0

which is a difference equation in ®,(s) with a general solution
of the form

®,(s) = c[®1(9)]" (12)

Furthermore, from (11), ®o2(s) =®o(s), which is satisfied only
for ¢=0 and ¢=1. Thus the nontrivial solution to (12) is

B,(s) = [®1()]™ (13)

Consequently, (13) must be satisfied if the expansion in (5) is
to result in a discrete representation for which continuous con-
volution is mapped to discrete convolution. The condition on
®.(s) under which the set of functions {$x(?) }, corresponding
to {®n(s)} as given in (13), is complete has been discussed
by Masry, Steiglitz, and Liu [2].

Since a continuous-time function can be represented by its
Laplace transform and a sequence can be represented by its z-
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transform, the discrete representation as expressed in (4) and
(5) can be thought of as a mapping from the Laplace trans-
form of the continuous-time function to the z-transform of the
sequence. However, a ‘mapping from the Laplace transform
to the z-transform cannot always be expressed as a mapping
from the s plane to the 3 plane (z cannot be wrltten as a func-
tion of s). If the mapping also preserves convolutlon ie., if
(13) is satisfied, then the discrete representation of (4) or (5)
will correspond to expressing z as a function of s. To show this
result, let the z-transform of the sequence fr be denoted by
Fp(z) so that :

i Fol®) = 30 fo™. (14)

n=—oo

Since @, (s) =[®:(s) |*, then (5) can be rewritten as

o0
Fils) =30 Sl [Bis)es) 13)
Compariné (14) and (15), it is clear that the, variables 2 and s
are related by

= [®:(s) |72 & M (s). (16)

A common example of a discrete representation that preserves
convolution for band-limited continuous-time signals is peri-
odic sampling. In this case, the continuous-time sigrnal is
represented by a sequence 'f, consisting of samples of the signal
equally spaced in time so that

w8 5 fo= Tf(nT) (17)

where T designates the sampling period. It is well known that
periodic sampling can be viewed as an expansion of the con-
tinuous-time function f(¢) in the form of (4) with the functions

{¢.(t) } given by
m@zﬂmgﬁ—nﬂﬁﬁ—nﬂ. (18)

The Laplace transform of the functions in (18) converge only
on the jw axis. On the jw axis their transforms are

{eijnT ik [em]—n’ I wT‘

0, 'wT’ B )

P (jo) =

Thus we see that the transform of these functions has the
desired form as given in (13). The advantage to a discrete
representation based on periodic sampling is that the coeffi-
cients in the expansion are easily obtained. Furthermore, as
opposed to many other representations, the function f(¢) is not
required for all  in order to obtain each of the sequence values
of fn.. The major disadvantage to this representation is that
it requires that the function f(¢) be band-limited. When we are
considering simulating a continuous-time system digitally, the
frequency response of the continuous-time linear system is
usually not truly band-limited. In addition, periodic sampling
corresponds to a linear relationship between analog fre-
quencies and digital frequencies. As we will see in a later dis-
cussion, it is sometimes advantageous to have a nonlinear
relationship between analog and digital frequencies.

Another example of a discrete representation that pre-
serves convolution is the Poisson transform. For a continuous-
time function f(¢) that is zero for ¢t <0, its Poisson transform
is defined as
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; o yn :
fa :f 7677(1)‘&, nimldyd) e (20)
o ol : ,

The sequence f,, then'provides a discrete representation of the
continuous-time function f(). Piovoso and Bolgiano [3] have
shown that the Poisson transform has the desired property of
mapping continuous convolution to discrete convolution, i.e.,
the Poisson transform of the convolution of two time func-
tions is the discrete convolution of the Poisson tiansforms of
the components of the convolution.

In the case of periodic sampling, the function M (s) of (16)
which specifies the mapping from the s plane to the z plahe is
M(jw)=e™T. When « is.teal, corresponding to the imaginary
axis in the s plane, the magnitude of M (jw) is unity correspond-
ing to the unit circle in the g plane. Thus the representation
resulting from periodic sampling maps the spectrum of:-the
analog signal as viewed on the imaginary axis of the s plane
to the spectrum of the digital signal as observed on the unit
circle. In contrast, the function M(s) resulting from the use
of the Poisson transform is M(s)=1/(1—s). It is straight-
ferward to verify that thejw axis in the s plane maps to a circle
in the z plane with radius one half and center at 3=1/2 so that
it passes through the points =0 and z=1. Consequently, it
is"tangent to tHe“unit circle at'z=1 but otherwise’does Tot
coincide with the unit circle. Thiis when an analog function is
mapped to the.z plane by use of the Poisson transform, its
Fourier transform does not map onto'the unit circle, but
rather onto the circle to which the jw axis in the s. plane is
mapped. This does not, of course, affect the validity of the
Poisson transform for simulation since both the system input
and the system impulse response are mapped in the same way.

As discussed by Steiglitz [1], another example of a discrete
representation with the desired property is based on the use of
the bilinear transformation in relating the s and 2 planes. The
bilinear transformation is commonly used for designing fre-
quency selective digital filters [4]. This transformation has the
property that no aliasing results when it is used to map a con-
tinuous-time filter to a discrete-time filter. On the other hand,
the use of the bilinear transformation introduces a distortion
in the frequency axis; the imaginary axis in the s plane is
mapped nonlinearly onto the unit circle in the 2z plane. A com-
mon design procedure in discrete-time filtering is to derive the
filter from a continuous-time design by means of the bilinear
transformation while the discrete-time signal is obtained from
the continuous-time signal by means of periodic sampling. Be-
cause of the distortion in the frequency axis resulting from
the bilinear transformation, this procedure is generally re-
stricted to situations in which the distortion in the frequency
axis is not important. This is true, for example, in the design
of digital filters with piecewise constant frequency character-
istics.

If we wish to use the bilinear transformation for simulation
when the filter characteristics are not piecewise constant, the
same nonlinear distortion must be applied to the frequency
characteristics of the input signal and the output signal; both
the signals and the systems must be mapped to discrete signals
and systems using the bilinear transformation. Since the bi-
linear transformation corresponds to a mapping from the s
plane to the z plane with

Fa+ s
P= ) = || 1)
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it can also be viewed as an expansion of a time function f(¢)
in terms of a series with the form of (4). ®,(s), the Laplace
transform of ¢,(t), is from (13) and (16)

2 = [22]" (22)
a—s
The functions {¢,(t) } corresponding to (22) are
2a(—1)"te oL, ;V(2at)u_,(t)
+ (= 1)™ue(2), n>0
$a(t) = Juo(t), n=0 (23)
|2a(—1)"“6‘”L_,,_l(’)(—-Zat)u_l(—t)
| + (=D, n<O0
where
d
Lo V(%) = — — La(x)
dx
e dr
L.(x) = — (x7e=). (24)
n! dxn

The coefficients f, in the expansion of f(f) can be obtained by
utilizing the fact that, for the set of functions given in (23),

e n, n=m
[ o0su0a - {0’ i i
so that
1 [t
fa = -f tf(H)éa(t)dt, n # 0. (26)
nJ_o

We can obtain fo from the f, by noting that if f(£) is bounded,
so that it contains no impulses at t=0, then

i (_1)"fn T

n=—o0

(27)

If we restrict f(¢) to be zero for ¢t <0, then from (26) and
(27) it will follow that the coefficients f, can be obtained by
exciting a linear time-invariant network with f (—¢). To derive
this result, we note that from (23) and (26), if f(¢) is zero for
t <0, f, will be zero for n<0. From (26), it now follows that
for >0,

. F() [t (1) ]dt (28a)

0

- %f Brlol=

where the prime denotes differentiation with respect to s.

Since ®,(s) = [(a—s)/(a+3) ],

1
fo=—
n

ds
®,/(s)] 51 (28b)

2a (o
bg g n%[ J
(s+a)?la+s
so that
a — s lds
i f Fole 97 aom s (s + 0)2 l:a e s:| oy )

The integral of (28a) therefore corresponds to the response at
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f (1) f " f (1) f (U]

Fig. 1. All-pass network for conversion of a continuous-time signa1
J(®) to its bilinear representation f,. The representation f, is related
to the output of each stage by fa=fn(0).

$=0 of a linear time-invariant filter with impulse response
hn(t) = (1/n)t,(t) or system function

2a [a — s]"—‘
x (s+a)?la+s

to an input f(=1¢). To obtain fo we note from (27) that

H.,(s)

(30)

um R ey

= 2a a — s|"lds
a0 ,E 1) fFL(—S) (s + a)? [;T*-—;] I

Interchanging the order of summation and integration, we

find that
ds — st
f":f 5y e (+ )2,;( Wk [ -{—s]

i f j’?i Pl j—aa)z é E ; Z]

ds 2¢ (s+ a)
_f EFL(_)(s+a)2 2a
ds 1
f":f el

Consequently, fo is obtained as the output at =0 of a linear
filter with input f(—¢) and system function 1/(s+a). In sum-
mary, the sequence f, can be obtained by means of the net-
work in Fig. 1 where f,(£) denote the outputs at the indicated
taps and f, =fn(0). The network of Fig. 1, which is similar, but
not identical, to a Laguerre network [5], is used to obtain the
coefficients f, from the continuous-time function f(f). To
“desample,” i.e., to obtain f(¢) from the f,, a network similar
to that in Fig. 1 can be used. In particular, we recall that

Ewi Futbn ()

O %
FL(S) = ifnén(s)

where ®,(s)=[(a—s)/(a+s)]|*. Consequently, the function
¢.(t) is obtained as the impulse response of a network with
system function [(e—s)/(a+s)]?, and thus f(f) can be re-
covered from the sequence f, by the means shown in Fig. 2.
In general, the discrete sequence representing a continu-
ous-time signal will be of infinite length. For practical reasons
it is usually necessary to truncate the representation in some
way so that only a finite number of nonzero values is used.
To consider the effect, in the case of the bilinear transforma-
tion, of modifying the representation to contain only a finite
number of nonzero terms, let us denote the approximation to
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un(t)
o : a=s o= o
a+s a+s o
s f _@ b sk
f(1)
Fig. 2. ' All-pass network for reconstruction of a continuous-time

signal f(¢) from its bilinear representation f,.

f(¢t) using only a finite number of nonzero terms by

0 = X flen()

n==0

with the exact representation of f(¢) given as

G §_:fn¢n(t)-

If the coefficients f,4 are chosen to equal the coefficients f,
for n=0,1---, N—1, and since

f+wt Dom()dt = b
én (D) (t) ~{0

—o y

n =m
(31)
n A m

then f4(¢) will correspond to an approximation to f(#) that
minimizes the weighted integral square error given by

“+w
E = error = f L) — fA()]2dt. (32)

Hence, generally speaking, truncation weights errors for large
¢t more than for small ¢ so that we would expect f4(¢) to ap-
proximate f(¢) more closely as t increases.

More generally, rather than obtaining the finite duration
sequence f,4 from f, by simple truncation, it can be obtained
by “windowing” :

(33)

an = WnJn

where w, =0 for # <0 and » > N. For the case of simple trunc-
ation w,=1 for 0<n < N. To describe the effect of applying
the window w, to the sequence, let FA(Q), W(Q), and F(Q)
represent the z-transforms on the unit circle of the sequences
fa?, wn, and f,, respectively. Then

1 ™
FA(Q) = af W(Q — a)F(a)da (34)

i.e., multiplication of the squence f, by the window w, cor-
responds to “smearing” the transform of the sequence f, with
the transform of w,. Alternatively, we can view this as a
“smearing” of the spectrum of the original time function in
such a way that spectral resolution decreases as the frequency
increases. To see that this is so, let f4(¢) denote the continu-
ous-time function represented by the sequence fpw, and
let G4(w) and G(w) denote the Fourier transforms of f4(¢) and
f(#), respectively. From (21) with s=jw and z=¢%, the rela-
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tionship between @ and w is given by

w
Q = 2 arctan — - (35)
a
Therefore,
w
G4(w) = F4 <2 arctan —)
a
w
G(w) = F (2 arctan —>
a
so that (34) can be rewritten as
1 e w 8
G4 (w) = Af w |:2 arctan— — 2 arctan —
2 J _o a a
G —2—ds. (36)
@+

As an approximation, let us assume that the effective width
of the spectral window W(R) is sufficiently small so that over
the width of the window, the bilinear frequency transforma-
tion of (35) can be approximated by a linear characteristic.
Then (36) can be approximated by

o s
Ba2+w2 o

The argument (w—8)[2e/(a?+w?) ] can be interpreted as a
linear scaling of the spectral window, while maintaining the
shape so that the window becomes wider as w increases. Thus
the distortion due to truncating the representation by the ap-
plication of a window can be viewed in terms of “smearing”
the analog spectrum in such a way that spectral resolution
decreases as the analog frequency increases.

One of the advantages of a discrete representation based
on the bilinear transformation, as developed above in con-
trast to periodic sampling, is that the analog signal need not
be band-limited. On the other hand, periodic sampling is
easier to implement and the periodic samples can be obtained
without buffering, in the sense that periodic sampling is a
memoryless transformation. Bilinear sampling requires
the entire waveform to be available before any of the values
in the discrete sequence can be obtained, corresponding
to infinite buffering of the input.

For the simulation of an analog filter it is possible to avoid
the need for infinite buffering of the input by sectioning. To
illustrate the procedure, let us consider an analog filter with
impulse response %(f), system function H(s), and input x(#).
The discrete filter used for the simulation will have a unit
sample response 4, where, assuming the system is causal,

h(t) = f_jhm(z).

Now the entire input x(f) can be expanded in terms of the
{¢.(£) }, vielding a sequence of coefficients x,, this sequence
filtered, and the resulting output v, used to construct the con-
tinuous-time output y(¢) as '
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~+o0
y(t) T Z yn‘bn(t)-

n=—cw0

However, as has already been discussed, this requires infinite
buffering since no output values can be obtained until all of
the input is available. As an alternative, let us divide the input
x(f) into sections of equal duration T so that, assuming
x(1) =0, t <0,

“+o0

2(f) = 2 m(t — kT)

k=0

(38)

where x;(£) =0 for t <0 and for t>T. Now each of the sections
xx(f) can be expanded as

A = D0 (39)

where we note that the sequence x, is zero for n <0 since
each of the sections is zero for £ <0. Since the system is linear,
the response of the continuous-time filter can be expressed as
the sum of the responses to each of the sections, i.e., if
v (t—kT) is the response to xx(t—kT), then

+o0
y(t) = Z yi(t — ET).

To implement the simulation we obtain the discrete represen-
tation {x,} for each section, process this sequence with a
discrete linear system having a unit sample response %,, and
use the resulting sequence to construct y((—%7T). In general,
although each section of the input is of finite duration T, the
sequence representing-it will be of infinite duration as will the
output for each section. In a practical implementation, it
would be necessary to truncate both the representation {xn,;c}
for each section and the output for each section y;(t—k&T).
The effect of this truncation must be taken into account in
evaluating this procedure.

II1. DISCRETE REPRESENTATION OF SEQUENCES

The foregoing examples provide several means for obtain-
ing a discrete representation of continuous-time functions
consistent with the requirement that the representation pre-
serve convolution. It also is possible to convert from one dis-
crete representation to another by means of a suitable trans-
formation of the sequences. In particular, let us consider f(f)
represented by two different sequences f, and g so that

> @

10 = 3 (40a)
0= X am). (40b)

If we assume that the set of functions {¢.(£) } is complete so
that each Ax(f) can be expanded in terms of the {¢.(¢)}, then

)\k(t) = zw: wk,n(bn(t)'

n=—ao0

(41)
The sequences f, and g are then related by

+oo
T Z Wk

k=—c0

(42)
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Equation (42) can be viewed as an expansion of the sequence
fa in terms of a set of sequences {4}, with the sequence g
representing the coefficients in the expansion. Thus the se-
quences {Yr.} play the same role in (42) that the functions
{@n(t) } play in (40a).

Since the mapping from f(¢) to f, and also from f(¢) to g
preserves convolution, it follows that an expansion of (42)
must also preserve convolution, i.e.. if fo=f1,» * fo. where x
denotes discrete convolution, and if g1 and g, denote the
coefficients in the expansion of fi,, and fs ., respectively, then
according to (42) the sequence g will equal the convolution of
g1.1 and gor. The properties required of the set of sequences
{$x.n} in order that convolution be preserved can be deter-
mined in a manner analogous to (5) through (14) with the re-
sult that if Wi(z) denotes the z-transform of ¥i,., then the
{W(2) } must satisfy the relation

V. (2)V;_,(z) = Vi(z) (43)
so that ¥;(z) must be given by
V() = (WG] (44)

Thus (44) plays the same role in mapping sequences to pre-
serve discrete convolution that (13) plays in mapping con-
tinuous convolution to discrete convolution. - When the
{W.(2) } satisfy (44), the 3-transforms of the sequences fn and
g can be related by a substitution of variables. Specifically,
let F(z) denote the z-transform of f, and G(Z) denote the 2-
transform of gi. Then with 2= [¥,(z) |"1&m(z), it follows from
(42), in a manner similar to the derivation of (16), that

F(z) = G[m(3)]. (45)

Thus changing from the representation f, to the representa-
tion gz is equivalent to mapping the complex frequency vari-
able z for f, to the complex frequency variable 2 for g by
means of a substitution of variables 2=m(z).

Thus far we have been concerned with the representation
of a continuous-time function by a sequence so that linear
time-invariant systems could be simulated by linear shift-
invariant systems. We found that we can achieve this result
if we map the s plane to the z plane in an invertible fashion.
Similarly, we can convert from one representation to another,
each of which preserves convolution, by mapping one z plane
to another. There are some applications, however, in which we
are concerned not so much with simulation as with the map-
ping of one complex plane to another. We would now like to
turn our attention to the discussion of such problems.

A. Digital Warping of Spectra [6]

In a variety of applications, it is useful to transform a
sequence to a new sequence whose Fourier transform is equal
to the Fourier transform of the original sequence on a dis-
torted (warped) frequency scale. In this section, the basis for
carrying out such a transformation using the ideas presented
in the foregoing will be discussed, followed by several ap-
plications of frequency warping.

We found in the previous section that the transformation
between the sequences f, and g, as expressed by (42) is equiva-
lent to the mapping of one complex frequency plane to an-
other if (44) is satisfied. We did not, however, focus upon any
particular choice for the mapping £=#(z). Let us require that
the function 2=m(z) map the unit circle in the z plane to the
unit circle in the z plane. Letting @ be angular frequency in the
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z plane and Q be angular frequency in the # plane, we want
s=m(z) to satisfy

(46)

oI i g [ei2]
or

Q= 6(Q) (47)

where m [e/%] = e#@,

If the function 2 =m(3) satisfies (46), the Fourier transform
of gr will be the Fourier transform of f, on a warped frequency
axis.

As the z-transform of the sequence ¥y, must satisfy (44),
(46), and (47), the z-transform of ¥, , evaluated on the unit
circle is found by

W (e72) = ¢ 0@, (48)
Therefore, if the spectrum of g is to be a warped version of the
spectrum of f,, the Fourier transform of the sequence ¥,
must have an all-pass characteristic, i.e., the magnitude of the
spectrum of Y, must be unity independent of frequency. The
negative of the phase of ¥(e?®) will then correspond to the map-
ping between the frequency axes. In particular, if we want
the function 2=m(z) to be rational and also map the circle

z=¢’? to the circle =¢"?, then m(z) must be of the form

where a;* denotes the complex conjugate of ay.

In order that m(z) may be invertible and in the form al-
ready given, the coefficients a; must be such that the interval
—7<Q <7 maps one-to-one to the interval —7<Q<w. A
necessary (but not sufficient) condition for this to be true is
that the number of zeros minus the number of poles of m(z)
which lie inside the unit circle be plus or minus unity. A useful
choice for m(z), to which we will restrict the remaining discus-
sion, is a first-order all-pass of the form

. =gzl
F= m(z) = z‘ﬁl——_(lé* (49)
where 0<|a] <1. Then the z-transforms of the sequences
{k,n } used in the expansion of f, must be

1 — gH\E

18— oz’
We see that the z-transform of the sequence Y., corre-
sponds to a kth-order all-pass having unity gain with £ poles
at z3=a and k zeros at 2=1/a*. For real values of the param-

eter ¢, the mapping between the frequency variables Q and Q
is given by

(50)

(1 —a?)sinQ
(14 @) cosQ — 2a

Q=06Q) = arctan[ :I (51a)

An alternate form of (51a) is

a sin

Q=0Q) =9+ 2 arctan[ :| (51b)

1 — acos®

To determine the inverse of the relationships in (51), we note
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Fig. 3. Frequency-warping function of (51) for several

values of parameter a.

that the inverse of (49) is
L+ a5
41 4 g*

which corresponds to replacing @ by —a and -interchanging z
and 2 in (49). Consequently, the inverse of (51a) is obtained
by replacing @ by —a in that equation:

(1 — a? sin Q }
(1 4 a?) cosQ + 2a]

Q=610 = arctan[

A plot of the frequency-warping function of (51a) for
several values of the parameter a is given in Fig. 3. We see
that the frequency mapping corresponding to this choice of
sequences {Yyn.} is inherently nonlinear. Therefore, the
Fourier transtorm of the sequence g, the sequence derived
from f,, will be the Fourier transform of f, evaluated on a non-
linear scale:

Fle®] = G[e?®].

In particular, computing G[e%] at a set of uniformly spaced
samples in Q (using the fast Fourier transform algorithm, for
instance) corresponds to the evaluation of F(e’®) at a set of
nonuniformly spaced samples. If the parameter a is picked to
be real and between 0 and 1, the effect on the spectrum of f,
will be to sample with higher resolution at low frequencies
and with lower resolution at higher frequencies. If instead, a
is negative between 0 and — 1, the effect is reversed, i.e., the
spectrum of f, is evaluated with greater resolution at high fre-
quencies than at low frequencies. By letting the parameter a
assume complex values, the point of maximal resolution can
be placed at any desired frequency.

The sequence g can be determined from the sequence f,
by using the fact that the set of sequence {x,} is orthogonal
with a weighting sequence of #:

° By b
Z n¢r,n‘/’k,n o { ! -

52
n=—uwo O, k ;é r. ( )

This relationship can be derived by applying Parseval’s
theorem to the left side of (52). Consequently,
1 ©
gk o Z nlpk,nfn,

kn—w

E 0. (53)
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In the remainder of the discussion, we will assume, for con-
venience, that the original sequence f, is zero for # <0. The
results are easily extended to the more general case. With this
restriction, (53) becomes

1 o0
o = 1[%,2”“'”]["’ iy (54)

(0, kE <O0.

This relationship is similar to (28a) which was used to deter-
mine the coefficients in the expansion of a continuous-time
function based on the bilinear transformation. It was shown
from (28a) that the coefficients can be obtained by processing
the continuous-time function with the cascade chain of net-
works of Fig. 1. In a similar manner, the coefficients g can
be obtained by processing the sequence f, with a cascade chain
of digital networks. Specifically, the sum in (54) corresponds
to the response at #=0 of a linear discrete system to an input
f_n, with the unit sample response of the system being
I = (1/k)ny ., or system function

bt
Hk(Z) o 2 T
Hk(z) : (1 Ll aQ)Zvl[ g1l — g :lkAI’
M= azD2LL — a5t
Bifio. (55)

Equation (54) cannot be used to determine go. However,
from (44),

oS fo ) Z glcl//k,o
k=1
or since Y, 0= (—a)F,
go = fo— 2 g(—a)*.
k=1
Thus, using (54),

0 o0 1
£o = fo e Z nf Z % (—a)k\bkm'

n=0 k=1
Let
-] 1 .
Z 0 (_a’)k'ﬂbk,n = Uy (36)
=1 k

so that

8o :fO P annvn
n=0

;fn(% — nv,) (57)

where 8, is a unit sample, i.e., 8,=1 for n=0, and 6,=0
otherwise. Thus, from (37), go can be obtained as the response
at #=0 to an input f_, of a linear discrete system having a
unit sample response ko= (8, —nv,). From (55) and (56), the
z-transform of nv, is given by

e}
Z Non2 Tt = —
n=0

az !

1 —az?
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fn | (1-0%)z”" z -a
1-az7! 1-az7! 1-az”!

%,n 9in 92,0 Qafn et

Fig. 4. All-pass network used to impiement spectral warping of dis-
crete-time signals. The sequence gk, whose spectrum is the warped
version of the input sequence fy, is related to the output of each stage
by gr=gr.o-

Therefore, the system function corresponding to the unit
sample response ko, is

1
Ho(z) = e

In summary, we can find the sequence gz by passing the
sequence f_, through a linear shift-invariant system H(3)

given by
(L =lat) sl foz o\t
1(1 — az*1)2<1 — az‘1> : Fa s .
e k=0.
1 — az?

The output of the system Hy(z) at n=0 is then the desired
coefficient gr. We note from (58) that for £>2, the kth system
corresponds to cascading the (k—1)th with an all-pass net-
work and that Hi(z) corresponds to Ho(z) in cascade with a
first-order network. Thus the set of systems {Hj(z)} can be
implemented as a cascade chain as illustrated in Fig. 4. With
the output of each section denoted by k.., the desired coeffi-
cients g are given by gi = Zi,0. We note that replacing a by —a
in (58) is equivalent to multiplying Hi(z) by (—1)* and re-
placing z by —z, which in turn corresponds to multiplying
hin by (—=1)"(—1)*. Since

gk o anhk,n

n=0

multiplying #x. by (—1)"™* is equivalent to multiplying
fa by (—1)" and g* by (—1)*. Thus if the input to the network
of Fig. 4 is multiplied by (—1)" and the resulting sequence g
is multiplied by (—1)*, then we have equivalently imple-
mented the network of Fig. 4 with a replaced by —a. In
a hardware realization of this network, for example, only
positive values of @ need to be implemented.

In the use of the bilinear transformation for the discrete
representation of continuous-time signals, we noted that, in
general, the representation would be of infinite length and
would, in a practical implementation, need to be truncated.
Truncation of the sequence corresponded to a “smearing” of
the spectrum of the original time function with a spectral
window that increases in width as frequency increases.

Truncation of the representation based on the sequences
expressed in (44) causes a similar type of effect. In particular,
we will assume that the truncation is carried out by multiply-
ing gi by a finite duration window so that the truncated
sequence is represented by gt =wige. With f,# denoting the
sequence represented by gi:

an = Z gkdlpn.k
k=0

and with FA(Q) and F(Q) denoting the Fourier transforms of
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f.A and fn, we have, paralleling the derivation of (36),

e i} do(B)
FAQ) = ﬂf_,F(ﬁ)W[o(m 0(8)] —dB dg

or with 6(Q) given by (51a)

1 (= o
ra@ = [ FOW@ -0@) s

As with (37), we will assume that the window is sufficiently
narrow so that over the width of the window the charac-
teristic 8(f2) is approximately linear. Then

wle@) — 68)] = W| (@ it ]
@ — 0] = W[ @ =) o

so that

FA@Q) = lfTF( )W[(Q ) Lt ]
ey B 5 7 1+ a* — 2a cosQ

1 — a?

. d
1+ a*> — 2acosQ

As with (37), the factor of [(2—8)(1—a?)]/(14+a%—2a cos )
can be interpreted as a linear scaling of the shape of the spec-
tral window. For positive a, this corresponds to “smearing”
the spectrum of the original sequence in such a way that
spectral resolution decreases as frequency increases. For
negative a, spectral resolution decreases as frequency de-
creases.

B. Applications of Digital Frequency Warping

1) Evaluation of Spectra at Nonuniformly Spaced Samples
[6]: The ability to be able to distort the frequency variable in
the Fourier transform of a sequence has proved to be useful
in several contexts. The first to be discussed is directed toward
warping the spectrum to achieve spectral analysis with un-
equal resolution.

In many applications, we are concerned with the problem
of computing samples of the z-transform of a sequence on the
unit circle. To obtain samples equally spaced around the unit
circle, the most efficient procedure is to compute the discrete
Fourier transform (DFT) using the fast Fourier transform
(FFET) algorithm. Often we would like to obtain samples that
are unequally spaced, corresponding, for example, to a con-
stant-Q spectral analysis of the original sequence. An algo-
rithm for accomplishing this nonlinearly spaced spectral
analysis with an efficiency similar to that achievable with the
FFT algorithm is not known. One procedure sometimes used
is to evaluate explicitly the samples at the desired frequencies,
using, for example, the Goertzel algorithm [7]. Another
approximate procedure is to sum equally spaced frequency
samples in bands. A related procedure corresponds to per-
forming the spectral analysis of a sequence with a recursive
or nonrecursive filter bank.

As an alternative to these methods, unequally spaced
samples of the spectrum can be obtained by implementing an
equal resolution spectral analysis on a distorted frequency
scale. To carry out such an analysis , the sequence f, whose
spectrum is desired is processed by the network of Fig. 4 and
the DFT of the output sequence g is computed using the
FFT algorithm. To illustrate the effect of the warping, a
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Fig. 5. Example of digital warping of spectra. (a) Original spectral
magnitude. (b) Spectral magnitude of warped version of the original
with @ =1/4. (¢) Spectral magnitude of warped version of the original
with a=1/2.
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Fig. 6. Example of digital frequency warping on a sample of speech.
(a) Original spectral magnitude. (b) Warped spectral magnitude
with a=1/2.

sequence whose spectrum is linear was processed in the man-
ner just described. Specifically, the spectrum of the original
sequence is indicated in Fig. 5(a). The DFT of the sequence
obtained from the network of Fig. 4 is shown in Fig. 5(b)
and (c) for two different values of parameter @¢. Another
example is shown in Fig. 6. Fig. 6(a) represents the DFT
of 51.2 ms of speech weighted with a Hanning window; Fig.
6(b) shows the DFT of the sequence obtained by processing
the same speech sample with the network of Fig. 4.

The fact that the original sequence must first be processed
by the network of Fig. 4 means that if the original sequence is
of length N and the transformed sequence is of length 17,
then the computation time is proportional to N excluding
the time required for computation of the DFT. The use of the
Goertzel algorithm to evaluate spectra at unequally spaced
samples would likewise require computation proportional to
NM. However, the network of Fig. 4 involves a single parame-
ter. Consequently, a hardware implementation of frequency
warping can utilize a fixed coefficient multiplier, which offers a
considerable advantage over the use of algorithms requiring
a coefficient memory and a more general multiplier.
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2) Vernier Spectrum Amalysis: In some applications it is
desirable to carry out a: ern,iler spectrum analysis correspond-
ing to a high- resolutloﬂ ﬁamplmg of the spectrum over a
small frequency range. Ose algorithm that has been proposed
for such analysis is the chirp z-transform [8]. Another com-
mon procedure consists of modulating the signal to center
the frequency band on which the vernier analysis is to be
carried out around 2=0, Jow-pass filtering and sampling the
modulated signal, and trgnsforming the result. As an alterna-
tive, vernier analysis can be carried out with the use of fre-
quency warping. Referring to Fig. 3, we note that for a
positive, the slope of the warping function 6(£2) near the origin
is greater than unity. Thus:the transform of a sequence pro-
cessed with the all-pass network of Fig. 4 with a positive has
highest resolution near & =0."As ¢ increases toward unity, the
effect is to provide a vernjer analysis around Q=0. In general,
of course, we would like to obtain a vernier analysis around an
arbitrary frequency Q. This is accomplished by multiplying
the original sequence by the complex exponential sequence
¢n prior to processing with. the network of Fig. 4, to center
the deslred frequency range at = 0

.3) ‘Helium Speech Tr (mslatzon:.v 4 n the preVlous dlscussmn
spectral warping was used to' compute spectra omn a nonlinear
frequency scale. Another class of applications is -directed
toward the use of spectral warping to correct for a nonlinear
distortion in frequency. An example of such an application
is the correction of the speech of divers [9]. It is well known
that when underwater d«:vers breathe ‘helium-rich gas mix-
tures at ambient pressures higher than dtmospheric pressure,
their speech is highly unintelligible. The effect of the change
in breathing mixture and pressure results in a nonlinear shift
in the resonant frequencies of the vocal tract. However, the
fundamental frequency Qf the speech remains close to
normal; consequently, W‘»hen correcting for the frequency
distortion, the fundamental frequency of the diver’s speech
should not be changed. This can be accomplished by extract-
ing individual pitch periods of the speech, processing each
period of the speech to compensate for the nonlinear fre-
quency distortion, and then resynthesizing the speech with
the original periodicity. Zue [10] has investigated the appli-
cation of frequency warping within this context with encour-
aging results.

C. Hardware Implementation of Digital Frequency Warping

One of the advantages of the use of the network of Fig. 4
is that it can be implemented with digital hardware in a
relatively straightforward and inexpensive manner. Thus, for
example, it can be used peripherally to a digital computer in
conjunction with an FFT program to implement a spectral
analysis with unequal resolution.

To indicate one possible form of the hardware configura-
tion for the network of Fig. 4, the network is redrawn in
Fig. 7 indicating a realization with multipliers, adders, and

delays. The set of equations by means of which the network
of Fig. 7 is iterated is

Zon = 60— 0]+ fou (59a)
01 i — d[gl,n~1 = 0] R T (59Db)
o in B e, B 28, (59¢)

With the difference equations written in the form of (§9), the
arithmetic operations involved are identical for each iteration
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Fig. 8.

Block diagram of a hardware realization of Fig. 7.

in both £ and #. In particular, our implementation of the net-
works' utilizes an arithmetic array with inputs a, b, ¢, and d.
With 4 [a, b, ¢, d] denoting the array output, the array imple-
ments the arithmetic function

Ala; b c,d] = alb —¢) + d. (60)

Thus the input a to the array represents the ‘coefficient that
controls the amount of spectral’ watrping obtairéd: ‘For the
computation of* go ., the inputs b5 ¢, and d are Fiin1, O, and
f_n, respectlvely, so that i

go,n =4 [a, gOI,nv—h O:ffﬂ]"
Similarly,

gl,n o A [d, gl,nfly 0, gO,rL-~1]

Brn = 4 [ll, Trnl, S0 s glc—l,nﬁ-l], k=23,

The network of Fig. 7 must be iterated in both £ and #.
The iteration in the index k corresponds to computing the
outputs Fr. along the network chain for a fixed n. The
iteration in #z then corresponds to updating each of these
outputs for a new input sample. With the network iterated
in £ and then %, so that for each value of # all of the outputs
@ are updated, the network states, corresponding to the
delay outputs in the network of Fig. 7, can be stored in shift
register memory.

A general structure that can be used for the implementa-
tion using a shift register memory isindicated in Fig. 8. Values
in the shift register memory correspond to the outputs for
each of the delay registers in the network of Fig. 7. For £=0,
register D contains f_,, otherwise it is connected to the output
of the shift register memory. For £=0 and k=1, the register
C is cleared, otherwise it is connected to the output of the
arithmetic array. The length of the shift register memory is
equal to the length of the sequence g, which will be denoted
by M. For each value of #, the network of Fig. 8 is iterated
M times. In Table I the contents of the registers as a function
of % are indicated.

The hardware configuration indicated in Fig. 8 has been
implemented using TTL logic and dynamic shift register
memory. With an 18-bit register length and M =3512, the
hardware implementation contains 100 integrated-circuit
packages. The configuration can operate at more than a
2-MHz clock rate. Consequently, to transform 512 data
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TABLE 1

CONTENTS OF THE SPECIFIED REGISTER IN THE HARDWARE
REALIZATION OF THE DIGITAL WARPING NETWORK
(F1c. 8) As A FUNCTION OF k&

k B D C
0 go,n—l f;—n 0
1 Gin-i Zon—1 oy
2 8on—i G1n1 Sin
s 5 >

3 82.n—t §on

Note: k = the number of the stage in the all-pass network.

points to obtain a new 512-point sequence requires approxi-
mately 0.13 s. Computation time for a 512-point DFT using
the FFET algorithm, implemented on a fixed-point 18-bit
computer such asa DEC PDP-9, requires between 0.5 and 1 s;
thus the inclusion of frequency warping to obtain unequal
resolution using this piece of peripheral hardware increased
computation time by from 10 to 20 percent over that required
for an FFT alone. As the application warrants it, faster cir-
cuitry can, of course, be used.

IV. CoNCLUSIONS

This paper has been directed toward a discussion and
review of the discrete representation of signals within two
contexts. The first related to the representation of continuous-
time signals and systems by sequences for digital simulation.
The second was the representation of a sequence by another
to implement a frequency warping. Some of the ideas and
results in the paper have found practical application while
others are more speculative. It is hoped that as these ideas
are further developed, additional applications will arise.
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errata
pg. 681 3rd line from the bottom:

"in terms of the convolution integral so-that 1 (&), pft), and. . "

pee. 682 line 20 £(t) = x(t) + cy(t)
line 21 g(t) = x(t) ® h(t) + cy(t) @ h(t)
line 23 By = Xn ¥ hn + cyn * hr



