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Abstract

A motion picture can be manipulated in a variety of useful ways if object move-
ment within the scene can be determined. Determining object movement is known
as motion estimation. This thesis is concerned primarily with the problem of motion
estimation from digitally sampled motion pictures.

Several models are developed that describe object motion with velocity fields.
Given an image sequence, the velocity field is underconstrained and therefore can-
not be determined uniquely. However, by imposing structural constraints on the
velocity field in the form of a parametric model, it is possible to determine the
model parameters uniquely.

The parametric models form the basis for two motion estimation algorithms
which are described in this thesis. Experimental results are presented which demon-
strate that these algorithms determine velocity fields more accurately than con-
ventional region matching methods. One of the algorithms also has the desirable
property of being computationally efficient. This algorithm is based on the least
squares error criterion.

To demonstrate the performance of the least squares motion estimation algo-
rithm, a motion-compensated noise requction system was implemented. A number
of experiments demonstrate that the motion-compensated noise reduction system
can yield better results than conventional restoration methods.

A motion-compensated frame interpolation system was also implemented. This
system permits frame rate conversion by arbitrary rates. Several experiments
demonstrate that in a variety of situations, motion rendition obtained with the
motion-compensated frame interpolation system is more natural than that which
can be obtained with frame repetition strategies.

Thesis Supervisor: Jae S. Lim
Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

1. Motion estimation

A motion picture is composed of a sequence of still frames which are displayed
in rapid succession. The frame rate necessary to achieve proper motion rendition
in typical visual scenes is sufficiently high that there is a great deal of temporal
redundancy among adjacent frames. Most of the variation from one frame to the
next is due to object motion. This motion may occur within the scene or relative
to the camera which generates the sequence of still frames.

There are a wide variety of applications where one desires to manipulate a
motion picture by exploiting the temporal redundancy !. In order to do this it
is necessary to account for the presence of motion. The class of systems we are
concerned with explicitly determine the movement of objects within the sequence
of still frames. The process of determining the movement of objects within image
sequences is known as motion estimation.

This thesis is concerned primarily with the problem of motion estimation. The
motion estimation problem is phrased in a variety of contexts that depend on a
particular representation for motion. The specific motion representation which we

use is based on velocity fields.

!Some applications which have been proposed include (1) noise reduction, (2) spatio-temporal

interpolation, and (3) motion picture coding.



1.1.1 Previous approaches to motion estimation

A number of methods for performing motion estimation have been proposed in
the past. In general there have been three primary problems with previously used

methods:
e motion estimation accuracy with noisy images
o estimating large velocities
e computational complexity

Many algorithms are explicitly formulated under the assumptions of high signal-
to-noise level. As a consequence, if the algorithms are applied to noisy pictures, the
motion estimation errors are typically large. Most motion-compensated systems re-
quire very accurate motion estimates in order to maintain adequate picture quality.
Consequently the algorithms which are sensitive to noise are not generally useful.

In real-life motion pictures the velocity field is a complicated function of spatio-
temporal position. Therefore most algorithms are based on local operations. One
of the problems with this approach is that typically only small velocity fields can
be estimated reliably.

Many applications of motion compensation require real-time operation. For real-
time operation to be feasible it is necessary for the algorithms to be computationally
efficient. Even in those applications where real-time operation is not required,
computational complexity is an important characteristic which affects the cost of

implementing a specific motion estimation algorithm.

1.1.2 A new approach to motion estimation

The purpose of this thesis is to present a new approach to motion estimation.
This approach is based on parametric signal and velocity models. These models
are general enough so they apply to a w.de variety of signals derived from motion

pictures. We present two new motion estimation algorithms which are bascd on



these models. The algorithms are capable of estimating the velocity field very accu-
rately from noisy pictures. Furthermore, one of the algorithms has the important
property that the model parameters can be determined by solving linear equations
(least squares algorithm). Consequently the algorithm is computationally efficient.

These algorithms are based exclusively on local operations and consequently
cannot estimate large velocities directly. However, because they typically generate
velocity estimates with subpixel accuracy, they can be used on spatially down-
sampled images to generate accurate initial coarse velocity estimates. The coarse
velocity estimates can be used at the original picture resolution to generate accurate
estimates of large velocities. The resulting algorithm is referred to as a multigrid

method.

1.2 Applications of motion estimation

The multigrid/least squares algorithm was used in several applications of motinn-
compensation. We developed a motion-compensated noise reduction system and a

motion-compensated frame interpolation system.

1.2.1 Motion-compensated noise reduction

The basic structure of a motion-compensated noise reduction system is shown in
Figure 1.1. At each point in the image sequence the velocity field is estimated and
used to compute a motion trajectory. The signal intensity remains constant along
motion trajectories. Therefore the samples along the trajectory are processed with
a one-dimensional filter. We apply this technique to signals degraded with either
additive noise or impulsive noise. For additive noise reduction the filter averages
the samples and for impulsive noise the filter computes the median of the samples.

In these systerns, motion estimation error introduces blur or other visible arti-
facts into the picture. Therefore they provide a subjective evaluation of the perfor-

mance of the motion estimation algorithms.
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Figure 1.1: Motion-compensated noise reduction system

1.2.2 Motion-compensated frame interpolation

A motion-compensated frame interpolation system has the basic form shown

in Figure 1.2. This system permits computing intermediate frames of the motion

s(z,t) s(z,t')
/1
( Directional
| Interpoiator
V 3
Motion
Estimation

Figure 1.2: Motion-compensated frame interpolation system

picture. At each point where a sample is desired, the velocity field is estimated and
projected onto the closest frame. The signal value at this position is used as the

interpolated value.
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1.3 Thesis overview

1.3.1 Survey of motion estimation algorithms

Motion estimation is a fundamental component of motion-compensated image
processing systems. Consequently, a wide variety of motion estimation algorithins
have been proposed in the literature. In Chapter 2 we review some of the more

widely used methods.

1.3.2 Model-based motion estimation

In Appendix A we derive some very general motion models. The inodels form
the mathematical basis for analyzing the motion estimation problem. A specific
form of the model is used as the basis for two motion estimation algorithms which
are described in Chapter 3. One algorithm is based entirely on linear models and
uses the least squares error criterion. The second algorithm is based on a maxi-
mum likelihood parameter estimation method. For comparison purposes we also
implemented a region matching algorithm which is described in Appendix B.

We summarize the computational requirements of these algorithms. The com-
putational requirements for the region matching and maximum likelihood are very
similar. However, the least squares algorithm requires substantially less compu-
tation than the region matching and maximum likelihood algorithms (almost two
orders of magnitude).

For these algorithms we analyze the effect of additive random noise on motion
estimation accuracy. The Cramer Rao bounds are derived for the case of additive
white Gaussian noise and discrete observations of the signal.

In Chapter 3 we also present an algorithm for extending the effective search range
of motion estimators. The algorithm is based on a multi-grid method and permits
very large velocity fields to be estimated with high accuracy, in a computationally

efficient manner.

11



1.3.3 Motion estimation experiments

In Chapter 4 a number of experiments are described which compare the motion
estimation algorithms described in Chapter 3 and the region matching algorithm

described in Appendix B. Two basic comparisons were made:
e motion estimation error as a function of signal-to-noise tevel
e picture quality obtained with motion-compensated temporal averaging

The first set of experiments measured the motion estimation error as a function
of signal-to-noise level with synthetic test images. It is shown that the error per-
formance of the least squares algorithm is very similar to the maximum likelihood
algorithm, both of which are superior to the region matching algorithm for realistic
signal-to-noise levels.

Next we processed some pictures by frame averaging along trajectories deter-
mined by the algorithms. For this operation, motion estimation error introduces
artifacts and causes the resulting picture to be blurred. These experiments confirm
the empirical results obtained with the synthetic test images. The pictures pro-
cessed with the maximum likelihood and least squares algorithms werc comparable,
and better than the pictures processed with the region matching algorithm.

In addition we present some experimente in motion estimation of large veloc-
ities. These experiments demonstrate the effectiveness of the multigrid algorithm

for estimating large velocities.

1.3.4 Motion picture restoration

In Chapter 5 we describe some motion picture restoration systems. The degrada-
tions that the restoration systems we developed can suppress include: (1) additive
random noise, and (2) impulsive noise. We compared the pictures processed with
the motion-compensated systems to those processed with adaptive single frame
restoratio1 and adaptive multiple frame restoration systems. On the basis of infor-

mal subjective viewing, the pictures processed with the motion-compensated sys-

12



tems were usually judged to be better than those processed with tke two adaptive

methods.

1.3.5 Motion picture frame interpolation

In Chapter 6 we describe two motion picture frame interpolation systems. We
developed a system which performs frame rate conversion by motion-compensated
frame interpolation. This system permits rate conversion by arbitrary frame rates
(for example 10 %). We compared this system to an alternate method based on
frame repetition. This system does frame rate conversion by repeating (or drop-
ping) frames. Each “interpolated” frame is obtained by selecting the frame in the
original sequence which is closest in time to the desired frame. A number of infor-
mal subjective tests revealed the motion-compensated system to yield comparable
results to the repetition system for scenes with slight motion. However, when large
moving areas are present, the motion-compensated interpolation method was pre-
ferred over the frame repetition method. When there are large moving areas the
frame repetition method produces “jerky” motion, while the motion-compensated

interpolation method yields more continuous motion rendition.

13



1.4 Notation and conventions

In this section we define the notation and conventions used throughout this
thesis.

A great deal of our analysis involves systems of linear equations. We make
extensive use of matrix and vector notation. Matrices are represented with upper
case symbols (A, B, etc.) and yectors are represented with either upper or lower
case symbols with a bar over the symbol (&, b, § etc.). For example, a set of linear

equations is written as

Az =},

The inverse of a matrix A is written as A=’ and the transpose is written as AT.
Entries of a matrix are referred to with subscripted notation. Therefore, A, refers
to the i"* row and j'* column of matrix A.

All vectors are column vectors. When written in line, the convention is b =
(by,b2,...,bx)T. Entries of a vector are referred to with subscripted notation.
Therefore, b; refers to the i** element of vector b.

We adopt a common notation used to distinguish continuous versus discrete
signals. A signal whose independent variables are enclosed in parenthesis ()"
is a continuous signal, and a signal whose independent variables are enclosed in
brackets “[-]” is a discrete signal. Therefore the signal s(-) refers to a continuous
signal, whereas the signal s|-] is a discrete signal.

The signals which we deal with are either single images or sequences of images
which comprise a motion picture. The luminance of an image is a function of two
variables, z and y. For the sake of notational convenicnce, the pair (z,y) will
be written as Z in many occasions. Therefore the image s(z,y) is equivalent to
the image s(Z). Continuous sequences of images are written as s(z,y,t) = s(Z,t).

Therefore s(Z,t,) refers to the fram~ at time instant ¢,.

14



On several occasions we will use Fourier transforms. The Fourier transform of
an image is

Stunwy) = [ s(z,0)e 157 +0y8) gz gy (1)

and the Fourier transform of a movie sequence is

o0

S(wyy wy,wy) = / s(z,y, t)e"j(“’-fz +wyy +wit) g, dy dt. (1.2)

15



Chapter 2

Survey of motion estimation

algorithms

Motion-compensated image processing systems involve motion estimation in one
form or another. The purpose of this chapter is to describe a variety of motion

estimation algorithms which have been proposed in the past.

2.1 Motion estimation methodologies

Most image sequences are derived from natural scenes. A two-dimensional
frame is obtained by projecting a three-dimensional illumination function onto the
two-dimensional image plane of a camera and sampling in both space and time.
Hence there is a strong relationship hetween the spatial and temporal properties
of these signals. As motion occurs in the three-dimensional scene there are cor-
responding changes in the sequence of two-dimensional projections, A variety of
methods have been proposed for extracting three-dimensional motion parameters
from the sequence of two-dimensional projections [18,29,34,35,3]. These methods
have focused primarily on the motion of rigid three-dimensional bodies. A common
formulation of the problem involves determining the motion parameters, which in-
clude a translation component, rotation component, and center of rotation. It is

clear that the motion characteristics which are found in typical real-life image se-

16



quences are vastly more complicated than this simple model can accommodate and
a more general representation is required.

A more widely used representation of objects within image sequences involves
segmenting the two-dimensional frames into different regions based on luminance
properties and associating each region with a three-dimensional object. A dynamic
scene is viewed as a set of two-dimensional regions that change dynamically in
shape, texture, luminance, etc. as a function of time. With this representation
motion estimation involves determining the movement of object boundaries and
other features within the image sequence.

Within this framework there are basically three methodologies which have been

used for motion estimation [15,11,25,28,33):

e transform domain methods
e region matching methods

e spatio-temporal constraint methods

In the following sections we describe some algorithms based on these methodologies.

In addition to describing the algorithms, we discuss their limitations. To un-
derstand the limitations it is necessary to know the requirements of the algorithms.
There are many factors which affect the requirements imposed on a particular al-
gorithm. The most obvious factor is the intended application. Other factors are
related to the specific properties of the signals which are being manipulated (frame
rate, picture resolution, etc.). For reference purposes, we use the NTSZ standard as
a baseline system. This choice is motivated by the widespread use of this standard,
Two application areas which we have investigated include noise reduction and frame
interpolation. We use these systems to select the requirements of the algorithms.
Therefore the requirements are stated for the problem of noise reduction or frame
interpolation of NT'SC signals.

The most important requirements can be itemized as follows:

e Accuracy/large velocities: In order to avoid introducing blur or other artifacts

into the picture, velocities must be estimated typically with subpixel accuracy

17



(error < 1 pel/frame). This is an important requirement which most algo-
rithms fail to meet. Furthermore, for NTSC pictures, velocity fields on the

order of 10 pels/frame are present often.

o Resolution: As a moving object occludes the background, the velocity field is
discontinuous. To avoid noticeable artifacts in these regions of the picture,

the estimator must resolve velocity discontinuities over a spatial distance on

the order of 2 to 3 pels.

e Signal-to-noise levels: For noise reduction applications, signal-to-noise levels

as low as 20 dB are commonly present. For frame interpolation applications,

signal-to-noise levels on the order of 30 - 40 dB are typical.

» Computational complexity: If real-time operation on NTSC signals is to be

obtained, it is extremely important that the algorithm is computationally

efficient.

2.1.1 Transform domain methods

One formulation of motion estimation in the transform domain is based on
the relationship between Fourier transforms of shifted two-dimensional sequences

[11]. If the Fourier transform of s(z,y) is §(w,,w,), then the transform of a shifted

version of s(z,y) is given by
s(z —d;,y — d,) <= S(w,,w,) exp[-j2r(w,d, + w,d,)). (2.1)

Suppose we have two frames s(z, y, to) and s(z, y,t,) corresponding to time instants
ty and t;, with two-dimensional Fourier transforms S(w,,w,) and S;(w,,w,). If the
frame at time instant ¢, is a shifted version of the frame at time instant ¢, with
displacements d, and d,, then the unwrapped phase difference between the two

Iourier transforms is

So(wzy wy) — 8y (wsywy) = 6¢(wsywy) = —21(w,d, + wyd,). (2.2)

18



Extending this basic principle to motion estimation is straighiforward. The un-
wrapped phase difference between two frames is computed at a number of frequen-
cies and a set of overdetermined linear equations is generated. Solving the set of

equations leads to an estimate of the displacement field characterized by d, and d,

Wr Wy 5¢(‘*’:1 ) wul)
Wy2 wy? d.r 6¢(w:2’ wv2)
- 27 = . (2.3)
. . dy .
WeN wyN 6¢(“:N1 wyN)

In practice this approach i1s very limited because it only anplies to the case where
all objects move in the same direction and by the same amount against a uniform
background. Another difficulty with this method is that it requires computation of
the unwrapped phase of the Fourier transform.

An alternate formulation was proposed by Stuller and Netravali [33]. It is based
on a coefficient-recursive estimation procedure and can be summarized as follows. A
given frame (say at time ¢,) is partitioned into blocks. Consider one block centered
about the point Z,, where the samples are organized into a one-dimensional vector
S(Zo,t0). Let ¢, be the n' basis vector of a unitary transform and let cu(Fa, to) be

the corresponding transform coefficient which is computed as follows
C,.(i(), to) = S(.’f, to)T$,.. (2.4)

An error term for this coefficient is defined as the difference between the coefficient

at time ¢y and the coefficient for a displaced frame at time ¢, + 6¢
eﬂ(‘_i: Zo, to) = S(';BO’ t(P)T‘};n - S(iﬂ - a: t(l + 5t)T‘$u (2'5)

which can be simplified to

en(d, Zo,ta) = (8(0,t) - 5(20 - d,t0 + 61))" . (2.6)

A coordinate descent algorithm is used to determine the displacement vector d

which minimizes the ensemble {e?} over the set of basis vectors that comprise the

19



unitary transform. This iteration resulte in 2n estimate of the displacement field
at the point (Zy,t,). Based on some experiments with noisy images, this algorithm
is reported to achieve slightly smaller estimation error than a pel recursive region

matching algorithm described by Netravali and Robbins [25].

2.1.2 Region matching methods

A more general approach to the motion estimation problem is based on region
matching methods. This approach involves segmenting a frame into small regions
and searching for the displacement which produces a “best match” among possible
regions in an adjacent frame. Most region matching methods can be described with
the following formulation

ngn {C(Z, Zo, to) = F(s(Z, to), 5(Z0 — d, to + 6t)l} (2.7)
where C(-) is a cost function associated with a two-dimensional displacement vec-
tor d and F|[| is a function which measures the similarity between two frames
which have been displaced relative to each other. The objective is to search over
a two-dimensional space to determine the displacement d which minimizes the cost
function at the spatio-temporal position (Z,, ty).

A commonly used region n.atching method involves minimizing the sum of
squares of two regions that have been displaced relative to each other. Specifi-
cally, an estimate of the displacement field is obtained by determining the vector d
which minimizes the following expression

N
min {Z[s(:‘c;, to) - 8(Z; — d, ty + 5t)|2} (2.8)

d iz
where the set of points {Z,} are taken from a particular analysis window. The
widely used pel recursive method of Netravali and Robbins [25] has this basic form.
They use a steepest descent algorithm to minimize this function. This results in

the iteration
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where
DF D(d) = s(Zo, to) — s(Zo — d, to + 6t) (2.10)

is the displaced frame difference. In a later improvement of the algorithm [24], the
squared displaced frame difference (DFD) is minimized over a region. The resulting
algorithm resembles Equation (2.8). It should be noted that evaluation of Equation
(2.9) requires that values of s(Z,t) at arbitrary spatio-temporal positions are avail-
able. Therefore an interpolation procedure is required to compute values which are
not on the sampling grid. The bilinear interpolator is often used. Numerous vazia-
tions of this basic algorithm have been used in applications ranging from interframe
coding [25] to noise reduction [8].
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