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ABSTRACT

This thesis introduces a new procedure for the enhancement of acoustic images of the
bottom of the sea produced by side-scan sonars. Specifically, it addresses the problem of
estimating and correcting geometric distortions frequently observed in such images as a.
consequence of motion instabilities of the sonar array. This procedure estimates the ge-
ometric distortions from the image itself, without requiring any navigational or attitude
measurements. A mathematical model for the distortions is derived from the geometry
of the problem, and is applied to estimates of the local degree of geometric distortion
obtained by cross-correlating segments of adjacent lines of the image. The model param-
eters are then recursively estimated through deterministic least-squares estimation. An
alternative approach based on adaptive Kalman filtering is also proposed, providing a
natural framework in which a priori information about the array dynamics may be easily
incorporated. The estimates of the parameters of the distortion model are used to rectify
the image, and may also be used for estimating the attitude parameters of the array. A
simulation is employed to evaluate the effectiveness of this technique and examples of its
application to high-resolution side-scan sonar images are provided.
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Chapter 1

Introduction

This thesis presents a new procedure for the enhancement of acoustic images made by

side-scan sonars in the sea and other bodies of water. Specifically, a solution is proposed

to the problem of correcting geometric distortions often observed in those images as a

result of sonar motion instabilities. The techniques introduced here are unique in that

they require no navigational data or attitude measurements for the sonar array to correct

the geometric distortions in the image.

The remainder of this chapter presents a more detailed description of the subject of

this thesis. An introduction to side-scan sonar is given in Section 1.1, including a brief

review of the history of its development, its principles of operation and applications.

An example is shown of a side-scan sonar image taken from our data set. Section 1.2

gives a description of the various types of distortions frequently observed in side-scan

sonar records, with emphasis on the geometric distortions on which this thesis is focused.

The current state of research on digital processing of side-scan sonar data is reviewed

in Section 1.3, providing a framework in which the contributions of this thesis can be

situated. Section 1.4 states the goals of our work. Finally, Section 1.5 describes the

survey during which the data was collected.

Chapter 2 presents the theoretical development of a mathematical model relating ge-

ometric distortions in the images to fluctuations in the sonar trajectory and heading.

The measurement of the local degree of geometric distortion in small areas of the image

from the cross-correlation of line segments is discussed in Chapter 3. Chapter 4 treats
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the estimation of distortion parameters using the model derived in Chapter 2 and the

measurements obtained in Chapter 3. In Chapter 5 the parameter estimates are used

for correcting the geometric distortions in sonographs and examples of processed images

are given. A simulation is used for evaluating the accuracy of the geometric correction.

Chapter 6 presents an evaluation of the results obtained in this thesis, along with con-

cluding remarks and suggestions for future research on this problem. Finally, Appendix A

presents a summary of the variables defined throughout the thesis, and Appendix B con-

tains the derivation of some of the results from the geometrical analysis carried out in

Chapter 2.

1.1 An Introduction to Side-Scan Sonar

The development of diving and submersible technology has made the bottom of the

sea a stage for a large variety of enterprises. Experiments and studies in marine biol-

ogy, seabed geology, physical oceanography, and other scientific disciplines are routinely

carried out on the seafloor. Archeologists and adventurers alike seek and explore old

ship wrecks. Communication and power cables are laid on the bottom while engineering

structures are built or deployed on the seabed for extracting oil, gas, and other minerals,

or for logistic support of divers. Many of these activities are carried out not only in the

sea, but on the bottom of lakes and rivers as well.

The establishment of all these underwater activities has generated an increasing need

for underwater remote sensing. This is often provided by acoustic bathymetric devices,

such as the basic echo sounder and its more sophisticated multi-beam versions, which have

been extensively used to produce bathymetric charts of the oceans. There are, however,

many underwater enterprises that require remote sensing at a much finer resolution than

can be achieved with bathymetric devices. In some cases, visualization of the bottom

can be achieved through underwater photography, filming, or television. However, these

means are severely limited by the rapid absorption of light by the water, resulting in

maximum ranges of at most a few tens of meters, and sometimes as little as less than a

meter, depending on the condition of the water.
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Side-scan sonar bridges the gap between sight and sound in the underwater environ-

ment by providing visualization of the bottom through acoustic remote sensing at ranges

far beyond those afforded by optical means. It has acquired an increasingly important

role in underwater exploration and its wide range of applications includes mapping the

seabed as an aid to the production of nautical charts and for oceanographic and under-

water archeologic research, search and location of objects on the bottom, fishery studies,

support for submersible operations, and off-shore mining and engineering surveys. The

history, principles of operation, and applications of side-scan sonars are reviewed in [58],

[31], [7], [48], [52], and [3].

1.1.1 History

The origins of side-scan sonar can be traced back to the submarine research conducted

after World War II in England, where sonar operators of the Allied Submarine Devices

Investigation Committee (ASDIC) observed that the intensity of backscattering of high-

frequency sonar pulses from the bottom appeared to present a consistent correlation with

seabed morphology [24]. Kunze, in 1957 [35], and Chesterman et al., in 1958 [9], were

the first to explore this phenomenon in an attempt to produce a representation of the

seabed topography. By 1961 the first operational side-scan sonar had been built by the

National Institute of Oceanography (NIO) in England, and mounted on the hull of its

research ship, RRS Discovery II [59]. The first major seabed survey conducted with that

sonar was reported in 1961 [19].

The development of side-scan sonar in the United Kingdom has been carried out by the

scientific community, especially by the NIO, now known as the Institute of Oceanographic

Sciences (IOS). Their most notable achievement was the Geological Long-Range Inclined

Asdic (GLORIA) Project l , responsible for the development of a long-range side-scan

sonar completed in 1969 [47]. In 1977 the IOS built a second version, the GLORIA II,

which incorporated a series of improvements suggested by the experience gained in the

operation of the original GLORIA sonar [51].

1In its early days, side-scan sonar was sometimes called Asdic sonar, because of its association with
the Allied Submarine Devices Investigation Committee.
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In the United States, the development of side-scan sonar was carried out not only

by scientific institutions but also by the industry, and American companies have held a

prominent position in the world market from the beginning. Notable examples of side-

scan sonars developed by scientific institutions in the United States are the SeaMARC

(Sea Mapping and Remote Characterization) sonar and its successor, the SeaMARC II,

jointly developed by the University of Hawaii and International Submarine Technology,

Ltd.[6]

1.1.2 Principles of Operation

Figure 1.1 depicts a typical operational setting for a conventional side-scan sonar.

The main components of the system are the so-called towfish, a cylindrical towed body

on whose sides are mounted two linear arrays of hydro-acoustic transducers, and the

recorder, a piece of equipment containing the circuitry that generates the sonar pulses

and detects the returned signal, producing a graphic record of its strength either on

paper or on a cathode-ray tube. The arrays of transducers produce two sound beams

with very narrow main lobes (typically only 0.2 to 2.0 degrees wide) on each side of the

towfish, pointing laterally and down as depicted in the figure. Each sonar pulse ensonifies

a narrow strip of the seabed on each side, to a distance of up to 30 kilometers, depending

on the operating frequency of the sonar. As the towfish is towed through the water, the

lateral sound beams progressively scan a swath of the seabed (thus the name side-scan

sonar), while the recorder produces a line-by-line record of the backscattered signal [25].

The visual record produced by a side-scan sonar is called a sonograph. Figure 1.2

shows an example of a sonograph covering an area of 100 m x 200 m of a fairly flat

stretch of seabed consisting of a field of boulders and cables laid on the bottom. The

towfish may be pictured moving along the center of the image from bottom to top, so

that the right-hand and left-hand halves of the image correspond to the starboard and

port sides, respectively. The two arrays of transducers fire a sequence of sound pulses at

regular intervals as the towfish is towed above the seabed. After each pulse is emitted,

the transducers receive the signals returned from the bottom on the starboard and port

sides, before the next pulse is fired. In the case of a digitized sonograph, the returned
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Figure 1.1: Typical operational setting of a side-scan sonar. Lateral sound beams scan
the seabed as the sonar towfish is towed above the bottom by a deploying vessel.

signals are sampled at a constant rate to form one line of the image, starting from its

middle point and moving towards the sides. The image intensity is proportional to the

strength of the returned signal, and the horizontal coordinate measured from the middle

of the line corresponds to the time elapsed since the pulse was sent out. Equivalently,

the horizontal coordinate may be viewed as range from the towfish, assuming the sound

pulse travels at a constant speed. The vertical coordinate of the sonograph corresponds

to the distance traveled by the towfish. The dark stripe seen in the middle of the image

corresponds to the interval of time between the emission of the sound pulse and the

instant it first reaches the seabed, during which there are no reflections except those

from fish or other objects in the water column.

As a visual record of backscattered sound, a sonograph depicts a combination of the
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seabed topography and its geological constitution. This is a consequence of the depen-

dence of backscattering strength both on the angle of incidence at which the sound waves

reach the target (called the grazing angle) and on the target's ability to reflect them back,

that is, its reflectivity [11]. As a result, sonographs resemble aerial photographs, with

the difference that the coordinates of a point on a sonograph correspond to horizontal

distances in one direction (along-track) and to range to the towfish in the other direction

(cross-track), whereas in aerial photographs the coordinates of a point in both direc-

tions correspond to horizontal distances on the ground. A closer analogy exists between

sonographs and side-looking radar images, which are also formed line-by-line and whose

coordinates are also distance and range [50].

1.1.3 Types and Applications of Side-Scan Sonar

The most relevant parameter in the characterization of a side-scan sonar is its op-

erating frequency, which fixes its maximum range and, together with the array length

and pulse width, determines its resolution. Sound absorption in water increases with

frequency, resulting in shorter ranges [11]. However, the beam width and pulse length

can be made smaller at higher frequencies, providing increased resolution [60]. Thus,

side-scan sonars with low operating frequencies (3.5 to 40 kHz) have very long ranges (1

to 30 km on each side) but lower resolution, while high-frequency units (100 to 500 kHz)

have resolutions as fine as a few centimeters at the expense of shorter maximum ranges

(100 m to 1 km) [24]. The former class of sonars is mostly employed for marine geolog-

ical and mapping surveys, where it is necessary to cover very large areas of the seabed

and only the large-scale topography is of interest. The latter class is better suited to

applications such as the visualization of objects on the bottom, which require increased

resolution over smaller areas.

A notable example of a long-range side-scan sonar is the GLORIA system, which,

with its long total coverage of up to 60 km (at an operating frequency of 6.5 kHz) has

produced a wealth of data over 15 years of operation by the IOS and on charters to

foreign organizations [36]. The United States Geological Survey has employed GLORIA

for mapping extensive portions of the US Exclusive Economic Zone (EEZ). An example
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of a high-frequency unit is the 500 kHz Klein Hydroscan sonar, which, with its very fine

resolution of less than 5 cm, has produced some striking images of shipwrecks and other

objects on the bottom [21].

A number of variations have evolved from the conventional side-scan sonar. Perhaps

the most significant of these is the bathymetric side-scan sonar, which uses the phase

of the backscattered signal at each moment for calculating the seafloor elevation as a

function of range for each line of the sonograph [15] [16] [17]. An example of a bathymetric

side-scan sonar is the SeaMARC II [6]. Another variation is the interferometric side-scan

sonar [33]. The application of synthetic-aperture techniques to side-scan sonar has also

been proposed, but success in this area has been limited [49] [27].

1.2 Sonograph Distortions

The distortions that affect sonographs are of two kinds: intensity distortions, which

are deviations from the ideal linear relation between image intensity and backscattering

strength of the materials on the bottom,2 and geometric distortions, which correspond

to discrepancies between the relative location of features on the image and their true

location on the seabed. Various specific forms of distortions can be identified in each of

these two categories [56] [23] [8]. The different types of distortion will be discussed in

the remainder of this section.

1.2.1 Intensity Distortions

Several types of intensity distortions can be observed in sonographs. One of them is

caused by power drop-off in the returned signal, resulting from three factors: The first

two are spherical spreading loss and sound absorption by the water, both of which cause

the sound wave to be attenuated as it travels away from the towfish and back. The third

factor is the decrease in backscattering due to diminishing grazing angles at increasingly

longer ranges. Most side-scan sonars attempt to correct power drop-off by applying a

2These are sometimes called radiometric distortions, a term apparently borrowed from the radar
remote sensing nomenclature.
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time-varying gain to the returned signal, which the user can adjust to obtain an image

intensity as uniform as possible. In the process, one may eliminate some legitimate large-

scale intensity variations caused by a sloping bottom or by differences in the geological

constitution of the seabed.

A source of intensity distortions inherent to the sonar itself is the effect of the side

lobes of the beam pattern. There are both vertical sidelobes, i. e., those on the plane

perpendicular to the axis of the towfish, and horizontal sidelobes, i. e., those outside that

plane. The vertical sidelobes beneath the main lobe may be responsible for variations in

intensity in the first portion of the returned signal, while those above the main lobe may

cause spurious surface reflections. In the cross-track direction, each line of the sonograph

is produced by the convolution of the acoustic beam function, defined by the main lobe

and horizontal sidelobes, with the backscattering function of the seabed. As a result,

each line is not the perfect sample of the bottom that one would desire. This effect is

usually more noticeable at far ranges, where the beam spreading may cause the features

to appear smeared in the along-track direction. Pitching and yawing of the towfish also

result in variations in image intensity by causing misalignment of the transmitting and

receiving beams, with a consequent drop in the power level of the returned signal, which

translates into striping of the sonograph in the cross-track direction.

Other types of intensity distortions are ultrasonic interference generated by passing

ships, electrical interference from other instruments on the ship, and various kinds of

artifacts caused by shoals of fish, dense particle suspension in the water, or other distur-

bances of the medium.

1.2.2 Geometric Distortions

One type of geometric distortion is inherent to side-scan sonar: the so-called slant-

range distortion, a consequence of the cross-track coordinate of sonographs being range

to the towfish rather than horizontal distance on the bottom. This distortion amounts

to a range-dependent coordinate transformation that compresses the scale towards the

shorter ranges and causes the water column to appear on the sonograph as depicted in

Fig. 1.3. If the bottom is assumed to be flat, correcting the slant-range distortion is a
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Figure 1.3: The slant-range distortion is caused by the fact that horizontal distances in
the sonograph correspond to ranges to the towfish, rather than distances on the seabed.

fairly simple operation that only requires knowledge of the height of the towfish above

the bottom. That height can be measured from the sonograph itself as the width of the

water column at each line, and then be used to convert ranges to horizontal distances on

the bottom. This procedure will be described in greater detail in Section 6.1.

Another source of geometric distortions is variations of the speed of sound in the water,

caused by differences in water temperature, pressure, or salinity [11]. Gradients in the

velocity of sound in the water also cause the sound waves to be refracted, a phenomenon

known as ray bending [18]. Both these phenomena preclude an exact correspondence

between sound-wave travel time and actual range to the towfish, with the result that

cross-track distances on the sonograph no longer represent actual ranges. Under extreme

conditions, ray bending may cause the beam to miss some target areas altogether, leaving

shadow zones in the sonograph. These kinds of distortion are usually observed only at

longer ranges and are uncommon in high-frequency sonographs.

Still another source of geometric distortion in sonographs is variations in the trajec-
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tory, speed, or orientation of the towfish. Ideally, the towfish would be towed above the

bottom at a constant speed, on a straight path, and with the heading always aligned with

the trajectory. In practice, however, the towfish is often subject to motion instabilities.

Wind and sea currents, for instance, often prevent the deploying vessel from maintain-

ing a constant speed and heading. As a result, the sonograph will display variations in

aspect-ratio and other large-scale geometric distortions. These can be corrected by using

navigational measurements to determine the true location of the ship and towfish and

then resampling the sonograph so as to produce an isometric image. Towfish motion

instabilities may also result from the action of underwater currents on the towfish or

from the ship sway being communicated to the towfish through the tow cable.

Motion instabilities may be divided into two types: translational and rotational.

Translational instabilities correspond to lateral and vertical displacements of the towfish

from the desired straight path, and to variations in speed. Rotational instabilities are

illustrated in Fig. 1.4. Pitching and yawing produce geometric distortions by causing the

beams to scan ahead or back, either simultaneously on both sides, in the case of pitching,

or alternating between the port and starboard sides, in the case of yawing. It is common

for pitching and yawing to be severe enough to cause the sonar beam to scan backwards

over a previously covered area. Objects in a back-scanned area appear in triplicate on the

sonograph: one image corresponding to the first time they were scanned, followed by their

mirror image reversed in the along-track direction resulting from the back-scanning, and,

finally, a third image produced when the beam starts scanning forward again.3 Rolling

does not produce geometric distortions, but it causes variations in image intensity in the

area immediately below the towfish due to the rotation of vertical sidelobes. It can also

result in the near-field portion of one side of the sonograph being folded back on itself

by allowing the lower part of the corresponding beam to cross over into the opposite side

under the towfish.

3 Back-scanning does not occur in the cross-track direction, since it is impossible for the propagating
wavefront to reverse its course as a result of towfish instabilities.
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Figure 1.4: Rotational instabilities
rolling (bottom).

of the towfish: pitching (top), yawing (middle), and

1.3 Digital Processing of Sonographs

The various types of distortions described in Section 1.2 can sometimes significantly

limit the accuracy of sonographs as visual representations of the seabed. It was not long

after the invention of side-scan sonar that the first attempts were made at correcting

sonograph distortions. For about a decade, the only types of distortions that were cor-

rected were those caused by variations in ship speed and by the slant-range effect. In [10],
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for instance, a system was described in which the slant-range distortion was removed by

using a nonlinear helix in the recorder, and variations in ship speed were compensated for

by using a continuous flow camera to change the along-track scale of the sonograph. The

same results were accomplished by fiber optic recorders described in [53] and [61], and by

a system reported in [4] that employed a photo-electrical scanner in conjunction with a

recorder whose stylus was driven by a stepping motor in a non-linear sweep. Commercial

systems that correct for slant range and for variations in ship speed were later developed,

such as the ones described in [13] and [32].

Apparently, the first system reported in the literature that departed from the tradi-

tional method of recording the sonar signal on paper was the one described in [28] and

[29]. In that system the sonar signal was recorded on magnetic tape during the survey

and was later displayed on a cathode-ray tube, affording a higher dynamic range than

the paper record and at the same time allowing the operator to correct for variations in

ship speed and heading by manually adjusting the vertical time base and the slope of the

scanning lines.

From the beginning, recorders have incorporated a time-varying gain (TVG), which

is applied to the sonar signal in an attempt to compensate for the power drop-off with

range caused by sound attenuation, spreading loss, and decreasing grazing angles, as

explained in Section 1.2.1. Beyond that, the only other instance of analog processing

of sonographs appears to have been the use of analog filtering for selective textural

enhancement reported in [34].

Correcting for these simpler geometric and intensity distortions was all that could be

accomplished without the recourse of digital processing. The first steps in that direction

were taken in 1976, when reports appeared in the literature concerning the digitizing of

sonographs [62] and their processing by computers. Paluzzi et al. seem to have been the

first to report digital processing of sonographs [41]. Basically, they used existing software

developed at the Jet Propulsion Laboratory of the California Institute of Technology for

processing images from unmanned planetary exploration missions, and adapted it for

sonograph processing. Use of navigational data for correction of large-scale geometric

distortions and production of sonograph mosaics was later added to that system, and
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it was employed for processing GLORIA sonographs in a joint project with the British

Institute of Oceanographic Sciences [42]. That same software package was later used

and extended by Luyendyk, Hajic, and Simonett at the University of California, Santa

Barbara [39]. Similar sonograph-processing systems have since been developed at the

National Mapping Division of the U. S. Geological Survey as reported by Chavez in [8]

and at France's Institut Franfais de Recherche pour l'Ezploitation de la Mer as reported

by Augustin in [2]. The systems described in [22], [20], and [46] incorporate techniques for

feature extraction and image segmentation and classification. Other instances of digital

processing of sonographs are described in [12], [45], [49], [57], [55], and [30].

In general, one might say that considerable improvements are still possible in the

field of digital processing for sonograph enhancement. In particular, an effective tech-

nique for correcting the geometric distortions caused by towfish instabilities without

requiring navigational or attitude measurements undoubtedly constitutes a significant

new development.

1.4 Objectives

This thesis explores the problem of digitally processing sonographs for the correction

of geometric distortions. Its goal is to introduce techniques for estimating and correct-

ing these distortions using solely the information contained in the image itself, without

requiring navigational or attitude measurements.

Geometric distortions in the digitized images are interpreted as the result of variations

in sampling period and, from the geometry of the problem, a model is derived that relates

local variations in the sampling period to parameters that describe deviations in the

trajectory and orientation of the towfish. A linearized version of the model is then used

for the estimation of these parameters.

Measures of the local degree of geometric distortion of the image are derived from

the cross-correlation of segments of adjacent lines. These measurements are not used

directly as input to the model, but rather are first processed to yield estimates of the

sampling intervals on the seabed, which are in turn used for the estimation of distortion
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parameters. We also examine practical issues concerning the calculation of the sampling

period from the correlation length, such as the detection of back-scanning, and the effect

of the sonar beam pattern.

Estimation of the distortion parameters from the correlation length is accomplished

through deterministic least-squares estimation on a line by line basis. An alternative

technique, based on an adaptive Kalman filtering algorithm known as the extended least-

squares method, provides a framework in which a priori knowledge about the towfish

dynamics may be easily incorporated in the future. Once the motion parameters are

estimated, the geometric distortions are corrected by resampling the image appropriately.

1.5 Description of the Data Set

The sonographs used in this thesis, including the one shown in Fig. 1.2, were collected

during a survey conducted out of the Woods Hole Oceanographic Institution (WIOI)

in the summer of 1987. Figure 1.5 shows the location of the survey area off the island

of Martha's Vineyard, Massachusetts. That area was chosen because of the existence of

utility cables on the bottom, which were expected to facilitate the perception of geometric

distortions and thus provide some visual indication of the effectiveness of the technique

developed for correcting them. (The technique presented in this thesis, however, does

not make any assumptions about or rely in any way on the presence of such objects in

the image.)

The survey was conducted aboard WHOI's R.V. Asterias with a high-resolution 500-

kHz Klein model 422S-001E towfish and a Klein model 521 recorder operating at a

range of 100 m, the maximum afforded by that sonar unit. The demodulated signal

was recorded on magnetic tape and was later digitized through a personal-computer

system equipped with a Data Translation DT-2851 "frame-grabber" card. The size of

the digitized images is 512 x 1024 pixels. Assuming a sound speed of 1500 m/s, the

round-trip time of the sonar pulse corresponding to the maximum range of 100 m is

133.33 ms, which determined a sampling frequency of 3.9 kHz to produce 512 pixels

per line per channel. The resulting sampling distance in the across-track direction is

27



Figure 1.5: Location of the survey conducted in the summer of 1987, during which the
sonographs presented in this thesis were collected.

approximately 20 cm. The sonar firing rate was set to 7.5 pulses/sec, the maximum

possible value given the total round-trip travel time of 133.33 ms. The vessel speed was

maintained at approximately 3 knots, in order to attain the same sampling distance of

approximately 20 cm in the along-track direction as in the cross-track direction, at the

selected firing rate.

Though the sea condition during the survey could be described as only moderately

rough, the small size of the vessel (46 ft, 20 long tons loaded displacement) resulted in

enough swaying to generate a significant degree of geometric distortion in the images. To

that was added the effect of fairly strong undercurrents prevailing in Vineyard Sound.

From the resulting set of digitized sonographs a number of images were chosen to be used

in the development and evaluation of the techniques described in this thesis.
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Chapter 2

Mathematical Analysis of the

Problem

This chapter presents a mathematical analysis of geometric distortions in sonographs,

leading to the development of a linear model that will be used in Chapter 4 for estimating

the location of the sampling points on the seabed. The analysis presented here takes into

account the misalignment of the transmitting and receiving beams of the sonar, an effect

that is not incorporated in previous studies found in the side-scan sonar literature, such

as [37], [14], and [44].

2.1 Geometric Distortions in Sonographs

A digitized sonograph can be viewed as a mapping of the backscattering strength

of materials on the seafloor onto a monochrome digital image. In order to derive a

mathematical description of this transformation it is necessary, first of all, to intro-

duce a three-dimensional system of rectangular coordinates (x, y, z) on the seabed and a

two-dimensional rectangular coordinate system Im, n] on the sonograph,l as depicted in

Fig. 2.1. For our purposes, the backscattering strength of the bottom can be completely

described by a function b(x, y, z) defined on the seabed, and representing the backscat-

tering strength at point (x, y, z). As discussed in Chapter 1, the backscattering strength

'The square brackets are used to indicate that m and n are discrete rather than continuous variables.
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r

Figure 2.1: Coordinate systems defined on the seabed and on the sonograph.

is also a function of the grazing angle at which the towfish detected the portion of the

signal reflected by point (, y, z) and of the operating frequency of the sonar, although

these dependences are not explicitly indicated. The sonograph, on the other hand, can

be described by a two-dimensional sequence s[m, n] corresponding to the image intensity

at coordinates [m, n]. Here m denotes the image coordinate in the cross-track direction,

which corresponds to lateral ranges to the towfish, and n denotes the image coordinate

in the along-track direction, corresponding to the time elapsed since the beginning of

the acquisition of the sonograph. In all sonographs shown in this thesis, the direction of

scanning is from bottom to top, so that n is pointing up, while m is positive on the right

or starboard side and negative on the left or port side of the image.

The production of a sonograph is then denoted by

b(, y,z) i- s[m, n].

This operation actually comprises an intensity transformation b -4 as and a sampling

(X, y, z) - [im, n]. The intensity transformation is not a simple function of the backscat-

tering coefficient, being affected by a series of factors such as sound attenuation and

absorption by the water, the angle of incidence of the wavefront on the bottom, acoustic

and electrical noise, and the sonar beam pattern and time-varying gain [52], making it

very difficult to describe mathematically. The sampling operation, on the other hand, is

considerably easier to describe since the only factors that it involves in addition to the

point coordinates are the position and orientation of the towfish. To calculate the true

location of points of the sonograph on the seabed, it is necessary to determine an expres-

sion not for the direct sampling operation, but for the inverse mapping [m, n] -. (, y, z).
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Before proceeding, we make a simplifying assumption. Standard side-scan sonars produce

no information on the bearing of the returned signal, and it is impossible to determine

all three of x, y, and z from m and n alone. We therefore make the same assumption

generally made for correction of large-scale geometric distortions in sonographs: that the

variations in seabed elevation can be disregarded, which corresponds to assuming a flat,

horizontal bottom. In that case the variable z can be eliminated, and the geometric

mapping is completely described by the two functions,

x = xm,n] and y =yo[m,n],

where xsim,n] and y[m,n] are the coordinates of the point on the seabed that was

sampled to produce the pixel located at Im, n] in the image. Another simplification is

to assume that the image intensity corresponds exactly to the backscattering coefficient,

since we are not concerned here with the intensity transformation itself. We can then

write

s[m, n] = b(x, y) X= X8 mn] (2.1)

= ys.m,n]

For the sonograph to provide an undistorted representation of the bottom, x[m, n]

and y,[m, n] would have to be linear functions of m and n with identical linear coeffi-

cients. In practice, however, they turn out to be nonlinear, due to both the geometry of

the physical system and the effect of towfish instabilities. In the next section, explicit

formulas will be derived for x,[m, n] and y[m, n], involving parameters describing the

position and orientation of the towfish.

Since x[m,n] and y,[m,n] are, in general, nonlinear functions, Eq. (2.1) can be

interpreted as describing a non-uniform sampling of b(x, y). In fact, plotting the sample

locations on the seabed plane does not result in a perfect rectangular grid, but rather in a

sampling pattern such as the one shown in Fig. 2.2(a). This figure depicts the case where

the towfish follows an ideal straight trajectory at a constant speed and with no pitching

or yawing. The dashed line running vertically in the figure represents the projection of

the towfish trajectory on the bottom, usually called the bottom track. The other dashed
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Figure 2.2: Sampling patterns on the bottom, in the ideal case (a) and in the presence
of towfish instabilities (b).

lines running perpendicularly to the bottom track represent the intersection of the axial

plane of the transmitting beams with the seafloor. These have fixed positions in space

because each sound pulse is emitted at a certain instant in time and then propagates

along the direction that the sonar beam had at the instant the pulse was fired. On the

other hand, the return from each pulse is received over a period of time during which

the receiving beam is not stationary but rather keeps moving along with the towfish at

a constant speed. The effective beam pattern is the product of the transmitting and

the receiving beam patterns, and if these are the same, which is usually the case for

side-scan sonars, then the effective beam can be assumed to lie on the bisecting plane of

the axial planes of the transmitting and receiving beams. In other words, each point on

the axial plane of the effective beam is assumed to be equidistant to the axial planes of

the transmitting beam (which is fixed for each pulse) and of the receiving beam (which

keeps moving along with the towfish). As a result, during the time between successive

sonar pulses the effective beam scans the bottom at half the speed of the towfish. Each

time a pulse is emitted, however, the effective beam jumps ahead to the location of the

new transmitting beam, so that its average speed still equals that of the towfish.

As the effective beam moves across the seabed, the signal returned from the bottom
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is sampled at a constant rate as it reaches the transducers. The resulting samples come

from points on the bottom that are equally spaced in the along-track (y) direction, since

the effective beam is assumed to move at a constant speed between pulses. However,

the spacing between sampling points in the cross-track (x) direction varies as a result

of the slant-range effect. As a consequence, the sampling points lie on a path that is

initially curved, but approaches a straight line at longer ranges, with the decrease of the

slant-range effect, as shown in Fig. 2.2(a). Part (b) of the figure shows what the sampling

pattern on the bottom might look like when the towfish is subject to translational and

rotational instabilities. Because the bottom is not sampled on an ideal rectangular grid

but on an irregular pattern, the resulting image will suffer from geometric distortions,

in addition to those caused by the slant-range effect. The sampling interval along each

scan line and between corresponding points of successive scan lines varies from point to

point. Areas where the sampling interval is smaller will look "stretched" with respect

to areas where the sampling interval is larger. Furthermore, the image will look skewed

whenever scan lines are shifted in the cross-track direction. The figure also indicates how

the curves where the sampling points are located may cross, resulting in backscanning.

2.2 Mathematical Model for the Geometric Distor-

tions

In this section two models will be derived from the geometry of the problem. The

first one will express the absolute position of the sampling points on the bottom,

(x,[m, n], y,[m, n]), as a function of the instantaneous values of the towfish attitude

parameters, and will be derived with respect to the fixed coordinate system (, y, z). If

measured values of the attitude parameters were available from sensors mounted on the

towfish, we would need only substitute these measurements into this first set of equa-

tions in order to calculate the coordinates of the sampling points on the bottom and then

correct the geometric distortions by resampling the image. In our case, such measure-

ments of the attitude parameters are not available and we will have to seek an alternative

way of estimating the sampling point coordinates. To that end, a second model will be
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Figure 2.3: The position of the towfish is denoted by (zf,yf, zf), its pitch angle by ,
and its yaw angle by .

derived expressing the relative position of the sampling points as a function of a set

of parameters which are closely related to the increments of the attitude parameters

between successive firings. This second model will be used in Chapter 4 for estimating

the attitude parameters.

2.2.1 Location of Sampling Points

The geometry of the problem is depicted in Fig. 2.3. The origin of the coordinate

system (, y, z) is located on the seabed plane, with y pointing in the average direction

of the trajectory of the towfish, x pointing to the starboard side, and z in the vertical

direction.2 The position of the towfish at time t is (zf(t), yf(t), zf(t)) and its orientation

is described by its pitch and yaw angles, denoted +(t) and (t), respectively. The pitch

angle +(t) corresponds to the elevation measured with respect to the horizontal seabed

plane and the yaw angle (t) corresponds to the azimuth measured counterclockwise

from the y direction. It will not be necessary to consider the towfish roll angle, since, as

explained in Chapter 1, rolling does not contribute to geometric distortions. Time t = 0

corresponds to the instant at which acquisition of the sonograph was initiated, and thus

2Although in principle this coordinate system may have any arbitrary orientation, it is useful to align
the y direction with the trajectory of the towfish so that it may be referred to as the along-track direction
and z as the cross-track direction.
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Z,(tR))

R),y.(tR))

Figure 2.4: Relation between a sampling point on the seabed and the location and
orientation of the effective beam.

(xz(O), yf(O), zf(O)) is the starting point of the towfish trajectory.

Assume a sonar pulse is transmitted at time t = tT and that the returned signal is

sampled at time t = tR. The effective beam at time tR is the product of the transmitting

beam at time tT and the receiving beam at time tR, and, as a consequence, its axial plane

is located between the axial planes of the transmitting and receiving beams. Therefore,

the orientation of the axial plane of the effective beam at time tR is completely defined

by the angles

(tR ) + (t) and ) (tR) (tT) + (2.2)2 2

which we call the effective pitch and yaw angles, respectively. Additionally, that plane

contains the point ((tR), y(tR), z.(tR)), where

,(t) f(tT) + Xf(tR) y (tR) A (tT) + Yfl(tR) _ __ _Zf(tR)

e(tR) (tR) , and z.(tR) (T) + f(R)
2 2 2

(2.3)

In Fig. 2.4 the effective beam is represented by a triangular section of its axial plane.

For simplicity, only the starboard beam is shown. The point of the seabed from which

the signal sampled at time t R was reflected is the sampling point (,(tR),iy(tR)). For

now Zx and y, will be considered as continuous functions of time. This sampling point
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is located on the line defined by the intersection of the axial plane of the effective beam

with the seabed plane. The projection of point (,(tR), ye(tR), z,(tR)) onto that line is

denoted by (Xo(tR), yo(tR)), and the distance between this point and the sampling point

(zX(tR), Y,(tR)) is denoted by d. From the geometric arrangement depicted in Fig. 2.4 we

see that the equations we seek are

X,(tR) = Xo(tR) + dcos0,(tR) (2.4a)

y 8(tR) = y(tR) + dsinOc(tR). (2.4b)

Now we need only write xo(tR), yo(tR) and d as a function of the towfish attitude param-

eters at times tT and tR.

From Fig. 2.4 it is easy to see that

Xo(tR) = x,(tR)- Z,(tR) tan ,(tR)sin ,(tR) (2.5a)

Yo(tR) = Ye(tR)+ Z,(tR)tan,(tR)cosO,(tR). (2.5b)

As for d, in Appendix B it is shown that3

ef - gr 2 ± 2r16r4 + 4(g 2 - e2 - 4h2)r2 + f 2 + 2efg + 4e2h2

2(r 2 -e 2 ) (2.6)

where

a C(tR- tT)

2

e = [zf(tR) - Xf(tT)] cos e(tR) - [y(tR) + yf(tT)] sin 0,(tR)

f f(t) [ - xz(tR (Yf(tT) -o()] y(tR)]2 + (t)

-[Xf(tR) - Xo(tR)] 2 - [yf(tR)- yo(tR)]2 - Z(tR)

g = [Xf(tR) + f (tT) - 2xo(tR)] cos Oe(tR) + [yf(tR) + yf(tT) - 2yo(tR)] sin Oe(tR)

h2 _ 1 ([f (tT) -xo(tR)]
2 + [yf(t)- yo(tR)] + Z2 (tT)

+ [Xf(tR) - Xo(tR)] 2 + [yf(tR) - yo(tR)] 2 + Z(tR)) 

3In these, as in all subsequent equations, in any compound signs (i. e., + or :F) the upper sign applies
to the starboard side and the lower one to the port side of the sonograph.
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The sampling coordinates corresponding to the points of the digitized sonograph can

be obtained from Eqs. (2.4a) and (2.4b) by taking tT = nTf and tR = nTf + mT ,, for

n = 0, 1,... n- 1, m = 01,± ,..., ±(N, - 1), where Tf is the sonar firing period, T, is

the sampling period used in digitizing the returned signals, Nn is the number of lines in

the sonograph, and N, is the number of pixels per line on each half of the sonograph.

As previously stated, if the towfish attitude parameters are available, as is the case when

the towfish is equipped with attitude sensors, the equations derived in this section can

be used to calculate the true coordinates of each sampling point on the seabed and the

image may then be resampled to rectify the geometric distortions.

2.2.2 Sampling Displacements

In the absence of measured values of the towfish attitude parameters, we will have

to rely on estimates of the local degree of geometric distortion obtained from the image

itself. The slant-range distortion can be easily corrected, as we will see in Section 5.1,

and, therefore, we need only be concerned with correcting the distortions due to towfish

instabilities. For the remainder of this chapter, we will assume that the slant-range effect

has been corrected to produce from the original sonograph a new image [l, n], whose

cross-track coordinate is no longer range to the towfish' but rather horizontal distances

on the bottom. The I coordinate thus corresponds to the value in pixels of the distance

d defined in Fig. 2.4 and given by Eq. (2.6), in the same way as the m coordinate of the

original image corresponded to range to the towfish in pixels.

The coordinates of the sampling points on the seabed associated with the pixels of

S[l, n] are denoted by xz[l, n] and y[l, n]. Our measures of geometric distortion in the

new image will be estimates of the differences in the values of x.[l, n] and y,[l, n] between

sampling points at fixed values of from one line of the image to the next. These

differences are denoted by

anx.[l, n] Lx[l, n + 1]- xz[l, n] (2.7a)

Anyo[l,n] A yo[l,n + 1]- yo[l,n], (2.7b)

and are indicated in Fig. 2.5. Henceforth AnzX[l, n] and An,ys[l,n] will be referred to
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Figure 2.5: The variation in sampling coordinates from one line of the image to the next
is described by the sampling displacements An:'[l, n] and Any'[l, n], shown here in the
(z, y) coordinate system.

as the sampling displacements in the z and y directions, respectively. We will see in

Chapter 3 how they can be estimated from the image.

If the estimates of A,nx[l, n] and Anys[l, n] obtained through the procedure developed

in Chapter 3 were accurate enough, then the geometrical analysis of the preceding section

would not be necessary for the correction of the geometric distortions in the onograph.

Indeed, starting from an initial guess of the value of the sampling coordinates for the

first line of the sonograph, zx[m, 0] and y,[m, O], m = 0, .1,.., =(Nm - 1), the sampling

coordinates of the other lines could be calculated on a line-by-line basis by recursively

adding the estimates of sampling displacements Axr,.[l,n] and ,y,[l, n]. In that way,

the sampling coordinates z,[1,n] and y,l1,n] would be calculated for all points of the

sonograph, and could then be used for correcting the geometric distortions. However,

we will see in Chapter 3 that the estimates of sampling displacements are not accurate

enough to be used in this way, and that in order to achieve accurate correction of the
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geometric distortions it will be necessary to apply to these estimates a lower-dimensional

model derived from the geometry of the problem. If, from the estimates of sampling

displacements, we then estimate the parameters of this lower-dimensional model, the

decrease in the dimensionality of the model can be expected to reduce the estimation

error of the sampling point coordinates. That amounts to applying to the data our a

priori knowledge of the structure imposed on the sampling operation by the side-scan

sonar geometry.

In order to apply the model derived in the previous section to the measures of sampling

displacements, it would be necessary to combine Eqs. (2.7a) and (2.7b) with Eqs. (2.4a)

and (2.4b), after making the conversion from m to I prompted by the correction of

the slant-range distortion. This operation would result in a set of non-linear equations

expressing Ax,[l, n] and Any,[l, n] as a function of the towfish attitude parameters at

times t T and tR. At that point, those parameters could be assumed to vary linearly

between pulse firings, so that the sampling displacements for each line of the sonograph

may be expressed as a function of the increments of the five attitude parameters between

successive pulses. With that, the dimensionality of our model would be reduced from

Nm, the number of samples per line of the sonograph, to only five. Deriving these non-

linear equations, however, would be quite involved and using them for estimating the

increments of attitude parameters would pose a costly non-linear estimation problem. A

more practical approach is to derive an approximate linear model, whose parameters can

be more easily estimated through linear recursive estimation techniques. Such a model

is derived next.

2.2.3 Linear Model for the Sampling Displacements

The first approximation required for deriving a linear model for the sampling dis-

placements is to assume that the towfish remains stationary during the time it receives the

returned signals for each pulse. In that case the effective beam also remains fixed during

that interval of time and all the sampling points fall on the line defined by the intersection
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of its axial plane with the seabed plane. We then have, for nTf < tR < (n + 1)Tf,

4(tT) = 0(tR) = ke(tR) g [n]

o(tT) = (tR) = oe(tR) 0[n]

Xf(tT) = Xl(tR) = X,(tR) A Xf[n]

Yf(tT) = yf(t) = (tR) yf[n]

Zf(tT) = Zf(tR) = z,(tR) A z[n].

The point (Xo(tR), yo(tR)) also remains stationary for each pulse and is now denoted by

(xo[n], yo[n]). With this, Eqs. (2.5a) and (2.5b) become

xo[n] = Lf[n] - zf[n]tan [n]sin0[n] (2.8a)

yo[n] = yf[n] + zf[n] tan [n]cos0[n]. (2.8b)

The expression for the distance d in this case is considerably simplified. In fact, by

making the values of the attitude parameters at times tR and t T coincide, and taking

tR = tT + mT,, we see from the equations defining the variables that appear in (2.6) that

we now have

r = m(cT/2), e= f = g = 0

and

h = (xf[n] - n])2 + (yf[n] - yo[n])2 + z][n].

Thus, h is the distance from point (xl[n],yf[n],zf[n]) to point (o[n], yo[n]), and corre-

sponds to the distance the sonar pulse travels before it first reaches the bottom. This

distance can be measured directly in the sonograph as the height of the water column in

each line. Henceforth, we will denote it by h[n] in order to explicitly indicate the time

dependence. Proceeding with our analysis, we see that Eq. (2.6) now reduces to

d = v m 2 (cT,/2)2 - h[n], (2.9)

which is exactly the relation prompted by the slant-range distortion. Finally, the expres-

sions for the sampling coordinates become

x[m,n] = X[n] ± m 2(cTo/2)2 -h 2[n]cos; [n] (2.10a)

y,[m,n = yo[n] ± /m(cT,/2) 2-h 2[n]sin[n]. (2.10b)
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The equivalent expressions for the sampling points of the slant-range corrected image

are

,[l, n] = xo[n] + I(cT/2) cos [n] (2.11a)

yF[Il,n] = yo[n]+ I(cT/2)sinO[n]. (2.11b)

The first-order Taylor-series expansion of these equations yields expressions for the

sampling displacements as

AnX,[l, n] (z[n + 1]- xo[n]) - l(cTo/2) sin O[n] (O[n + 1] - [n])

A,ys,[, n] x (y,[n + 1]- yo[n]) + l(cTo/2)cosO[n] (O[n + 1]- O[n])

or

Anzx[l,n] Axo,[n] -l(cT/2)sinO[n]AO[n] (2.12a)

Any,[l, n] z: Ayo[n] + l(cT/2) cos [n]AO[n], (2.12b)

where

Ax[n] x[n + 1]-z[n]

Ayo[n] - y[n + 1]-y,[n]

AO[n] [n + 1] - [n].

Equations (2.12a) and (2.12b) may be modified to eliminate the dependence on the

instantaneous value of the yaw angle. Consider the geometrical arrangement for the nth

sonar pulse, shown in Fig. 2.6. Let us introduce an auxiliary rectangular coordinate

system, (', y'), shown in the figure, with origin at point ([n], yo[n)), with the x' axis

located on the line defined by the intersection of the axial plane of the effective beam with

the seabed plane, and with the y' axis pointing in the direction of the present heading

of the towfish. Thus, the axes of this new coordinate system are rotated with respect to

the original coordinate system by an angle equal to [n], the current yaw angle of the

towfish.
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Figure 2.6: Sampling displacements in the (x', y') coordinate system, defined to have the
same orientation as the effective beam for each pulse.

The new and the original coordinate systems are related through

' = ( - x[n])cosO[n] + (y -y,[n])sinO[n] (2.13a)

y = (y - yn])cos O[n]- (x - x[n]) sinO[n]. (2.13b)

Therefore, the sampling displacements may be converted from one coordinate system to

the other through

Ax:l[I,n] = Ax.z[l,n]cosO[n] + Ay.[l,n]sinO[n]

Any[l, n] = Ay,.[l,n]cos [n] - Anx[l,n]sin [n].

From these equations and (2.12a) and (2.12b) we obtain the expressions for the sampling

displacements in the (z', y') coordinate system,

Ant,s n] = Ax'[n] (2.14a)

AnY[l, n] = Ay'[n] + (cT./2)AO[n], (2.14b)
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where Ax'[n] and Ay'[n] correspond to Axo[n] and Ay[n] converted to the new system.

This is the lower-order model mentioned before. We refer to Ax'[n], Ay'[n] and AO[n]

as the distortion parameters to differentiate them from the towfish attitude parameters

xf, yf, Zf, and b.4

With the linear model of Eqs. (2.14a) and (2.14b), our task is now reduced to the

estimation of three parameters, namely Ax'[n], Ay'[n], and AO[n], for each line of the

sonograph from the estimates of sampling displacements. We will see in Chapter 4 how

that can be accomplished. The resulting estimates of distortion parameters will then be

used for estimating the sampling point coordinates for all points in the image, as explained

in Section 5.2. Figure 2.7 illustrates the overall process of estimating the sampling

point coordinates. First, the height of the water column is measured in the original

sonograph s[m, n] and is then used for correcting the slant-range distortion to produce

a new image [l, n]. From this new image, estimates of the sampling displacements

Aix'[1, n] and Any'[lI, n] are obtained by techniques introduced in Chapter 3. In order to

reduce the estimation error, the linear model of Eqs. (2.14a) and (2.14b) is then applied to

the estimates of sampling displacements, yielding estimates of the distortion parameters

Ax'[n], Ay'[n] and AO[n]. The process is then reversed to yield new estimates of the

sampling displacements, which are then converted to the (x, y) coordinate system and

added recursively to yield the final estimates of sampling point coordinates. As indicated

in the figure, it is also possible to use the estimates of Ax'[n], y'[n] and AO[n] for

obtaining estimates of the towfish attitude parameters. Though this is not necessary for

correcting the geometric distortions, it is convenient to obtain estimates of parameters

that describe more directly the location and orientation of the towfish. The estimation

of attitude parameters is discussed in Section 4.2.2.

In the next chapter we will consider how to obtain the estimates of sampling displace-

ments from which the distortion parameters and attitude parameters will be estimated

in Chapter 4.

41t might seem more appropriate to call them simply the model parameters, but we will save that
designation for the parameters of the state space model introduced in Chapter 4.
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if I[n1,[n], 0[n], [n]

Figure 2.7: Overview of the technique for estimating sampling point coordinates.
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Chapter 3

Measures of Geometric Distortion

in Sonographs

In order to estimate variations in the towfish attitude parameters, it is necessary to

extract from a sonograph some measure of local geometric distortion. In this chapter

we consider how to obtain such measures and how to estimate from them the sampling

displacements Anx'[l, n] and Any'[l, n] introduced in Chapter 2, from which in turn the

distortion parameters Axo[n], Ay'[n] and AO[n] will be estimated in Chapter 4. Because

of the way the seabed is sampled on a raster-scan basis, the predominant type of geometric

distortion in the cross-track direction is "skewing," that is, lateral shifting of the lines

so that they are not properly aligned. On the other hand, in the along-track direction

the predominant type of geometric distortion is "compression" or "stretching" of the

image due to variations in the spacing between scan lines on the bottom. Both types

of distortions will be measured by cross-correlating segments of adjacent lines of the

sonograph.
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3.1 Assumptions on the Statistical Properties of

the Sonograph Image

Estimating geometric distortions in an image from the image alone requires that

certain assumptions be made about the imaged scene. The basic assumption that al-

lows us to obtain measures of geometric distortions in sonographs is that b(x,y), the

two-dimensional backscattering function of the bottom introduced in Section 2.1, is a

wide-sense stationary random process with isotropic autocorrelation function. Thus, if

Rb(Ax, Ay) denotes the autocorrelation function of b(x, y), we have

Rb(AX, Ay) = Rb ((Ax) 2 + (Ay)2).

The assumption that the backscattering function is wide-sense stationary may not

hold if there are significant variations in the morphology of the bottom. However, the

techniques developed here may still be applied to such images if they are divided into

areas where the morphology is uniform enough to justify the assumption of wide-sense

stationarity. The assumption of isotropism is valid if there is no systematic orientation of

the features on the bottom in some direction. Thus, it may not hold in areas containing

sand dunes or other formations shaped by undercurrents.

Assuming that the backscattering function is wide-sense stationary and that its au-

tocorrelation function is isotropic, the degree of geometric distortion in the image can be

estimated by measuring variations in the shape of the sample autocorrelation sequence

of small areas of the image. As explained in the next sections, the sampling displacement

An,'[l, nJ is estimated from the degree of skewing in the I direction, of the local sample

autocorrelation sequence at point [I,n], and A,y'[l,n] is estimated from the width of

the main peak of that sequence in the n direction. The sampling displacements may be

expected to be comparable to the inter-pixel distance, and, consequently, computing the

autocorrelation sequence only at lags equal to an integer number of pixels would result

in too coarse a quantization of their estimates. To achieve greater accuracy in the es-

timates, the image is upsampled in both directions so that the autocorrelation function

may be computed at non-integer lags. The upsampling operation is carried out through
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zero-padding of the discrete Fourier transform of the image. Denoting by su[l', n'] the up-

sampled image, by N, the upsampling factor, and by 'N,,N 2 the (N1 x N 2)-point Fourier

transform, we havel

s[lI n'] = :FN ,NNn {.FI,Nn { [l, n] } }

The local autocorrelation sequence of the upsampled image at point [I', n'] is estimated

through the sample autocorrelation sequence of a block of pixels centered at [1', n']. In

principle, the averaging could be carried out over blocks extending over two or more

lines of the image, but single-line segments are used because geometric distortions can

be expected to cause greater variation of the autocorrelation in the along-track direc-

tion than in the cross-track direction, as a result of the side-scan sonar geometry. To

compensate for local variations in the mean value and standard deviation of the image,

the sample correlation coefficient between line segments is used instead of their inner

product. Assume that the line segment used in computing the correlation coefficient

extends for L pixels on each side of the point being considered (in the original image,

before upsampling). Then the local sample mean and standard deviation of the image

over that segment are given by2

1 =L
il,[ kn'] l s,[l' + kN,, n'] (3.1)

2L+ 1 k=-L3.1)

and

1 k=L,

ao[',I n'] = 2L + 1 (U[l'+ kNu, n'] -/ ,[1', n) (3.2)

The normalized sample cross-correlation between a line segment centered at point [', n']

'In practice, only a few rows and columns of the image are upsampled at a time, to reduce the
computer memory usage.

2 Because of the upsampling operation, the sample mean and standard deviation do not change much
whether the sums are carried out over a continuous line segment of the upsampled image or only over a
smaller number of pixels of that segment separated by the upsampling interval Nu, as in these equations,
resulting in computational savings.
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Figure 3.1: Calculation of the sample cross-correlation sequence between line segments,
that is used as an estimate of the local autocorrelation sequence of the image. Only every
Nuth pixel is taken in the segments indicated by braces, so that the averaging is done
over (2L + 1) points, for computational savings (see Footnote 2 on page 47).

and another segment centered at [' + AI', n' + An] is given by

k=L

p[l', an'; [l'', n' = /(n'] E [(s[l' + kN, nl']- ,[', n'])a,In'][' + Al', n' + Z_k=-L

(sU[' + ' + ' + kN, n' + An'] - p.[l' + Al', n' + An'])].

(3.3)

This normalized sample cross-correlation sequence is used as an estimate of the auto-

correlation sequence of the image at point [1', n'] and at lags Al' and An'. A graphical

representation of its calculation is given in Fig. 3.1.

3.2 Measuring Distortion in the Cross-Track Direc-

tion

According to the linear model model derived in Section 2.2.3, the sampling locations

corresponding to points of the slant-range corrected image .[1, n] are equally spaced along

straight lines on the seabed plane. As indicated in that section, this is an approximation
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Figure 3.2: Effect of lateral towfish displacements on the sampling pattern. According
to the linear model derived in Section 2.2.3, every sampling point on each scan line is
shifted laterally by a distance equal to the displacement of the towfish at that line.

that assumes that the towfish remains stationary while receiving the returned signals of

each pulse and that the increment in yaw angle between successive pulses is small. The

slant-range correction also assumes that the seabed is planar and horizontal. Within

the limits of these approximations, distortions in the 1 (cross-track) direction are caused

mainly by lateral displacement of the towfish, and translate into a shift of the sampling

points from one line to the next that was described in Chapter 2 by the sampling dis-

placement A nx'[l, n]. The resulting geometric distortion in that direction is in the form

of skewing rather than compression or stretching of the image, as illustrated in Fig. 3.2.

The sampling pattern shown in that figure assumes that the towfish bearing remained

fixed in the y direction as it swayed laterally from side to side.

In the absence of geometric distortions, the autocorrelation of the image equals the

autocorrelation of the backscattering function of the seabed, which is assumed to be

isotropic. In that case its contour lines are concentric circles. However, when the towfish

is subject to lateral displacements, the autocorrelation function becomes skewed in the

cross-track direction, and its contour lines are turned into ellipses, as shown in Fig. 3.3(a).

The sampling displacement Anx[1l, n] determines by how much line (n + 1) of the image

is shifted with respect to line n, and, therefore, is reflected on the displacement of the
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An'

2N,/cT,

Figure 3.3: Sampling displacements in the cross-track direction, A,xs'[l, n], are estimated
from the location of the main peak of the cross-correlation sequence p[Al', An'; IN, nN,],
at an along-track lag An' = N,.

maximum point of the local autocorrelation function at a lag An = 1 (or An' = N, in

the upsampled image). Part (b) of the figure represents a cross-section of p[Al', An'; 1', n']

at point [I', n'] = [lN,, nN,] and at an along-track lag An' = AN. The maximum point of

this curve provides an estimate of the sampling displacement Anzx [1, n]. The search for

the maximum is limited to lags between -2 and 2 pixels (-2N~ and 2N pixels in the

interpolated image), since it is unlikely that the lateral motion of the towfish between

successive pulses would be greater than the corresponding distance of 40 cm. Thus

cT*, (3.4)
A [l n] = - arg max p[AI', N,;lN,nN]. (3.4)

-2N,,I'<2N,,

The (cT,/2N,) factor is required for the conversion from 1' (upsampled image coordinates

in pixels) to x' (distances on the seafloor in meters), and the negative sign is included

because, if line (n + 1) seems to be shifted in one direction with respect to line n, then

the sampling points must have shifted in the opposite direction on the bottom from one

scan to the next.

If the sonograph of Fig. 1.2 is processed as explained in Section 5.1 to eliminate the

slant-range distortion, we obtain the image shown in Fig. 3.4, from which the estimates of

Al [1, n] are calculated as described above. The resulting estimates are shown in Fig. 3.5.

The cross-correlations were calculated with L = 3, i. e., with a window size of seven pixels,

and at lag increments of 1/128 pixel. The image seems to contain primarily the noise
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Figure 3.4: Sonograph of Fig. 1.2 after correction of the slant-range distortion, as ex-
plained in Section 5.1.

I
I I I I

-40 -30 -20 -10 0 10 20 30 40 cm

Figure 3.5: Estimates of A,x'[l, n] for the sonograph of Fig. 3.4. The image intensity at
each point is proportional to the estimate A,I [l, n] at that point, according to the tone
scale shown above.
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Figure 3.6: Effect of variations in speed and pitch angle (a) and yaw angle (b) on the
sampling pattern, according to the linear model derived in Section 2.2.3.

resulting from the estimation error. However, at a closer look, some horizontal patterns

are perceived which can be attributed to lateral displacement of the towfish. There are

also other patterns that clearly result from linear objects in the original sonograph, such

as the cables and scours on the bottom.

3.3 Measuring Distortion in the Along-Track Di-

rection

In the along-track (n) direction, distortions are caused by variations in the towfish

speed and by pitching and yawing, which affect the sampling interval on the bottom by

disturbing the constant pace at which the sonar beam would ideally move. Figure 3.6

illustrates the effect of variations of these attitude parameters on the sampling pattern

on the bottom, again under the assumptions discussed at the beginning of Section 3.2.

The resulting image looks "stretched" in areas where the sampling intervals in the along-

track direction are smaller and "compressed" in areas where the sampling intervals are

longer. A similar effect is observed in the shape of the local autocorrelation sequence of

the image, as indicated in Fig. 3.7(a). The width of the main peak of the local sample
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Figure 3.7: Along-track distortions cause local stretching or compressing of the autocor-
relation sequence of the image in the n direction (a). The distortions are reflected in the
width of the main peak of the sample cross-correlation sequence p at a cross-track lag
AI' = 0, and can be measured through the positive- and negative-lag correlation lengths,
L + and L (b).

cross-correlation sequence at Al' = 0 reflects the distortions in the image by becoming

narrower or wider in different areas of the image. The width of the main peak can be

measured through the correlation lengths L+[l, n] and L; [1, n], which are defined to be

the positive and negative lags, respectively, at which the local sample cross-correlation

sequence p[O, An'; IN,, nN,,] falls to a given threshold po,, divided by the upsampling

factor, N. Figure 3.7(b) illustrates the definition of the correlation lengths. Thus, we

have

p[O, L+ [1, n]N,,; IN,, nN] = p (3.5a)

p[O, -L [, n]N, ; IN, nN,] = po. (3.5b)

Figure 3.8 shows enlargements of three regions of the sonograph in Figure 1.2, each

one of size 31 x 31 pixels, along with the corresponding cross-correlation sequences at

the center point and for Al' = 0, and the correlation lengths in each case. They were

calculated for a window seven pixels wide (L = 3) and a threshold p of 0.5. The

first segment comes from an area of the image where there is no perceptible geometric

distortion, whereas the other two exhibit noticeable stretching and compression in the
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along-track direction.

3.3.1 Relation Between Correlation Lengths and Sampling Dis-

placements

In Section 3.2, we saw that it is straightforward to convert the location of the main

peak of the sample cross-correlation sequence into an estimate of the sampling displace-

ment A:x'l[1,n]. In fact, it is only necessary to multiply the lag at which the peak is

located by the factor -(cT./2N,), as seen in Fig. 3.3. In the along-track direction, a

complication arises because of the fact that the width of the main peak of the sample

cross-correlation function is not directly related to the sampling displacement Any'[l, n]

that we seek to estimate, but rather to the sampling interval,

Pn[l n] = 7/(nxs[ln])2 + (An4[l, n])2,

as illustrated in Fig. 3.9. This problem will be addressed later in this section, but first we

will consider how the correlation lengths L+ [1, n] and L; [1, n] are related to the sampling

interval Pn[l, n].

It is reasonable to expect that the correlation lengths should be approximately in-

versely proportional to the sampling interval at each point of the image. Specifically, in

areas where the sonar beam scanned the bottom more rapidly, with a consequent increase

in sampling interval, the sonograph image appears compressed, with a corresponding de-

crease in correlation lengths. Conversely, in areas where the sampling interval was smaller

the sonograph appears stretched and the correlation lengths should be longer.

Let us consider for now only the positive-lags, for the sake of simplicity. Let Lb[l, n]

denote the correlation length of the autocorrelation function of the seabed backscatter-

ing function b(x, y) at point (x,[l, n], y.[l, n]), defined in the same manner as L+ [1, n] was

defined for the interpolated sonograph image in the preceding section. Because the au-

tocorrelation function of b(x, y) is assumed to be isotropic, its correlation length equals

Lb[l,n] in all directions. L+1l,n] is the distance in sonograph coordinates that we have

to travel from point [1, n] in the positive n direction before the sample cross-correlation

sequence drops below the threshold p, (see Eq. (3.5a)). Similarly, Lb[l, n] is the distance
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Figure 3.8: Examples of the effect of geometric distortions on the correlation length, for
15 x 15-pixel areas where the sampling rate was average (a), greater than average (b),
and less than average (c).
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Figure 3.9: Relation between the sampling interval, P[l, n], and the sampling displace-
ments, A,x'[l, n] and Ay[l, n].

the sonar beam has to travel on the seabed from point ([l, n], y,[l, n]) before the au-

tocorrelation function of b(x, y) falls below that same threshold. Assuming for now that

L+[l, n] is an integer number of pixels, one could say that Lb[l, n] equals the sum of the

L+ [, n] next sampling intervals Pn[1, n] from point (xo[l, n], y,[l, n]), or

Ln4 [I,n]-i

Lb[l, n] = P,[l, n +i]. (3.6)
i=O

In general, however, the correlation length may not be an integer because, as explained in

Section 3.1, the correlation coefficients are computed at non-integer lags so that L+[l1, n]

would not be subject to coarse quantization. Equation (3.6) can be modified to accom-

modate non-integer values of L +[1, n] by taking

LL+ [i,n]J-1
Lb[l, n] = (L+[l, n] - [LL+[, n]J) P,[, n + LL+[l, n]J] + Pn[ [,+ i], (3.7)

i=O

where L+[l, n]J denotes L+ [, n] rounded towards zero.

Note that this equation may also be written as

Lb[l, n] = L+ [l, n]P+ [l, n],
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where P,[1, n] represents the average of the L+[l, n] sampling intervals after point [1, n].

This shows that if Lb[l, n] is constant, or at least fairly uniform throughout the sono-

graph, then, as expected, the positive-lag correlation length at point [, n] is inversely

proportional to the sampling period, or, more accurately, to the average value of the

sampling periods immediately after that point.

Now, let L,[l] represent the average value of the correlation lengths in the absence

of motion instabilities, i. e., with the towfish moving at a constant speed and with the

heading aligned with the trajectory.3 No superscript is used in L,o[l] because it represents

the averages of both L+ [1, n] and L; [1, n], which should be equal if there is no geometric

distortion. In the absence of motion instabilities the sampling periods equal vTf, where

v is the speed of the deploying vessel, and Eq. 3.7 yields

Lb[l, n] = vTfL,tl].

This allows us to rewrite that equation as

Lw+ [t,n]J-1
vTf Lo[l] = (L +[l, n] - L+[I, n]J) Pn[l, n + LL+[l, n]J] + P[1, n + i]. (3.8)

i=O

This equation gives the relation between the sampling interval, P[l,n] and the

positive-lag correlation length, L+[l1, n]. Let us now consider how the correlation lengths

may be related to the sampling displacements Any'[l, n], the quantities we want to esti-

mate. Recalling that Pn[1, n] = [l(Ai [ n ])2+ (An[1, n]) 2, and since AX'[l, n] can be

estimated separately as shown in the preceding section, we see that Eq. (3.8) may be used

for estimating Any'[l, n] from the correlation lengths L+[l, n], provided the value of Lno[l]

is known. The estimation process would be complicated by the fact that this is a nonlinear

equation. Notice, however, that if Anz[l, n] is zero, then we have Pnl, n] = JAnY[l, n] I
and Eq (3.8) becomes a linear equation relating the absolute value of An[1l, n] to L[l].

This suggests that the task of estimating AnYL[l, n] can be considerably simplified if, be-

fore calculating the correlation lengths, we process the image to eliminate the distortions

3Strictly speaking, the average correlation length should be denoted Lno[m], since the sonar beam
pattern causes it to vary with range rather than with the horizontal distance on the bottom, as we will
see in the next section. However, we denote it by L[l] for the sake of simplicity, with the conversion
from m to left implicit.
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in the cross-track direction, and thus eliminate the A,,x'[l, n]. That can be accomplished

by shifting the lines of the image S[l, n] by the estimated values of the sampling dis-

placements A, '[l, n], thus obtaining a new image s[I, n] for which AnX'[l, n] may be

assumed to be zero. This procedure will be described in greater detail in Section 5.1.

If the correlation lengths L+ [1, n] are calculated as described before from the new image

[l, n], instead of from [l, n], then An'[l, n] can be set to zero in Eq. (3.8), yielding

[L+ [I,n]J -1
vTf L[l] = (L+ [1, n]- L+ [l,n]J) An1Y[1 n + L+ [l n]]J + Z IYt[n + ill,

i=o

This is the desired expression relating the correlation lengths, L +[l, n], to the sampling

displacements in the along-track direction, Any.[l, n]. If, for convenience, we define

q[l, n] = nolilnl (3.9)vTfno[l] '

then the last equation may also be written as

L+ [I,n]-l
(L+[t, n] - + [LL, n]J) q[l,n + LL+[l,n]J] + q[l,n + i] = 1. (3.10a)

i=O

Similarly, for the negative-lag correlation lengths, we obtain

L [I,n]-1

(L [1, n- L[1n]J)q[l,n LLn[, n]J]+ q[l,n+i]= 1. (3.10Ob)
i=O

At each cross-track distance 1, (3.10a) and (3.10b) provide a set of 2(Nn -1) indepen-

dent linear equations in the (Nn - 1) unknowns, 4 q[l, n], n = 0, 1,2,..., N, - 2. These

equations can then be used to find the deterministic least-squares estimates of those

quantities from the correlation lengths L +[l , n] and L [, n] calculated from the image

'[1, n]. If for each range index we define the vectors

q[l, 0] 1

[l] -9 q[l, 1] and b 1 2(Nn - 1), (3.11)

q[, Nn - 2] 1

4There are only (N. - 1) unknowns because we are dealing with sampling increments between lines
of the image, and the number of increments is one less than the total number of lines, Nn.
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and form a matrix D[l] with the coefficients of the q[l,n] in Eqs. (3.10a) and (3.10b),

then we may write

D[l]q[l] = b[l].

The estimates of q[l, n], n = 0, 1,... N, - 1 are finally obtained as the least-squares

solution to this equation, i. e.,

[l] = (D T [I]D[I])-'DT [I][I]. (3.12)

This procedure amounts to inverse filtering the q[l, n] along each column of the sonograph,

to compensate for the time-varying averaging implied by Eqs. (3.10a) and (3.10b)

We now have estimates of the quantities q[l, n] A AnY [ln]l/vTfLno[l]. In order to

obtain the desired estimates of the sampling displacements Any[l, n], it is necessary to

know Lno[l], i. e., what the correlation lengths should be in the absence of geometric

distortions. The next section will present a technique for its estimation.

3.3.2 Correlation Lengths in the Absence of Geometric Dis-

tortion

The correlation lengths are affected by the composition of the seabed in the area

scanned to form the sonograph. In fact, measures similar to the correlation lengths

defined here have been used exactly for the purpose of classifying the different types of

geological formations on the bottom, such as sand dunes, rock outcrops, mud, gravel,

etc.[54] It is therefore necessary to know the correlation lengths associated with the

different kinds of materials appearing in a sonograph, if one is to use variations in the

correlation length as a measure of geometric distortion. This may require some sort of

image segmentation process to divide the image in areas where the correlation lengths

may be considered uniform. The sonograph we have been considering, however, presents

fairly uniform topography and does not require such an operation.

The correlation lengths are also affected by small-scale variations caused by individual

objects on the bottom, such as rocks, scours, cables, dunes, etc., and their acoustic shad-

ows. What is important is that underneath these small-scale variations it is possible to
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perceive large-scale variations caused by geometric distortions, which will be used for esti-

mating the towfish attitude parameters. The small-scale variations in correlation lengths

translate into small-scale errors in the estimates of sampling displacements Ay'[l, n],

which are incorporated as measurement noise in the model derived in Chapter 2.

As indicated in Chapter 1, the image intensity at a certain point of a sonograph ideally

corresponds to the backscattering coefficient of the corresponding point on the seabed.

Because of the sonar pulse envelope and beam spread, however, the image intensity at a

given point is actually a weighted sum of the reflections from a small area around that

point. Thus, a sonograph image in fact results from the convolution of the backscattering

function of the seabed with the sonar beam pattern in the along-track direction and with

the sonar pulse envelope in the cross-track direction. If the beam width changes as the

wavefront propagates away from the sonar, there are corresponding changes in the sample

cross-correlation sequence and, consequently, also in the correlation lengths. Figure 3.10

illustrates the effect of changes in beam width. The beam width is approximately equal

to the length of the transducer array in the near field region and then starts to increase

linearly with range in the far field, forming a wedge-shaped beam [11]. On average, the

correlation lengths of the sonograph can be expected to exhibit a similar pattern.

We now need to estimate L.o[l] in order to obtain the final estimates of the sampling

intervals A,y'[l, n]. First we select a set X/' of lines from the sonograph where there is no

backscanning and where the bottom morphology appears to be fairly uniform, so that

Lb[l, n] may be assumed constant and consequently the average correlation length may

be a function of I only. The lines should also come from areas of the sonograph where

visual inspection reveals little or no geometric distortion, since L",[l] is the correlation

length in the absence of geometric distortions.

The average of the q[l, n] over the Ng lines in the set A/ is s

a1 InAy[l,n]I
y- q[l,n] = N. vTL [ll

5As previously noted, the average correlation length is actually a function of range m rather than
horizontal distance 1. Therefore, the q[l, n] should be added not for fixed I but for values of I corresponding
to fixed values of m, according to the slant-range correction at each line. To avoid making the equations
more complex, this modification is again left implicit.
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Figure 3.10: The widening of the sonar beam pattern with increasing range is responsible
for a corresponding increase in the correlation lengths of the image.

1

=NvLno[l] - (y[n] + (cT,/2)AO[n]),
NNrTf Ln,,, nEAr

where in the last step we used Eq. (2.12). If we symmetrically add the q[l,n] for

I = 4l, 2,..., (N - 1), the yaw-dependent term disappears, yielding

1 1
1j (q[l, n] + q[-l, n]) = NrvTL[l] E

2N E Ar NvTf L [] nE

We have thus reduced the problem to knowing the average value of only Ay'[n] (in the

(x', y') coordinate system) over the selected lines. In principle, this value is not known.

However, the average value of ayo[n] (in the (, y) system) over the entire sonograph

should equal vTf, the average distance traveled by the towing vessel in the y direction
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between pulses. This assumes that at the end of the acquisition of the sonograph the

distance between the towfish and the deploying vessel in the along-track direction is the

same as in the beginning. We will use this assumption to calculate the average value of

Ay'[n] over the selected lines later on. For now we represent this average value by vTf,

and incorporate it into L,[l] as a scale factor. Thus the last equation yields

Vgol 1 1 [(3.13)
v L ", o l ] = ; Ir f (q[l, n] + q[-I, n])

nEKr

Figure 3.11(a) shows the average value of O[l, n] for the sonograph we are considering,

calculated from 51 lines (out of a total of 512 lines) that appear to present the least

amount of geometric distortion. Since the effect of the beam pattern may be expected

to vary smoothly, a fourth-order polynomial can be fitted to that average as seen in

the figure. That polynomial constitutes our estimate of (v/v )Ln[l]. The effect of the

beam pattern is seen clearly in this curve, added to the constant level of the correlation

length of the backscattering function. As expected, the curve is approximately constant

in the near field portion of the beam and then increases linearly with range in the far

field, before collapsing as a result of sound absorption by the water as we approach the

maximum range of 100 m. The dashed straight line shown in the figure was made to

coincide with the approximately linear portion of the curve. By extrapolating it to a

range of zero we can determine the value of the correlation length of the bottom (times

the factor (v/vr)). The resulting value is 12.4 cm. If we subtract that constant level

from the polynomial and plot it twice "back-to-back" as in part (b) of the figure, we

obtain a clear representation of the effect of the beam pattern on the correlation lengths.

The estimate L,[l] may now be multiplied by the estimates of q[l, n] yielding estimates

of the scaled sampling displacements (v/vOr)lAny[l, n] l,

v iay[, nil = [l]q[l n]

When we apply the linear model of Eq. (2.12) to these estimates of the sampling dis-

placement, the resulting estimates of Ay'[n] and AO/[n] reflect the scaling factor (v/vr).

Then we can finally calculate the value of (v/v.) by requiring that the average value of
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Figure 3.11: Estimate of (v/v'r)L ,il] obtained by averaging the correlation lengths for
a selected set of lines of the sonograph (a). The increment in correlation lengths due to
the effect of the beam pattern is represented by the curves in (b), which have the shape
that could be expected for the beam pattern of a linear array.
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Ayo[n] over the entire sonograph be equal to vTf. To keep the notation simple, we do

not modify the equations of Chapter 2 to incorporate the scaling factor (v/v,). Rather,

we ignore its existence for now and simply rescale the parameter estimates obtained in

Chapter 4 so that the mean value of Ayo[n] over the entire sonograph equals vTf.

Figure 3.12 illustrates the complete process of estimating the sampling displacements,

and corresponds to one of the blocks of the overall scheme shown in Fig. 2.7. Fig. 3.13

shows the estimates tA,yjl t, n]l for our sample sonograph, scaled by the as yet unknown

factor, (v/v> ). The image intensity at each point is proportional to (v/v A,)la,y'[l, n]I

according to the tone scale shown below the image.

3.3.3 Detection of Backscanning

The last problem to address is that we have obtained estimates not of the sampling

displacements A,y'[l, n], but of their absolute values. Therefore, it is necessary to detect

areas where Ay'[l, n] is negative, i. e., areas where backscanning occurs, and multiply

our estimates by minus one in those areas. One possible way of detecting backscanning

is to look for areas where objects appear in triplicate. A significant problem with that

approach is that it is not always easy to identify these triple images because each one

of them is made from a different viewing angle and may differ considerably from the

others. Fortunately, there is a more practical alternative based on looking for indications

of backscanning in the estimates of A,y[l, n] themselves. If, for instance, the sampling

intervals along one line of the sonograph decrease with range until they become very

small and then start to increase again, then the portion of the line after the minimum

was probably backscanned as a result of yawing. Visual inspection of the suspected area

can confirm whether backscanning really occurred or whether we have a false alarm.

Figure 3.14 shows the sampling interval in the along-track direction for a line of

the sonograph presenting backscanning caused by yawing. Since the measured sampling

interval is typically very noisy, it was found useful to fit a third-order polynomial to the

curve in order to help determine the minimum point, as shown in the figure. A simple

rule that yields good results is to decide that backscanning occurred if the minimum

value of the polynomial falls below a threshold chosen according to some given criterion.

64



Slant-range corrected sonograph
§[m,n]

s[l, n]

L+[l, n], L [1, n]

4[l, n]

r~~~~~~~~
Estimate scaled

sampling displacements
(Section 3.3.2)

Lnol] Estimate L,,[l]
(Section 3.3.2)

Detect backscanning
(Section 3.3.3)

(v/v.r)nY [1, n]

Figure 3.12: Overall technique for estimating sampling displacements.
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Figure 3.13: Estimates of (v/v))ljAny'[l,,n]l for the sonograph of Fig. 3.4. The image
intensity at each point is proportional to (v/v )lAny'[l,n]l at that point, according to
the tone scale shown above.

For instance, the threshold may be chosen so that the number of false alarms and misses

is approximately the same. In our case, a threshold of 0.58 pixel or approximately 11 cm

satisfies that criterion. As for pitch-induced backscanning, if we find two neighboring

groups of lines of the sonograph where the sampling interval is very small on both the

starboard and the port side, it is possible that the area between these two groups of lines

was backscanned as a result of pitching. Again, visual inspection of the suspected strip

can indicate whether backscanning actually occurred.

Figure 3.15(a) shows the areas in the sonograph where backscanning was detected, as

estimated through this technique. Visual inspection of the original sonograph reveals 40

false alarms and 40 misses out of the total 512 lines (less than 8 % in each case). Notice

that in this sonograph the backscanned areas alternate between the starboard and port

sides, indicating that the backscanning is due to yawing. Part (b) of the figure shows an

enlargement of the lower right-hand corner of the original image for closer inspection of
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Figure 3.14: Backscanning induced by yawing can be detected by looking for lines where
the estimates IAy'[, n]l decrease to approximately zero and than start increasing again,
as shown in this example. A third-order polynomial is used to help locate the point where
backscanning begins.

the backscanned areas. The presence of a cable on the bottom in that area provides a

way to verify the accuracy of the technique for detecting backscanning. In fact, the lines

where the cable appears to abruptly change direction were subject to backscanning, since

in all likelihood it ran smoothly on the bottom towards the lower right-hand corner of the

image. Comparing the original image with the image where backscanning is indicated,

we see that the algorithm is very accurate in selecting the lines where the cable appears

to change direction.

The last step in the estimation of sampling displacements is to multiply lAy'[l, n]l

by -1 in the areas where backscanning occurs. We thus obtain the estimates ,y'[l, n],

which, along with the estimates A,x[l, n] obtained in Section 3.2, are used in the next

chapter for the estimation of the distortion parameters Ax[n], Ay[n] and AO[n].
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(a)

aW

(b)

Figure 3.15: Areas where backscanning was detected are shown in black. In figure (a)
these areas are seen to alternate between the starboard and port sides, indicating that
backscanning in this sonograph was primarily caused by yawing. In (b) the lower right-
hand corner of the image is enlarged for comparison with the original image.
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Chapter 4

Estimation of Distortion

Parameters

In Chapter 3 we saw how the sampling displacements Anx'[L, n] and Any'[l, n] can

be estimated from the sonograph. We now consider how from those estimates we may

in turn estimate the distortion parameters Ax'[n], Ay'[n] and AO[n] of the linear model

derived in Chapter 2. As explained in Section 2.2.2, by applying a lower-dimensional

model to the estimates of sampling displacements, we may expect a reduction in their

estimation error. As shown in the overall scheme presented in Fig. 2.7, we will then be

ready to estimate the sampling coordinates of each point of the sonograph and proceed

to rectify the geometric distortions in Chapter 5.

4.1 Selection of Observation Points

We now seek to estimate the distortion parameters Ax'[n], Ay'[n] and AG[n] from

the estimates of A,,x'[l,n] and A,y'[l,n] obtained in Chapter 3. The estimation is

carried out on a set of distances £ = {ll,12,..., lp}. In principle, this set could con-

tain all columns of the sonograph from both the starboard and port sides, i. e., C =

{-ANr,..,-1,0,1,...,(N - 1)}. However, it has been found advantageous to attempt

to render the estimation process more robust by choosing a subset of the columns for

which the estimates of sampling displacements are judged more reliable according to
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some criterion. For instance, if visual inspection of the sonograph reveals areas where

the correlation lengths may vary markedly because of the local morphology, or because of

artifacts in the image such as acoustic shadows, then the selected set of distances should

be adjusted, possibly on a line-by-line basis, to leave out those areas. We will therefore

represent the selected distances for the nth line by [n]. As a general rule, we have

found it to be advisable to omit the first few columns on each side of the bottom track

(usually about 10 % of the total number), since in that area the estimates of sampling

displacements tend to be affected by the undersampling resulting from the slant-range

distortion. That effect can be clearly seen in the stripe running vertically in the middle

of Fig. 3.13, which displayed the estimates of Any'[l, n].

Whenever the estimates of sampling displacements reveal pronounced yawing of the

towfish, as in the sonograph we have been considering, it is also advisable to change C[n]

from line to line so that the selected columns always come from the side towards which

the towfish was turning at the time that line was acquired. In fact, yawing causes the

beam to sweep the bottom faster on the other side, which may result in undersampling

and a consequent loss of accuracy in the estimates of sampling displacements. Figure 4.1

illustrates this problem by presenting the estimates of Any'[ , n] for a line of the sonograph

in which the towfish turned towards the starboard side. The straight line shown in the

figure is the result of fitting the linear model of Eq. (2.14b) to the estimates of Any'[l, n]

on the starboard side (I > 0). A good fit is obtained on that side, but on the port side

the estimates of Anyt[I, n] depart from the model because of undersampling. Therefore,

applying the linear model to both sides would result in less accurate estimates of the

distortion parameters. An estimate of which side the towfish was turning towards for

each line of the sonograph is easily obtained by computing the average value of Any[l, n]

on the starboard and port sides of the line. The side with the smallest average sampling

displacement is the side the towfish was turning towards, and the columns for C[n] are

chosen from there.

For the estimations presented in the next sections we selected every fourth column

from columns number 76 to 475 on the side with the smallest average sampling displace-
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Figure 4.1: Example of a line affected by undersampling. The straight line is obtained
by fitting the linear model to the estimates of sampling displacements on the starboard
side (I > 0). Because of undersampling, the estimates of sampling displacements on the
port side (I < 0) are smaller than what the linear model indicates they should be.

ment. Thus
475 475

76,80,...,472,475}, if E -nyI[l,n] < E Any [- ,n],
L[n] = 1=76 1=76

{-76,-80,...,-472,-475}, otherwise.

The number of observations (p = 100) was limited by the resulting memory requirements

and execution times of the algorithms. In principle, better results might be obtained

with a greater number of observations.

Figure 4.2 illustrates the technique for estimating the distortion parameters, and is

part of the overall scheme presented in Fig. 2.7. For each line of the sonograph a set of dis-

tances C£[n] is first chosen, as described above. The distortion parameters for that line are

then estimated from the estimates of sampling displacements, A,:x'[l, n] and Any'[l, n],

at E £[n] through one of two techniques described in the next sections. After all lines

of the sonograph have been processed, the resulting estimates of Ayo[n] are then scaled
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so that their average value equals one, thus compensating for the scaling factor (v/v )

introduced in Section 3.3.2. The estimates of Ax'[n] and Ay'[n] are then recalculated

to reflect the scaling. Finally, the estimates of attitude parameters, f[n], ~[n] and [n],

may be calculated, though that is not required for the correction of geometric distortions,

as indicated in Chapter 2. These steps will be examined in detail in the next sections.

4.2 Deterministic Least-Squares Estimation

One way of estimating the distortion parameters and attitude parameters is to do

it separately for each line of the sonograph using deterministic least-squares estimation.

This approach may be used in the absence of information about the statistics of the

parameters and observation noise.

4.2.1 Estimating the Distortion Parameters

The model used for estimating the distortion parameters is

An'[l, [ n] = A' [n] + v[l, n] (4. a)

AnY[l, n] = Ay'[n] + l(cT/2)AO[n] + vy[l,n], (4.lb)

which corresponds to Eq. (2.12a) and (2.12b) with additional noise terms, v[l,n] and

v,[l, n], that represent the error incurred in replacing Anx'[l, n] and A,y'[l, n] with their

estimates.

Employing deterministic least-squares approximation amounts to choosing Ax'T[n],

Ay'[n], and A[n] so as to minimize the cost functions

cE[n] - E (A-,X[ ,n]-3 - 'A[n])
IEC[n]

6,[] - E (ny[1,n]-A '[- ]-1(cT./2)Ao[n]).
lEC[n]

If p[n] denotes the number of observation points in [n], and if we define

Sl[n] E 1
lEC[n]
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Figure 4.2: Technique for estimation of the distortion and attitude parameters.
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S1 2[n] Z 12

IEC[n]

S.[n] An [ n]
IEC[n]

IEC[n]

Sl,[n] F lny'I, nn]
lEC(n]

6[n] p[n]S12[n]-5 [n],

then the resulting estimates are given by

Ax(on] = - S[n] (4.2a)p[n]

y~[n] = S12[n]S,[n]- S[n]S.l[n]= oL'"J (4.2b)6[n]

A-O[n] = p[n]S,[n] - Si[n]Sy[n] (4.2c)
6[n]

It is now necessary to scale the estimates of Ax'[n] and Ay'[n] to compensate for the

(v/v ) factor introduced in Section 3.3.2. The first step is to obtain estimates of the yaw

angle by cumulatively adding the increment estimates, AS[n]. Thus,

n-1

0[n] = O[0] + E AO[n]. (4.3)
i=O

The estimate of the initial yaw angle, [0] may be chosen, for instance, so that the

average value of O[n] over the entire sonograph be zero. However, the choice of [0] does

not affect the correction of geometric distortions in the image, but only the orientation

of the corrected image as a whole. If the assumption that the average yaw angle is zero

is incorrect, the only error incurred is that the final image will be rotated from its true

orientation by an angle equal to the difference between O[0] and the true initial yaw angle.

The next step is to obtain estimates of x'[n] and y[n] in the (x, y) coordinate system.

We first convert the increments from the (x',y') to the (x,y) coordinate system, using
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Eqs. (2.13a) and (2.13b), obtaining

xo[n] = Axo[n] cosb [n]-Ay [n] sin [n] (4.4a)

AYO[n] = Ay/[n] cos 9[n] + Ax [n]sin [n], (4.4b)

The estimates of Ayo[n] must now be scaled to make their average value equal to vTf,

thus compensating for the (v/v') factor. In our case v = 3 knots and Tf = 0.133 s (see

Section 1.5), resulting in vTf = 20 cm. Before scaling, the average value of Ayo[n] is

22.2 cm, meaning that (v/vp) equals 1.11. Equations (4.4a) and (4.4b) are now reversed

so that Ax'[n] and AyO[n] may be recalculated to compensate for the (v/vt) factor.

Thus,

xo[n] = Axo[n] cos O[n] + (v/v)o[n] sin O[n] (4.5a)

Ay[n] = (vr/v)y[n]cosO[n]- Axo[n]sin[n]. (4.5b)

Figure 4.3 shows the estimates of distortion parameters obtained with this approach.

Notice that the estimates of Ax'o[n] and Ayo[n] have greater high-frequency content than

the estimates of AO[n].

4.2.2 Estimating the Attitude Parameters

'We now proceed to obtain estimates of the towfish attitude parameters from the

estimates of distortion parameters. As indicated in Chapter 2, this is not required for

correcting the geometric distortions in the image, but it is convenient to obtain estimates

of parameters that describe more directly the position and orientation of the towfish.

The points (xo[n], yo[n]) are estimated by cumulatively adding the estimates of the

increments Axo[n] and Ayo[n], in the latter case after multiplication by (v' /v), i. e.,

n-1

xo[.] = &o[o] + C aZi[i] (4.6a)

n-I

o[·n] = o[01 + Z(,l ,/v)yO[i], (4.6b)
i=O

with the starting point arbitrarily chosen as the origin of the coordinate system,

io[] = o[O0] = 0.
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Figure 4.3: Estimates of distortion parameters obtained through deterministic least-
squares approximation.
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To estimate the attitude parameters, we use Eqs. (2.8a) and (2.8b), repeated here for

convenience,

X0[n] = xf[n] - z[n]tanO [n]sinO[n] (4.7a)

yo[n] = yf[n] + zf[n] tan q[n]cosO[n]. (4.7b)

Referring to Fig. 2.4, we see that

zf [n] = h[n] cos 0[n], (4.8)

where h[n] is the distance between the towfish and point ([n], yo[n]) and can be mea-

sured directly from the sonograph as the height of the water column on each line. These

three equations are all we have to obtain estimates of xf [n], yf[n], zf[n] and 0[n] from h[n]

and the estimates of xo[n], yoln] and 0[n]. Therefore, it is possible to estimate only two of

the attitude parameters, and the third one has to be estimated by different means. One

solution to this problem is to assume that the along-track distance between the towfish

and the deploying vessel remains constant during the acquisition of the sonograph. That

allows y [n] to be estimated from navigational measurements of the deploying vessel. If

such measurements are not available, it is still possible to resort to the assumption that

the towfish moved at a constant speed v, equal to the average speed of the deploying

vessel. If yf[n] is measured, or assumed to satisfy these approximations, Eqs. (4.7a),

(4.7b), and (4.8) may be solved for the remaining attitude parameters, lateral position,

xf[n], and pitch angle, [n]. Thus, with

If[n] = nvTj, (4.9)

we obtain from Eqs. (4.7b) and (4.8),

[n] = arcsin (.[n] - nvTr (4.10)
k h[n] cos0[n] 

Finally, from Eq. (4.7a),

iAf n] = :}[n] + h[n] sin 'In] sin [in]. (4.11)

If measured values of yf[n] are not available, as in our case, and the approximation of

(4.9) is adopted, then variations in towfish speed from the assumed fixed value v affect
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the estimates of pitch angle, calculated through Eq. (4.10). Therefore, this equation

should be used only with the clear understanding that the resulting estimates 0[n] reflect

not only the towfish pitch angle, but also variations in its speed.

Equations (4.3), (4.10), and (4.11) can be used for estimating 0[n], 4[n], and xf[n] from

Ax' [n], Ay [n] and AO[n]. These equations can also be used for determining approximate

confidence intervals for the resulting estimates. If the estimation errors, v[l, n] and

vy[l,n], are assumed to be Gaussian random variables, it can be shown [5] that the

variances of the estimates of distortion parameters are given by

2a [n]

aim [n]a Ina' [n]

2
cT&Lfl

p[n] p[]- 1 

S12 [n] ( e i[n]

:[n] kp[n]-2)

_ _[. [n _)"
-[n] p[n] - 2

Equations (4.4a) and (4.4b) may be used to obtain first-order estimates [4

variances of XsO[n] and y[n],

[n = _aaI 0 aAy
I]& ) ' 2 (H + o- ] ( 09 ) [ ] 

= cos2 6[n]oa, [n] + sin2 0[n]a2 [n]

+ (x [n] sinO[n] + AyI[n] cos [n])2 ao[n]

:3] for the

and

= ay,, a2z[n]+ (a, ai[n] + (a a[n

= cos2 [n]a V[n] + sin2 [n]ao [n]

+ (-Xo[n ] cos t[n] - yo[n] sin 0[n])2 ao'[n].

Making the simplifying assumption that the increment estimates AO[n], Axo[n], and

Ayo[n] for different lines of the sonograph are independent, we have
n

a2[n] = E a[i]
i=O
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n

:o [n] = CE axzo-[i]
i=O
n

o?[n] = Ea2 [i].
i=O

By adding +2o[n], ±2ao[n], and ±2a[n] to i,[n], 9o[n], and I[n], respectively, we ob-

tain confidence intervals for these estimates. If the assumptions made above are valid,

namely, that the estimation errors are Gaussian random variables, that the increment

estimates for different lines are independent, and that the first-order estimates of ao3- [n]
AXo

and ao- [n] are accurate, then these confidence intervals define the ranges within which

xo[n], yo[n], and [n] can be expected to be, with 95 % probability.

By applying Eqs. (4.11) and (4.10) to the lower and upper limits of the confidence

intervals of i,[n] and yo[n] we also obtain confidence intervals for yj[n] and [n]. The

resulting estimates of attitude parameters and their confidence intervals are shown in

Fig. 4.4. In view of all the approximations and simplifying assumptions that were made

in the derivation of the confidence intervals, they should be considered only as approxi-

mate indicators of the magnitude of the estimation errors of the attitude parameters. For

that reason, they are not labeled as 95 % confidence intervals in the figures. However,

notice that, though the precise significance of these confidence intervals is not rigorously

established, they are useful for indicating relative trends in the evolution of the estimates

and in their relative accuracy with respect to one another. For instance, notice that the

confidence intervals grow larger with increasing n, since calculating the attitude param-

eters involves cumulatively adding the estimates of increments of distortion parameters,

Ax'[n], Ay'[n, and AL[n]. Thus, the estimation error adds up and increases with n. The

confidence intervals also indicate that the estimates of yaw angle, O[n], are more accurate

than the estimates of pitch angle, [n]. That is explained by the fact that during the

acquisition of our sonographs, the altitude of the towfish above the bottom was approx-

imately one tenth of the maximum range (as is commonly the case). Thus, variations in

yaw angle cause a displacement of the scan lines at long ranges that is 10 times larger

than the displacement caused by equal variations in pitch angle. At shorter ranges the

difference is not so marked, but still the average effect of yawing over all ranges is greater

than the average effect of pitching, resulting in better estimates of the yaw angle.
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4.3 Bayesian Linear Least-Squares Estimation

Another approach to the estimation of the distortion parameters is to use Bayesian

least-squares (or minimum variance) estimation, which incorporates statistical informa-

tion about the parameters and measurement noise, to minimize the variance of the es-

timation error [43]. Ideally, the statistical properties of the parameter and noise vectors

should be derived independently, from experiments or from a theoretical analysis of the

dynamics of the towfish and of the autocorrelation of the backscattering function of the

bottom, respectively. It is also possible to attempt to derive such information from the

same data from which the distortion parameters are estimated, but caution should be

exercised in the interpretation of the results thus obtained. This section presents pro-

cedures for Bayesian linear least-squares estimation of the distortion parameters, first

from each line separately, and then by recursively updating the estimates at each line.

These procedures are described with the intent of providing a framework in which inde-

pendently derived statistical information about the parameters and measurement noise

may be easily incorporated in the future.

4.3.1 Line-by-Line Estimation

The correlation between the distortion parameters and measurement noise can be

described more compactly in matrix form if we write Eqs. (4.1a) and (4.1b) as

i[n] = C[n][n] + v[n], (4.11)

where C[n], [n] and r[n] are the vectors

J[n] 

An [1 1, n]

An,lp, n]

LAy[Il, n]

Any[lp, n] 

A [n]
o] AyO[n] ]

Ao[n]

V.[li, n]

V'[p, n]

v[Ill, n]

v[lp, n] 

, (4.12)
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and C[n] is the observation matrix

1 0 0

10 0C[n] 0 (4.13)
0 1 l,(cTo/2)

0 1 lV(cT./2)

Let mc[n] and m[n] denote the expected values of ([n] and [n], respectively, and

assume that the expected value of n] is zero. Let A¢[n],Ae[n] and R[n] denote their

covariance matrices. Further, let Atc[n] and Aev[n] denote the cross-covariance matrices

of _[n] with [n] and v[n], respectively.' Then the linear minimum variance estimate of

[[n] given [n] is given by [43]

_[n] = mt[n] + Atc[n]Al[n] ([n] - mc[n]), (4.14)

where, from Eq. (4.11),

mc[n] = C[n]m[n]

Atc[n] = A[n]CT[n] + Ae[n]

Ac[n] = C[n]AC[n]CT[n] + C[n]At.[n] + A T[n]CT[n] + R[n].

If numerical values for the covariance matrices are stipulated theoretically or measured

from the data itself, these equations may then be used for estimating the distortion

parameter vector [n] on a line-by-line basis.

4.3.2 Recursive Estimation

Bayesian least-squares estimation seeks to minimize the variance of the estimation

error by exploiting the correlation between the components of the parameter and noise

vectors at time n. However, it is also possible to take into account their temporal cor-

relation. In other words, the distortion parameter vector £[n] can be estimated through

'In this problem, A( [n] is in general non-zero because the amplitude of the measurement noise can be
affected by the degree of geometric distortion, and is therefore correlated with the distortion parameters.
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stochastic filtering. In this particular problem, a Kalman filter is a natural choice, since

Kalman filters assume that the temporal correlation of the parameters to be estimated

can be described by a state-space model, which in our case is a reasonable assumption,

given that our parameters are related to the evolution of a hydrodynamic system. We

employ a standard Kalman filter to obtain a causal estimation procedure, though it is

also possible to use smoothing.

For an Nth-order state space model, the 3-dimensional vectors of distortion parame-

ters will be stacked to form a 3N-dimensional state vector

5[n]

-,[n] [n - 1]

Vn -(N-1)].

Adding to our model an Nth-order state propagation equation, we obtain the state-space

model

,[n + 1] = A[n]=[n] + B[n]w[n] (4.15)

•[n] = C[n]=[n] + [n], (4.16)

where w[n] is a white process noise vector. For the second equation to be equivalent to

Eq. (4.11), the new observation matrix is given by

C[n] [C[n] ... 0].

Following the notation commonly adopted in the literature, the covariance matrices of

the noise vectors w[n] and v[n] will be denoted by Q[n] and R[n], respectively, and their

cross-covariance matrix will be denoted by S[n]. Two issues will be addressed next:

how to use this state-space model to recursively estimate the parameters, and how to

determine the unknown matrices A[n], B[n], Q[n], R[n], and S[n] of the model.

One way to determine the matrices of the state-space model of Eq. (4.15) is through a

theoretical analysis of the towfish dynamics, possibly in conjunction with the estimation

of some of the parameters in the theoretical model from actual attitude measurements

obtained through experiments in which sensors are mounted on the towfish. If the model
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thus derived still contains unknown parameters or time-varying parameters that depend

on the conditions during the survey and cannot be determined beforehand through exper-

iments, then these parameters and the state vector itself may be concurrently estimated

through adaptive Kalman filtering.

The general problem we face is to simultaneously estimate the state vectors i[n]

and a number of unknown parameters of the state-space model, which will be combined

into a parameter vector ac[n]. In the next sections we consider how the state vectors and

model parameters can be estimated separately by two recursive algorithms and how these

algorithms can be combined to form an adaptive Kalman filter. Our treatment of these

algorithms is not exhaustive; the intent here is to provide a general framework for the

application of recursive estimation and identification techniques to the results derived in

Chapters 2 and 3.

Recursive Identification of the State Vector

The discrete-time Kalman filter is the optimal solution to the problem of recursively

calculating the Bayesian linear least-squares estimate of the present value of a discrete-

time stochastic process given the present and past values of another stochastic process.

It assumes that the dynamics of the process to be estimated and its relationship with

the observation process can be described through a state-space model. The details of

the derivation of the Kalman filter equations can be found in [1] and [26]. Using a

standard Kalman filter would require inverting a matrix of order 2p, the dimension of

the observation vector [n], in the measurement update step of each iteration. In our

case, it is more computationally efficient to use the so-called information filter version of

the Kalman filter, that requires the inversion of a matrix of order 3N, the dimension of

the state vector -[n]. The information filter uses the quantities

a[nln - 2nP1[nk- 1]-[nln - ]

[nln] f"P-1[njn]_[nn],
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where P[njn] and P[nln - 1] are the variances of the estimation and prediction errors,

respectively, i. e.,

P[nIn ] E {([njn] - f[n]) ([nn] -f n])

P[nln- 1] E {([nn-- 1] - [n]) ([nn- 1]- n])T},

and /3 is a forgetting factor, 0 < < 1, used to decrease the weight of past observations.

With f/ = 1 we obtain the standard Kalman filter. In the case of a linear model, such

as the one given in (4.15), the estimates of the state vector that minimize P[nln] can be

calculated recursively according to the following equations:

Measurement Update Step

a[nln] = a[nn - 1] + CT[nR[n][n] (4.17a)

P-'[nln] = P-'[nln - 1] + f/-2"CT[n]R-'[n - 1][n] (4.17b)

-[nIn] = -2n"P[nIn]a[nIn] (4.17c)

Prediction Step

F[n] = A[n] - B[n]S[n]R-l[n]C[n] (4.18a)

G[n] = Pf2 (n+)F-T[n]P-l [nln]F-'[n] (4.18b)

H[n] = G[n]B[n] (BT[n]G[n]B[n] + (Q[n]- S[n]R-'[n]S[n])) 1 (4.18c)

a[n + 1n] = (I - H[n]BT[n]) (F-T[n]a[nln] + G[n]B[n]S[n]R1[n]([n]) (4.18d)

P-'[n + 1 n] = /3-2n (I - H[n]BTI[n]) G[n] (4.18e)

These equations assume that the process noise w[n] and the measurement noise v[n]

are white. If that is not the case, the state-space model can be augmented to incorporate

a model of the temporal autocorrelation of the noise processes.

Recursive Least-Squares Identification of the Model Parameters

An autoregressive (AR) model was adopted for the dynamics of the state vector.

While this is not the most general model that could be adopted, it illustrates this tech-

nique without unnecessarily complicating its formulation. In fact, an autoregressive
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model can be easily incorporated into the state-space model of (4.15) by simply adopting

a companion-form matrix A[n]. The Nth-order autoregressive model given by

s[n + 1] = Ai[n] + A2[n - 1] + ... + AN[n - N + 1] + w[n],

corresponds to Eq. (4.15) with

Al[n] A 2[n] ... AN-1[n] AN[n]

I 0 0 ... 0

0 I 0 0.. O

0 *.. 0 I 0

and B[n] =

where N is the dimension of the parameter vector and where I and 0 represent identity

and zero matrices of dimension equal to the number of parameters used in the state space

model, in our case, three (namely, Ax'[n], Ay'[n] and AO[n]).

Our objective is to estimate the blocks Al [n], A 2 [n],..., AN[n] of matrix A[n]. It will

be useful to combine the first three rows of A[n], which contain these sub-matrices, into

a 9N-dimensional parameter vector

(A)1 n]

_[n] (A)2T[n] , (4.19)

(A)T[n]

where (A)i[n] represents the ith row of A[n]. It will also be useful to rearrange the state

vectors into a new (3 x 9N)-dimensional matrix

tu[n] 0 0

x[n] O --T[n] 0 ,

O O T[n]

which is the multidimensional counterpart of what is usually called the regression vector

in the one-dimensional case. The autoregressive model may be used to predict the next

value of the state vector from the present and (N- ) past values. Denoting by f[n + 1 n]

the predicted value of J[n + 1] given J[n], f[n - 1],..., f[n - N + 1], we have

j[n + In] = x[n]a[n].
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There are several possible criteria for estimating the model parameters a[n] from

the vectors [n] [38]. One is to minimize the mean-square value of the prediction error.

This criterion motivates a number of closely related algorithms, among which is found

the weighted least-squares method. In this method the parameter estimate is chosen

according to

[n] = arg min E #2(-') (k + 1] - j[k + 11k])T Q-'[k] ([k + 1]- [k + llk]),
k=O

where 3 is again a forgetting factor satisfying 0 < P < 1. The recursive version of the

weighted least-squares algorithm consists of calculating a new estimate r[n] once _[n] is

available, and then using it to calculate the prediction [n + 1 n] of its next value. It can

be shown that if these estimates are to satisfy the least-squares criterion given above,

they can be computed recursively as

J[n] = U[n - l]x T [n] (12 Q[n] + X[n]U[n - 1]xT[n]) - (4.21a)

&[n] = [In - 1] + J[n] (n] - x[n&n - 1]) (4.21b)

U[n] = (U[n- 1] - U[n - 1]XT (2Q[n] + x[n]U[n- 1]xT[n]) 1 (4.21c)

x[n]U[n - 1])

For the derivation of the recursive least-squares algorithm see [38].

The Extended Least-Squares Method

If the model parameters are known, then -[n] can be calculated from the observa-

tions [n] through a Kalman filter. Conversely, if the state vectors are known, then &[n]

can be calculated from them and the observations through the recursive least-squares

method. Figure 4.5(a) depicts this situation. When both the state and parameter vec-

tors are unknown, the Kalman filter and the recursive least-squares algorithm can be

combined into what is known as the extended least-squares method, as shown Fig. 4.5(b).

It consists of calculating the parameter estimate /[n] at each iteration from the present

and past state vector estimates, and then using it in the prediction step of the Kalman

filter. The state and parameter estimates obtained through this method are suboptimal
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Figure 4.5: The Kalman filter and recursive least-squares algorithms (a) are combined
in the extended least-squares method (b).

I

because they are not jointly estimated, but they can be shown to converge to the optimal

estimates under certain conditions [1].

Since the covariance matrices are unknown, they are estimated by recursively com-

puting the average of the outer products of the residual errors from the state and model

parameter estimation steps. This too is a suboptimal procedure that, under certain cir-

cumstances, can be shown to converge to the optimal estimates [40]. The complete set

of equations for the extended least-squares algorithm is:
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State Estimation

a[nIn] = [nIn - 1] + C T [n]R--[n - 1]([n] (4.22a)

(4.22b)P-l[nin] = P-'[nn - 1] + - 2 nCT[n]R]--[n]C[n]

t[nn] = #- 2"P[nIn]a[nIn]

)del Estimation

= U[n - 1]T[nln] (p2[n - 1] + x[nn]U[n - 1]iT[nln])-

(4.22c)

(4.23a)

n] = [n - 1] + J[n] ([nIn] - I[nn].[n - 1])

n] = (Un-1]-- U[n - 1][nln] (B2[n] + j[nln]U[n

j[nln]U[n - 1]).

Estimation of Covariance Matrices

w[n] = [nln] - [n- ln- - l]&[n]

v[n] = [n]- [n]Q[nIn]

Q[n] 1 - 22
1 - 2 (n+ 2)

- 1]T[nin])-'

((1 _ f2( -) +)[n _ 3 [n]-

- p 2
(n+

2
)

= P(1 - 2(n+))

1 - 2 ((1
= - 2(n+2) I

(R-[n- 1]

_ 2(n+l))
1 -)2 - y

R-[n- 1]vin] (R-l[n- l]i[n]) (4.24d)

T[n]R [n - 1]u[n] + (lp2(

2Sin- 1] + jj[nbT[n) (4.24e)

State Prediction

= A[,] - B[n]S[n]R-[n]C[n]

= 2([n+')F -T[n]p- [nln]F-l[n]

= G[n]B[n (Tn]G[n]B[n] + ([n]

(4.25a)

(4.25b)

-S[ n]RA- )n]1[n)l )

.[n + ln] = (I - H[n]BT[n]) (F-T[n]a[nln] + G[n]B[n]S[n]R-l[n]([n])

(4.25c)

(4.25d)

P-'[n + lIn] -2n (I - H[n]BT[n]) G[n] (4.25e)

Figure 4.6 shows the estimates of distortion parameters obtained through this algo-
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rithm, with N = 4 and / = 1. The initial state estimate was

0

V[ol-1]= vTf

and initial estimates for the covariance matrices were obtained from the parameter and

error estimates of the deterministic least-squares algorithm. The initial estimates of

the state-space model parameters corresponding to the autoregressive coefficients of

Ax'[n], Ay'[n], and AO[n] were equal to 1IN and all the coefficients for the cross terms

were equal to zero. Thus, recalling the definition of c[n] in Eq. (4.19), we have, for

N = 4,

[-1] { ]|0.25, for i = 1,4, 7,10,14,17,20,23,27,30,33,36,

0, otherwise.

With this choice of the &i[n] the initial autoregressive model amounts to taking the

prediction of the next value of the state vector as the average of its last N values.

Finally, the initial covariance matrix U[-1] was a 9N-dimensional identity matrix.

The state-space model causes the estimates of Ax'[n] and Ay'[n] to have less high-

frequency content than the corresponding estimates obtained through the determinis-

tic least-squares algorithm. The estimates of AO[n], however, do not change as much

since they already have low high-frequency content in the deterministic least-squares

case, probably as a result of the smaller estimation errors achieved for that parameter.

Figure 4.7 shows the estimates of attitude parameters for the extended least-squares

algorithm. These do not differ significantly from the estimates obtained through de-

terministic least-squares estimation, which could be expected since the only a priori

information introduced was the autoregressive structure of the state-space model, and

its order. If some of the model parameters are determined through a theoretical analysis

of the towfish dynamics or through experiments, then a greater difference may result

between the estimates obtained through the two algorithms. Notice, however, that the

confidence intervals resulting from the extended least-squares algorithm are tighter than

those obtained through deterministic least-squares estimation. This is a consequence

of the reduction of the variance of the estimation error that is theoretically expected
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to result from the incorporation of temporal correlation information on the parameters

through the state-space model. Figure 4.8 shows the estimates of the AR coefficients for

a'[n], Ay'[n] and AO[n]. For simplicity, the cross-term coefficients (i. e., those relating

Ax'[n] to Ay'[n] and AO[n], etc.) were not plotted.

Figures 4.9 and 4.10 show the estimates of attitude and model parameters for N = 4

and = 0.987 and the same initial estimates used before. In this case, the weight of the

observations decreases progressively as they become old," turning the algorithm into an

adaptive Kalman filter capable of responding to variations in the dynamics of the towfish

and in the statistics of the observation and process noises. Taking P = 0.987 amounts

to applying an exponentially decreasing weight to the data, with a time constant of

10 sec. The estimates of attitude parameters in this case do not differ much from those

obtained with f3 = 1. However, the confidence intervals are slightly wider because the

estimation at each point no longer takes equally into account all previous observations,

but gradually "forgets" old observations. The estimates of the AR model parameters are

shown in Fig. 4.10.

The estimates of Ax'[n], Ay'[n] and AO[n] obtained in this chapter will be used in

Chapter 5 for correcting the geometric distortions in the sonograph.
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Chapter 5

Correction of Geometric Distortions

The distortion parameters estimated through the technique described in Chapter 4

are now used for correcting the geometric distortions in the sonograph. In this final step

the sonograph is resampled so that the coordinates of a point in the processed image

correspond more closely to its true location on the seabed, assuming the estimates of

distortion parameters are accurate. Visual inspection of the corrected sonograph reveals

considerable reduction of the geometric distortions. A simulation is carried out to provide

further, and more objective, evidence of the efficacy of our technique for estimating and

correcting geometric distortions in sonographs.

5.1 Correction of Cross-Track Distortions

As indicated in Section 3.2, the slant-range distortion in the sonograph has to be

corrected before the sampling displacements A, [l1, n] can be estimated. This is accom-

plished by resampling the original sonograph, s[m, n], whose m coordinate corresponds

to range to the towfish, to obtain a new image s[l, n], whose I coordinate corresponds to

horizontal distances on the seabed plane.

Let si(r, n] denote the sonograph after interpolation along each line.1 The slant-range

1The combination of parenthesis and square bracket is used to indicate that r is a continuous variable,
while n is a discrete variable.
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Figure 5.1: Height of the water column measured from the sonograph after lowpass
filtering to eliminate discontinuities caused by quantization.

corrected image is given by

i[1, n] = s i(r, n] |r=./l2+(h[n]/(cr/2))2 

where h[n] is the distance between the towfish and point (x,,[n],y,[n]), as shown in

Fig. 2.4, and can be measured from the sonograph as the height of the water column

at each line. The interpolation is carried out by multiplying the discrete Fourier trans-

form of the line by a phase shift corresponding to the desired sampling location, before

calculating the inverse transform. However, other techniques, such as truncated-sinc or

cubic-spline interpolation, may be used instead. If S,, [k], k = 0, 1,... , - 1 denotes

the DFT of the nth line of s[m, n], we have

Nn -1

s[l, n] = E S,[k]ewm /2+(h[n]/(cT./2))2
k=O

Figure 5.1 shows h[n] for the sonograph of Fig. 1.2 after lowpass filtering to eliminate

the discontinuities resulting from the quantization of the width of the water column to

an integer number of pixels. The slant-range corrected sonograph was shown in Fig. 3.4.

From it, the estimates of A,,x'[l, n] are calculated.

As discussed in Section 3.3, before the correlation lengths can be calculated, it is

necessary to shift the lines of the slant-range corrected image, .[l, n], to obtain a new
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image, [, n], for which the sampling displacements Anx'[l, n] are zero. According to

the linear model of Section 2.2.3, at each line of the image we have Ax'[1, n] = Ax'[n].

Therefore, to make the Ax'[1, n] equal to zero, it is enough to shift line (n + 1) of the

image by -Axz'[l, n]/(cT,/2) with respect to line n, for n = 0, 1,..., N,- 1. Equivalently,

the nth line of the image has to be shifted by FiJ-O Ax'[i]/(cT./2) with respect to line

number zero. That can be done by multiplying the DFT of the nth line, which is denoted

by S,[k], by the appropriate phase shift, and then taking the inverse transform. Thus,

s[l, n] = .F-1 {S [k]e- o I0l0 )

The estimates Ax'[n] used in this operation are those obtained through deterministic

least-squares, i. e., they are simply the average of the estimates of sampling displacements,

Anz [1, n] for each line of the image. If one wishes to estimate the distortion parameters

through adaptive Kalman filtering, then the Ax'[n] are later re-estimated with the other

two distortion parameters, Ay'[n] and AO[n], simultaneously, through the extended least-

squares algorithm.

The image [l, n] is used for calculating the correlation lengths, L [1, n],

as described in Section 3.3.

5.2 Estimating the Sampling Point Coordinates

After the distortion parameters are estimated through one of the techniques pre-

sented in Chapter 4, the slant-range corrected sonograph is resampled for correction of

the remaining geometric distortions. That requires obtaining estimates of the sampling

coordinates, x,[l, n] and y,[l, n], for each point of the image, from the estimates of dis-

tortion parameters, Ax'[n], Ay[n] and AO[n]. Using Eqs. (2.12a) and (2.12b), we have

An,,[l, n] = Ax[n] (5.1a)

A,y[l, n] = y[n] + l(cT./2)AO[n]. (5.lb)

These estimates are then converted from the (x', y') to the (x, y) coordinate system. From

Eqs. (2.13a) and (2.13b) we obtain

2 = (x' - [n])cos [n]-(y'- yo[n])sinO[n]
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y = (y'- yo[n]) cos [n] + (x' - [n]) sin [n].

Therefore the sampling displacements may be converted from one coordinate system to

the other through

Ax"[I, n] = A."x[,n]cos n] cos - [l,n] sinO[n] (5.2a)

A' y,[ln] = Ajny[l,n]cosO[n] + Ano[l,n]sinO[n]. (5.2b)

Finally, the estimates of sampling point coordinates are calculated recursively from the

estimates of sampling displacements,

,[l,n +l 1] = i[l,n] + A,x[l,n] (5.3a)

Y.[, n + 1] = o[/l,n] + A,y[l,n], (5.3b)

starting from estimates of the sampling coordinates of the first line, [1, 0] and [I, 0],

I = 0, ±1, ... ,(N - 1). Equations (2.11a) and (2.11b) may be used to calculate these

coordinates, with x,[O] = y,[O] = 0 and [0] = [0].

A graphic representation of the estimates of sampling coordinates can be provided by

plotting the estimated sampling points (i,[m, n], [m, n]) in a mesh. Figure 5.2 shows

the resulting mesh plot for our sample sonograph. In producing this figure we used the

estimates of distortion parameters obtained through deterministic least-squares estima-

tion in Section 4.2 and plotted only every fourth line and column so the mesh would

not be too dense. This plot gives a clear idea of how the sonar beam moved across the

bottom on that area, according to the estimates of distortion parameters.

5.3 Correcting Geometric Distortions

We now address the issue of correcting the geometric distortions affecting the sono-

graph. The procedure is divided into two steps: interpolation in the cross-track direction

followed by interpolation in the along-track direction.
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Figure 5.3: Determining the points for interpolation in the cross-track direction. Each
line of the image is resampled at points that are equally spaced in the x direction.

5.3.1 Interpolation in the Cross-Track Direction

The slant-range corrected image [l, n] is first interpolated to produce a new image

s[l', n] so its corresponding sampling points on the seabed are equally spaced in the x

direction. Figure 5.3 illustrates how the points for interpolating each line of [l, n] are

determined. The black dots shown in the figure represent the estimates of the location of

sampling points on the seabed plane. Because of the linear model used in Chapter 2, the

estimates of sampling points for each sonar pulse fall on a straight line that approximates

the trajectory of the sound pulse on the seabed as it travels away from the towfish.

The sampling points of s[l', n] are indicated in the image by the uniformly spaced

circles whose cross-track coordinates are

Xz[l = 1'(cT./2), 1' = O, ±1, 2,..., (N, - 1),

where N is the desired number of columns on the starboard and port sides of the

resampled image. The corresponding distances along the nth scan line are denoted by

C[1', n] and in general are non-integer. They are calculated by finding the two points

[l, n] and [12, n] whose sampling coordinate estimates , [ll, n] and ,[12, n] are located
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immediately before and immediately after xc[ll, i. e.,

[il, n] x, [lq < i[12, n], 12 = 11 + 1,

and then by computing [l', n] by linearly interpolating the corresponding I coordinates,

1,[l', n] = 11 + (12-) [2] - 11 , .[1,n]
ix[12, n] - :,[11,n](5.4)

In the next subsection, we will need to know the along-track coordinates of these points,

which we denote by yc[l', n]. These are computed by linearly interpolating between the

y coordinates of points [, n] and [12, n],

x,[l'] - x[1, n1
yc[l', n] = g,[l, n] + (J[142, n] - Yo[I, n])x12 ]- .[, n] (5.5)

The nth line of the slant-range corrected image, [l, n], is then interpolated at points

1c[l', n], I' = 0, 1,..., (N - 1). The interpolation is again performed by multiplying the

DFT of the line by the appropriate phase shift for each sample point, before calculating

the inverse transform. Thus, if 9S[k], k = 0,1,..., N - 1 denotes the DFT of the n-th

line of s[I, n], we have
N-1

s[l', n] = Sn[k]eNIc[l'n]
k=O

5.3.2 Interpolation in the Along-Track Direction

By following the procedure of the last subsection one obtains a new image s[l', n],

whose corresponding sampling points on the seabed are now correctly located in the x

direction, but are still irregularly spaced in the y direction. The final step for correcting

the geometric distortions is to resample each column of s,[l', n] to produce a final image

Sa[l', n'] whose corresponding sampling points on the seabed plane are regularly spaced

in both the x and y directions.

Figure 5.4 illustrates this new situation. The circles shown in that figure are the same

as those shown in Fig. 5.3 and mark the location of the sampling points associated with

sc[l', n]; the points where each column should be interpolated are marked in the figure

by small boxes. Their along-track coordinates are given by

y[nl = n(vTf), n'= 0,1,...m,-l,
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Figure 5.4: Determining the points for interpolation in the along-track direction.

where Nn, is the desired number of lines in the final image. The corresponding distances

along the l'-th column of sc[l', n] are denoted by na[l', n'] and are in general non-integer.

Paralleling the procedure of the previous section, these are calculated by finding the two

points [', n] and [',n2] whose sampling coordinates yc[l',n l] and y,[l',n2], calculated

through Eq. (5.5) are located immediately before and immediately after ya[n'], i. e.,

yc[l,n,] < Ya[nl < yc[l', n 2], n2 = nl + 1,

and then by computing n, [', n'] by linearly interpolating the corresponding n coordinates,

y[n] - y[l', n]na[l',n'] = n + (n2 - ) [, c[L,n]' (5.6)

Before proceeding to interpolate the columns, we need to address a problem that is

not present in the cross-track direction. Because of the occurrence of backscanning, the

sequence of coordinates y,[l', n], n = 0, 1,..., N, - 1, may not be strictly increasing, i. e.,

we do not necessarily have y,[l', ni] > yc[l', n2] for n > n2. As pointed out in Chapter 1,

backscanned areas appear in triplicate in the image, although the three passes may

not look exactly the same due to the different viewing angles. Because of that fact, and

because the registration among the three passes may not be accurate enough, attempting
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to merge the three views of a backscanned area during the interpolation of the columns

is not likely to yield good results. Instead, we choose to preserve only one view of the

backscanned area. To achieve greater image continuity, it is better to select either the

first or the third pass, since the middle pass is isolated from both the preceding and

the forthcoming portions of the sonograph. Furthermore, the beam is likely to scan the

bottom more slowly during the first pass, when it is de-accelerating to reverse its direction

of movement, than during the third pass when, after reversing direction a second time, it

is accelerating to compensate for the time lost during backscanning. Therefore, we select

only the first pass over backscanned areas. In practice, that amounts to considering only

progressively increasing values of ye[l', n] when looking for the interval surrounding the

interpolating coordinate y,[n'].

Resampling in the along-track direction is again accomplished by multiplying the

DFT of each column of s[l, n] by the appropriate phase shift for each point before

computing the inverse transform. Denoting by Sl,[k], k = 0, 1,..., Nn - 1, the DFT of

the l'th column of s,[l', n], we have

Nn-1

Sa[,n = E SI k]enln]
k=O

Figure 5.5 shows the sonograph of Fig. 1.2 after correction of the geometric distortions

as described in this section. The estimates of distortion parameters used in estimating the

sampling coordinates are those obtained through deterministic least-squares estimation

in Chapter 4. The lower right corner of the image is shown enlarged in Fig. 5.6 alongside

the corresponding area of the original sonograph. Notice how the cable lying on the

bottom that appeared pronouncedly jagged as a result of yawing now presents a slowly

varying curvature that is likely closer to its true shape. Notice also how the multiple

images of objects in backscanned areas are correctly replaced by single images of those

objects. However, some areas of the corrected image in Fig. 5.5 appear slightly blurred,

as a result of aliasing during the acquisition of the original sonograph. In fact, perfect

reconstruction of the image is not possible in areas where the sampling rate in the along-

track direction is greater than the Nyquist rate of the backscattering function b(x, y), as

a result of faster motion of the sonar beam.
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Figure 5.6: Comparison of a detail of the original and corrected sonographs. Correction
of geometric distortions eliminates the jagged appearance of the cable and the multiple
images of rocks, caused by backscanning.
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5.4 Simulation

The side-scan sonar employed for making the sonographs used in this thesis was a common

commercial unit and was not equipped with attitude sensors. Therefore, measurements

of the true values of the attitude parameters are not available for comparison with the

estimates obtained in Chapter 4. As seen in Section5.3, visual inspection of the sonograph

after correction of the geometric distortions provides strong subjective indication of the

efficacy of our algorithm. However, a more objective evaluation can be provided by a

simulation.

Simulating geometric distortions requires an undistorted image of the seabed that

can be resampled in an irregular pattern to simulate the effect of towfish instabilities.

Since all the sonographs in our data set present some degree of geometric distortion, it

is necessary to artificially generate an image on which to perform the simulation. The

sonograph of Fig. 5.5 itself could be used to that end, provided that application of the

algorithm of Chapters 3 and 4 to that corrected image indicates that it is free of geometric

distortions. However, such is not the case, because of the occurrence of aliasing in the

original sonograph. As explained in Section 5.3, in areas where the original sonograph

is aliased, the corrected image appears blurred, which causes the correlation lengths to

be longer than in areas free of aliasing. As a result, the algorithm indicates that the

corrected image is still affected by geometric distortions.

To obtain the desired image for the simulation, it is necessary to circumvent the

problem presented by aliased areas. In Chapter 4 the distortion parameters for each

line of the sonograph were estimated from the side that had smaller estimated sampling

intervals A,,y[l, n]. That situation was illustrated in Fig. 4.1. In that example, when the

geometric distortions are corrected the sampling displacements on the port side (I < 0)

are made larger to fit the linear model represented by the straight line. That results in

the corrected image appearing blurred on the port side at that line, as explained above.

That effect can be avoided if the distortion parameters are estimated separately from

each side of the line, as indicated in Fig. 5.7. Figure 5.8 shows the result of processing

each side of the sonograph with estimates of distortion parameters obtained from that
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Figure 5.7: An image unaffected by aliasing-related blurring can be obtained by estimat-
ing the distortion parameters separately from each side of the sonograph, as illustrated
in this example.

side only. The rectangular areas outlined in each image are then cut out and spliced side

by side to produce the image in Fig. 5.9, that can be used for the simulation.

The image of Fig. 5.9 is now resampled on an irregular grid to simulate the production

of a sonograph affected by geometric distortions. The simulated distortion parameters

are generated by passing white Gaussian noise through an autoregressive model with

4 poles of magnitude 0.8 and phases ±7r/8 and ±ir/16 radians. The location of the

poles and the energy of the input noise were chosen so that the resulting simulated

parameters had characteristics similar to those of the distortion parameters estimated

from the original sonograph. Figure 5.10 shows the undistorted image and the simulated

distorted sonograph. The figure also shows the simulated sonograph after correction of

the slant-range distortion and detection of backscanning.

Figure 5.11 shows the simulated attitude parameters, along with the estimates ob-

tained through deterministic least-squares estimation, adaptive Kalman filtering, and
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Figure 5.9: Image used in the simulation. It was formed by joining the rectangular
sections outlined in the images of Fig. 5.8.

with a Kalman filter using the true state-space model employed to generate the simu-

lated distortion parameters. The estimates obtained through adaptive Kalman filtering

do not differ significantly from those obtained through deterministic least-squares estima-

tion, except for a smaller high-frequency content. As noted in Chapter 4, this is because

all the autoregressive parameters are being estimated concurrently with the distortion

parameters and, consequently, the state-space model contributes little a priori informa-

tion. In fact, the estimates of state-space model parameters, [n], obtained through

the adaptive Kalman filter failed to converge to the true values. However, if the true

state-space model is used in a standard Kalman filter, the resulting estimates show a

noticeable improvement, as seen in the figure.

Table 5.1 presents the maximum absolute estimation errors for the deterministic

least-squares (DLS), adaptive Kalman filter (AKF), and standard Kalman filter (KF)

algorithms. Notice that using the true state-space model in the standard Kalman filter

reduces the maximum absolute estimation error of all three parameters by approximately

50 % with respect to deterministic least-squares estimation and adaptive Kalman filtering.

The estimates of yaw angle obtained through any of the three algorithms are remarkably

accurate, with the standard Kalman filter yielding a maximum absolute estimation er-

ror of less than one degree. The estimates presented here were obtained with p = 140.

Smaller estimation errors may be expected from all algorithms with a larger number of
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Figure 5.10: The area outlined in the undistorted image (top) is resampled as if scanned
by a side-scan sonar subject to motion instabilities, to produce a simulated distorted
sonograph (middle). The bottom image is the simulated sonograph after correction of
the slant-range distortion and detection of backscanning.
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Figure 5.11: Simulated attitude parameters (SIM) and estimates obtained through deter-
ministic least-squares estimation (DLS) , adaptive Kalman filtering (AKF), and standard
Kalman filtering (KF).
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Table 5.1: Maximum absolute estimation errors.

Algorithm xzf 0
DLS 26.87 cm 11.37 ° 1.18 °

AKF 29.25 cm 11.03 ° 1.19 °

KF 18.84 cm 4.840 0.66°

observation points.

The results obtained with the adaptive Kalman filter and with the standard Kalman

filter correspond to extreme cases in which either none of the autoregressive model param-

eters are known or all of them are known, respectively. Intermediate values of maximum

estimation errors, as well as better estimates of the unknown model parameters, can

be expected from the adaptive Kalman filter if only a few of the autoregressive model

parameters are unknown.

Figure 5.12 shows the undistorted image along with the simulated sonograph and the

reconstructed image. Comparison of the shapes of rocks and scours in the three images

shows that the algorithm achieves a significant reduction of the simulated geometric

distortions. As pointed out before, perfect reconstruction is not possible in areas where

the sampling interval was large enough to cause aliasing.

5.5 Further Examples

A second sonograph from our data set is shown in Fig. 5.13, and in Fig. 5.14 after correc-

tion of the slant-range distortion and backscanning detection. The corrected sonograph

is shown in Fig. 5.15. The correction of geometric distortions is most evident in the up-

per right-hand corner of the image, where features on the bottom appear pronouncedly

stretched in the original sonograph, but acquire more natural shapes after processing.

The estimates of attitude parameters obtained from that sonograph through determinis-

tic least-squares estimation are shown in Fig. 5.16.

A third example is given in Figs. 5.17 through 5.19. As in the first two examples,

the jagged appearance of the cable seen in the original sonograph is made consider-
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Figure 5.12: Comparison of the original image (top), the simulated sonograph (middle)
and reconstructed image (bottom) reveals that the algorithm is capable of effectively
reducing geometric distortions.
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Figure 5.16: Estimates of attitude parameters for the sonograph of Fig. 5.13.
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ably smoother by the correction of geometric distortions. Several rocks that appear

compressed, stretched, or with multiple images in the original sonograph acquire more

natural shapes after processing, which are likely closer to their true shapes on the seabed.

Geometrically corrected sonographs, such as those shown in Figs. 5.5, 5.15, and 5.19,

are the end product of the techniques presented in this thesis. The next chapter presents

final considerations.
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Chapter 6

Final Considerations

In this chapter we offer final considerations concerning the theoretical developments,

algorithms and results presented in this thesis, along with suggestions for future research

on the correction of geometric distortions in sonographs.

6.1 Evaluation of Results

Visual inspection of the corrected sonographs presented in Chapter 5 offers strong

indication that the techniques developed in this thesis can effectively reduce the degree

of geometric distortion in sonographs, thus fulfilling their main goal. The algorithm is

original in that it does not require navigational or attitude measurements for correcting

the geometric distortions, but relies solely on the information contained in the image itself,

and on certain assumptions about its statistical properties. In the process of correcting

the geometric distortions, the algorithm produces other relevant information that can

prove useful in the interpretation of sonographs. For instance, it provides a means of

detecting lines affected by backscanning, apparently with relatively low percentages of

false alarms and misses, as seen in Chapter 3. It also allows reconstruction of the sampling

pattern on the bottom in the form of mesh plots such as the one presented in Chapter 5.

Another by-product of the algorithm are estimates of the towfish attitude parame-

ters, namely its lateral displacement in the cross-track direction and its pitch and yaw

angles. Because of the accumulation of the estimation errors of parameter increments,
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the estimates of attitude parameters become progressively less reliable, as indicated by

the widening of the confidence intervals shown in the plots of Chapter 4, and, conse-

quently, so do the estimates of sampling point coordinates. The estimates of distortion

parameters, Ax'[n], Ay'[n] and AO[n], however, remain just as accurate, which means

that the relative location of points of the image with respect to neighboring points can

be estimated more accurately than their absolute location. In other words, the algorithm

is more capable of correcting local geometric distortion than of determining the absolute

location of objects in the image.

The simulation carried out in Chapter 5 provides more objective evidence of the effi-

cacy of the different forms of the algorithm. According to that simulation, very accurate

estimates of the towfish yaw angle are obtained through both deterministic least-squares

estimation and adaptive Kalman filtering, as well as fairly accurate estimates of its hor-

izontal lateral displacement. The estimates of pitch are less reliable, because variations

in pitch angle produce less geometric distortion than equal variations in yaw angle.

The estimates of distortion and attitude parameters obtained through the adaptive

Kalman filter do not differ considerably from those obtained through deterministic least-

squares estimation, because all the parameters of the state-space model used in the filter

are unknown and are simultaneously estimated with the distortion parameters. In that

case, the state-space model contributes little a priori information. Improved results can

be expected if the state-space model is derived from a theoretical analysis of the dynamics

of the towfish and only a few of its parameters are unknown.

6.2 Suggestions for Future Research

The most important path for future research on the technique presented in this

thesis is a more definitive evaluation of its accuracy. One way that may be accomplished

is through further and more extensive simulations. Definitive evaluation, however, can be

accomplished by comparing the estimates of attitude parameters with real measurements

obtained through attitude sensors mounted on a towfish. Another possible means of

evaluation is to acquire sonographs of areas for which sufficiently detailed bathymetric
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charts are available, and then attempt to match points in the corrected sonographs with

points in the chart.

Another goal for future research could be to make the estimates of distortion parame-

ters more robust by improving the process of selection of observation points for each line

of the sonograph. As mentioned in Chapter 3, that would probably require the inclusion

of image segmentation techniques to divide the sonograph in areas where the correlation

lengths may be assumed constant. A more straightforward modification that can also be

made to the algorithm is to incorporate a high-pass filter or some other device to period-

ically correct the estimates of attitude parameters in order to keep them from diverging

as a result of the accumulation of the estimation errors of the parameter increments.

As pointed out in Chapter 4, our intent in employing a Kalman filter in the estimation

of distortion parameters is to provide a framework in which knowledge of the dynamics of

the towfish may be readily incorporated in the future. Improvements in the estimates can

in principle be obtained by replacing the general auto-regressive model we adopted with

a more specific state-space model derived from a mechanical analysis of the dynamics of

towed cylinders. Additional improvements can be expected if the estimation of distortion

parameters is carried out through smoothing or fixed-lag smoothing instead of through

regular Kalman filtering, and if a greater number of observation points is used.

On a more practical side, an issue to be investigated is the feasibility of implementing

the algorithm in real time, so that the corrected image may be seen on a display in the

deploying vessel as the towfish scans the bottom.

6.3 Conclusions

The main contribution of this thesis is the development of a technique for the estima-

tion and correction of geometric distortions in side-scan sonar images. Other techniques

previously reported in the literature utilize navigational data to correct large-scale dis-

tortions caused by variations in the course of the deploying vessel and by the slant-range

effect. In the case of a relatively few more sophisticated units equipped with attitude sen-

sors, it is also possible to correct geometric distortions due to motion instabilities of the
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towfish. By comparison, in the technique presented in this thesis the geometric distortion

is estimated from the image itself, requiring no navigational or attitude measurements. It

may thus be applied to any existing digitized sonographs or to analog sonographs stored

on magnetic tape.

A very detailed analysis of the side-scan sonar geometry was carried out, leading to a

nonlinear model that expresses the sampling point coordinates as a function of the towfish

attitude parameters. Unlike previous studies found in the side-scan sonar literature (see

Chapter 2), this model takes into account the misalignment of the transmitting and

receiving beams.

The techniques presented here are likely to find wider application in the enhancement

of high-resolution sonographs (roughly, those with operating frequencies of 100 kHz or

higher). High-resolution side-scan sonars are usually very compact, portable units in

which the transducer array is mounted on a relatively small towfish. In this type of sonar,

the towfish is typically not equipped with sensors to provide attitude measurements that

could be used for correcting geometric distortions. Furthermore, their small size makes

them more susceptible to motion instabilities than their larger and heavier long-range

counterparts. Those factors make this type of side-scan sonar the most likely beneficiary

of the techniques presented here.
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Appendix A

Summary of Notation

The tables presented in this Appendix list the definitions of variables by chapter, in

order of appearance. For the complete definition of each variable, refer to the sections,

equations or figures listed in the reference columns.

Table A.1: Definitions from Chapter 2

129

Symbol Description Reference
b Backscattering strength on the seabed. Sec. 2.1
s Image intensity of the digitized sonograph. Sec. 2.1

I[m, n] Coordinate system defined on the sonograph. Fig.2.1
(x, y, z) Coordinate system defined on the seabed. Fig. 2.1
(xs, s) Coordinates of sampling points. Sec. 2.1, Fig. 2.4

(xf, yf,zf) Coordinates of the towfish. Fig. 2.3
Xb Pitch angle of the towfish. Figs. 1.4, 2.3
0 Yaw angle of the towfish. Figs. 1.4, 2.3
t Time from start of acquisition of the sonograph. Sec. 2.2.1
tT Time when a pulse is transmitted. Sec. 2.2.1
t R Time when the returned signal is sampled. Sec. 2.2.1

(Xe, Ye, Ze) Point on the axial plane of the effective beam. Eq. (2.3), Fig. 2.4
4e, Ge Pitch and yaw angle of the effective beam. Eq. (2.2), Fig. 2.4

(Xo, yO) Reference point in the effective beam plane. Fig. 2.4
d Distance between (., y,) and (, yo). Fig.2.3
h Distance between (x,, y,) and the towfish. Fig. 2.3
r Range from a sampling point to the towfish. Sec. 2.2.1
c Speed of sound in water. Sec. 2.2.1



Table A.2: Definitions from Chapter 2 (Continued)

Symbol Description Reference
T Firing period of the sonar. Sec. 2.2.1
T, Sampling period used in digitizing the signal. Sec. 2.2.1

N, Number of samples per line of the sonograph. Sec. 2.2.1
N. Number of lines in the sonograph. Sec. 2.2.1

1s Image after correction of the slant-range distortion. Sec. 2.2.2
N 1 Number of pixels per line per channel of s. Sec. 2.2.2

Anx, Sampling displacement in the x direction. Eq. (2.7a), Fig. 2.5
Any, Sampling displacement in the y direction. Eq. (2.7b), Fig. 2.5
(x', y') Auxiliary coordinate system. Fig. 2.6

Table A.3: Definitions from Chapter 3

Symbol Description Reference

Rb Autocorrelation function of b(x,y). Sec. 3.1
SU Upsampled sonograph image. Sec. 3.1
N. Upsampling factor. Sec. 3.1
I' Cross-track coordinate in the upsampled image. Sec. 3.1
n' Along-track coordinate in the upsampled image. Sec. 3.1
Fs Mean of line segments. Eq. (3.1)
o, Standard deviation of line segments. Eq. (3.2)
p Normalized cross-correlation of line segments. Eq. 3.3, Fig. 3.1

Al' Relative shift between line segments in the 1' direction. Fig. 3.1
An' Relative shift between line segments in the n' direction. Fig. 3.1

2L + 1 Length of line segments for calculating cross-correlations. Fig. 3.1
Pn Sampling interval in the along-track direction. Fig. 3.9

L+, L; Positive- and negative-lag correlation lengths. Fig. 3.7
Po Threshold for calculating the correlation length. Fig. 3.7
Lb Correlation length of the backscattering function b(x, y). Sec. 3.3.1
Ln Average correlation length in the absence of distortions. Sec. 3.3.1

q Scaled sampling displacements. Eq. (3.9)
D Matrix of coefficients for the system of equations on q. Sec. 3.3.1
b Inhomogeneous vector for the system of equations on q. Eq. (3.11)

XA Set of lines chosen for estimation of Lo. Sec. 3.8
NA Number of lines in J. Sec. 3.8

v Average speed of the deploying vessel. Sec. 3.8
vAr Average speed of the towfish over the lines in N. Sec. 3.8
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Table A.4: Definitions from Chapter 4

Symbol

P
2 2

a2

aa~

Yo
,2

6

V

C
Ac, AE

N

A
B

w
R
S
a

P
G,N

Al,..., AN
a
X
U
J

Description

Set of distances of selected observation points.
Number of points in C
Chi-square cost functions.
Variance of the estimation error of Ax'

Variance of the estimation error of Ay'

Variance of the estimation error of AL
Variance of the estimation error of xo
Variance of the estimation error of y,
Variance of the estimation error of 0
Observation vector.
Vector of distortion parameters.
Observation noise vector.
Observation matrix.
Covariance matrices of C and $.
Cross-covariance matrices of _ with C and v.
Order of the state-space model.
State vector.
State transition matrix.
Input matrix.
Redefined observation matrix.
Process noise vector.
Covariance matrix of w.
Cross-covariance matrix of v and w.
Auxiliary vector of the information filter.
Covariance matrix of the state estimation error.
Auxiliary matrices in the information filter.
Forgetting factor.
Matrices of the multi-dimensional AR model.
Vector of model parameters.
Regression matrix.
Covariance matrix of the parameter estimation error.
Auxiliary matrix in the RLS algorithm.

Reference

Sec. 4.1
Sec. 4.1
Sec. 4.2
Sec. 4.2

Sec. 4.2

Sec. 4.2
Sec. 4.2
Sec. 4.2
Sec. 4.2
Eq. (4.13)
Eq. (4.13)
Eq. (4.13)
Eq. (4.14)
Sec. 4.3.1
Sec. 4.3.1
Sec. 4.3.2
Sec. 4.3.2
Eq. (4.16)
Eq. (4.16)
Eq. (4.16)
Eq. (4.16)
Sec. 4.3.2
Sec. 4.3.2
Sec. 4.3.3
Sec. 4.3.3
Sec. 4.3.3
Secs. 4.3.3, 4.3.4
Sec. 4.3.4
Sec. 4.3.4
Sec. 4.3.4
Sec. 4.3.4
Sec. 4.3.4
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Table A.5: Definitions from Chapter 5

132

Symbol Description JReference
Sc Image after correction in the cross-track direction. Sec. 5.2.1
I' Cross-track coordinate of sC. Sec. 5.2.1

Nl, Number of pixels per line per channel in sC. Sec. 5.2.1
1, Coordinates for resampling the lines of 5. Sec. 5.2.1

(x, yc) Coordinates of sampling points associated with s. Sec. 5.2.1
S, DFT of the n-th line of Sec. 5.2.1
S, Final image after correction of geometric distortions. Sec. 5.2.2
n' Along-track coordinate of s,. Sec. 5.2.2
,, Number of pixels per column in sa. Sec. 5.2.2

na Coordinates for resampling the columns of sc. Sec. 5.2.2
SI, DFT of the P'-th line of sc Sec. 5.2.2



Appendix B

Derivation of Results from the

Geometry of the Problem

In Section 2.2.1 it was necessary to express the distance d defined in Fig. 2.4 as a function

of the towfish attitude parameters at times tT and t R. The key to deriving this expression

is that the round-trip travel time of the wavefront from the point where the towfish was

located at time t T to the sampling point (o(tR),yo(tR)) and back to the point where

the towfish was located at time tR has to equal (tR - tT). Let us denote by rT and

rR the distances from points (xf(tT), yf(tT), zf(tT)) and (Xf(tR), Yf(tR), Zf(tR)) to point

(Xs(tR), Y(tR)), i. e.,

rT = ([f(tT) (t)] + (tT) - (tR) + [(tT)-y(R)] + Z(tT)) (B.1)

rR ([Xf(tR) - X(tR)]2 + [yf(tR) - y,(tR)] 2 + Z}(tR)) (B.2)

Then, as argued above, we must have

rT + rR = C(tR - tT),

where c is the speed of sound in water. This equation describes a three-dimensional

ellipsoid with focii at points (f (tT), yf(tT), zf(tT)) and (f (tR), yf(tR), zf(tR)). We will

denote by r the average of rT and rR,

r T + rR (B.3)
2
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Thus, r is also given by
c(tR - tT)

2

From Fig. 2.4 we had obtained Eqs. (2.4a) and (2.4b), repeated here for convenience

xo(tR) = Xo(tR) + dcos O(tR) (B.4)

yo(tR) = yo(tR) + dsinO (tR). (B.5)

Our task now is to solve Eqs. (B.1)-(B.5) for d, eliminating Xo(tR) and y(tR). The

solution will determine the two points where the three dimensional ellipsoid is intersected

by the line defined by the intersection of the axial plane of the effective beam and the

seabed plane.

From Eq. (B.3) we have

T - R = [Xf(tT)- (tR)] + [yf(tT) - y,(tR) + f(tT)

-[Xf(tR) - (,(tR) -[Yf (tR) - y,-(tR) _ Z (tR)

= [f (tT) - Xo(tR) - dcos 0,(tR)]2

+ [yf (tT) - yo(tR) - dsin ,e(tR)]2 + z (tT)

-[Xf(tR) - Xo(tR) - dcos 0,(tR)]2

-[yf(tR) - yo(tR) - dsin 0,(tR)]2 - Z(tR)

= [XJ(tT) - o(tR)12 + [yf(tT) - yo(tR)] 2 + Z2(tT)

+ 2d cos Oe(tR) [xf (tR) - X(tT)]

-[Xf(tR) - (tR)]2 - [Yf(tR) - yo(tR)] 2
- Z(tR)

+ 2d sin O,(tR) [yf(tR) - yf(tT)]

or

rT- rR = 2ed + f, (B.6)

where

e [Xf(tR) - xf(tT)]cos Oc(tR) - [yf(tR) + yf (tT)]sin (tR)

f _ [Xf(tT) -- o(tR)]2 + [yf(tT) - y(tR) 2 + f(tT)

-[f (tR) - ([(tR)]R - [f(tR) - yo(tR)]2 - Z2(tR).
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From Eqs. (B.1), (B.2), (B.4), and (B.5) we also have

rT + r + 2 rTrR = 4r2

* 2rTrR = 4r2 - r- _ r

* 4rTrR = 16r4 + r4 + 2r T r
R - 8r 2 (r + rR)

=• 16r 4 - 8r 2 (rT + rR) r + r 4- 22 = 0.

Therefore,

16r4 - 8r 2 (r + r) + (rT - 2)2 = 0

From Eqs. (B.1), (B.2), (B.4), and (B.5),

rT + r = [xf(tT)- Z(tR)]2 + [yf(tT)- y.(tR)]2 + zf(tT)

+ [Xf(tR) - X,(tR)] + [yf(tR)- y,(tR)] 2 + Zf(tR)

= [xf(tT) - Xo(tR) - d cos ,(tR)]2

+ [yf(tT) - yO(tR) - dsinO,(tR)]2 + Z2(tT)

+ [f (tR) - Xo(tR) - dcos Oe(tR)]2

+ [Yf (tR) - yo(tR) - dsin ,e(tR)]2 + Z (tR)

= [Xf(tT) - Xo(tR)] 2 + [yf(tT)- yo(tR)]2 + z2(tT)

+ d2 - 2dcos 0e(tR) [Xf(tR) + Xf(tT) - 2xo(tR)]

+ [Xf(tR) - Xo(tR)]2 + [yf(tR)- yo(tT)]2 + Zf(tR)

+ d2 - 2dsin 0,(tR) [yf(tT) + yf(tR) - 2yo(tR)],

or

r2 + rR = 2d2 - 2gd + 2h 2,

where

9

h2

- [Xf(tR) + Xf (tT) - 2o(tR)]cosOe(tR) + [yf(tR) + yf(tT) - 2yo(tR)]sinO,(tR)

I ([Xf(tT) - Xo(tR)] + [yf(tT) - yo(tR)12 + Zf(tT)

+ [Xf(tR) - Xo(tR)] 2 + [yf(tR) - yo(tR)]2 + Z2(tR)) ·
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Substituting Eqs. (B.8) and (B.6) into (B.7) we obtain

16r 4 - 8r2 (2d2 - 2gd + 2h 2) + (2ed + f) 2 = 0,

which, after rearranging the terms, yields

4(e2 - 4r2 )d 2 + 4(ef + 4gr2)d + 16r 4 - 16h 2r 2 + f 2 = 0.

The solution to this quadratic equation in d yields

-4(ef + 4gr2 ) i /16(ef + 4gr2)2 - 16(e 2 - 4r 2)(16r 4 - 16h2 r2 + f 2 )

8(e 2 - 4r 2 )

and after simplification we obtain the final result

ef - gr 2 - 2r/16r4 + 4(g 2 - e2 - 4h2)r 2 + f 2 + 2efg + 4e2h2

2(r 2 - e 2)

136

r



Bibliography

[1] Brian D. O. Anderson and John B. Moore. Optimal Filtering. Prentice-Hall, Inc.,
Englewood Cliffs, N. J., 1979.

[2] Jean-Marie Augustin. Side scan acoustic images processing software. In Proceedings
of the 1986 Working Symposium on Oceanographic Data Systems, pages 221-228,
San Diego, CA, February 1986.

[3] Jean-Marie Augustin and Michel Voisset. Images sonar et cartographie en geologie.
L'Onde Electrique, 69(3):20-27, May/June 1989.

[4] J. M. Berkson and C. S. Clay. Transformation of side-scan sonar records to a linear
display. Int. Hydrogr. Rev., 50(2):55-59, 1973.

[5] Phillip R. Bevington. Data Reduction and Error Analysis for the Physical Sciences.
McGraw-Hill, New York, 1969.

[6] J. G. Blackinton, D. M. Hussong, and J. G. Kosalos. First results from a combination
side-scan sonar and seafloor mapping system (SeaMARC II). In Proceedings of the
15th Annual Offshore Technology Conference, volume 1, pages 307-314, Houston,
Texas, May 1983.

[7] R. S. Bryant. Side scan sonar for hydrography. Int. Hydrogr. Rev., 52(1):43-56,
1975.

[8] Pat S. Chavez, Jr. Processing techniques for digital sonar images from GLORIA.
Photogrammetric Eng. and Remote Sens., 52(8):1133-1145, August 1986.

[9] W. D. Chesterman, P. R. Clynick, and A. H. Stride. An acoustic aid to seabed
survey. Acoustica, 8:285-290, 1958.

[10] C. S. Clay, John Ess, and Irving Weisman. Lateral echo sounding of the ocean bottom
on the continental rise. J. of Geophysical Research, 69(18):3823-3835, September
1964.

[11] C. S. Clay and H. Medwin. Acoustical Oceanography. John Wiley & Sons, New
York, 1977.

[12] E. Clerici. Evaluation of relative effectiveness of some image processing techniques
applied to side-scan sonar data. In Proceedings of the US-Australia Workshop on

137



Image Processing Techniques for Remote Sensing, pages 1-10, Canberra, Australia,
May 1978.

[13] Peter Clifford. Real time seafloor mapping. Sea Technology, 20:22-26, May 1979.

[14] R. Cooper. An analysis of the effect of vehicle yaw on gloria sonographs. Report 6,
Institute of Oceanographic Sciences, Godalming, U.K., 1974.

[15] P. N. Denbigh. A bathymetric side-scan sonar. In Ultrasonics International 79
Conference Procedings, pages 321-326, May 1979.

[16] P. N. Denbigh. A review of rapid depth measuring techniques and the development
of bathymetric side scan sonar. In W. G. A. Russell-Cargill, editor, Recent Devel-
opments in Side Scan Sonar Techniques, chapter 3, pages 47-79. Central Acoustics
Laboratory, University of Cape Town, South Africa, 1982.

[17] P. N. Denbigh. Stereoscopic visualization and contour mapping of the sea bed
using a bathymetric sidescan sonar (BASS). The Radio and Electronic Engineer,
53(7/8):301-307, July/August 1983.

[18] P. N. Denbigh and B. W. Flemming. Range prediction and calibration in side scan
sonar. In XV. G. A. Russell-Cargill, editor, Recent Developments in Side Scan Sonar
Techniques, chapter 4, pages 81-100. Central Acoustics Laboratory, University of
Cape Town, South Africa, 1982.

[19] T. D. Donovan and A. H. Stride. An acoustic survey of the sea floor south of Dorset
and its geological interpretation. Philos. Trans. R. Soc., B244:299-330, 1961.

[20] C. Eaves-Walton and G. A. Shippey. Digital image processing for sidescan sonar data
analysis. In Fifth International Conference on Electronics for Ocean Technology,
number 72, pages 203-209, March 1987.

[21] H. E. Edgerton. Sonar Images. Prentice Hall, Englewood Cliffs, 1986.

[22] Marguerite Ennis and Johannes W. J. van Wick. Image processing on side scan
sonar records. In Proceedings of the Fourth South African Symposium on Digital
Image Processing, pages 83-93, Durban, South Africa, July 17-18 1986.

[23] B. W. Flemming. Causes and effects of sonograph distortion and some graphical
methods for their manual correction. In W. G. A. Russell-Cargill, editor, Recent
Developments in Side Scan Sonar Techniques, chapter 5, pages 103-138. Central
Acoustics Laboratory, University of Cape Town, South Africa, 1982.

[241 B. W. Flemming. A historical introduction to underwater acoustics with special
reference to echo sounding, sub-bottom profiling and side scan sonar. In W. G. A.
Russell-Cargill, editor, Recent Developments in Side Scan Sonar Techniques, chap-
ter 1, pages 3-9. Central Acoustics Laboratory, University of Cape Town, South
Africa, 1982.

138



[25] P. W. Flemming. Side-scan sonar: A practical guide. Int. Hydrogr. Rev., 53(1):65-92,
January 1976.

[26] Arthur Gelb, editor. Applied Optimal Estimation. The MIT Press, Cambridge,
Mass., 1974.

[27] Peter T. Gough. A synthetic aperture sonar system capable of operating at high
speed and in turbulent media. IEEE J. Ocean Eng., OE-11(2):333-339, April 1986.

[28] J. C. Hopkins. A note on methods of producing corrected side-scan sonar displays.
Int. Hydrogr. Rev., 49(2):100-106, 1972.

[29] J. C. Hopkins. Tape recording of side scanning sonar signals. Int. Hydrogr. Rev.,
49(1):59-70, 1972.

[30] Didier Jan and Jol Minot. Les traitements d'image en sonar lateral. L'Onde
Electrique, 69(3):13-19, May/June 1989.

[31] M. Klein. Side scan sonar. Undersea Technology, 8:24-26, April 1967.

[32] M. Klein. A modular sonar system for seabed mapping. In W. G. A. Russell-Cargill,
editor, Recent Developments in Side Scan Sonar Techniques, chapter 2, pages 11-44.
Central Acoustics Laboratory, University of Cape Town, South Africa, 1982.

[33] Dieter Kolouch. Interferometric side-scan sonar: A topographic sea-floor mapping
system. Int. Hydrogr. Rev., 61(2):35-49, July 1984.

[34] Donald J. Krotser and Martin Klein. Side-scan sonar: Selective textural enhance-
ment. In Oceans '76 Conference Proceedings, pages 16E-1 to 16E-6. IEEE-MITS,
September 1976.

[35] W. Kunze. General aspects of application of horizontal echo sounding method to
shipping. Int. Hydrogr. Rev., 34:63-72, 1957.

[36] A. S. Laughton. The first decade of GLORIA. J. of Geophysical Research,
86(B12):11511-11534, December 1981.

[371 0. Leenhardt. Side scanning sonar - a theoretical study. Int. Hydrogr. Rev., 51:61-
80, 1974.

[38] Lennart Ljung. System Identification. Prentice-Hall, Inc., Englewood Cliffs, N. J.,
1987.

[39] Bruce P. Luyendyk, Earl J. Hajic, and David S. Simonett. Side-scan sonar mapping
and computer-aided interpretation in the santa barbara channel, california. Marine
Geophysical Researches, 5(4):365-388, 1983.

[40] Raman K. Mehra. On-line identification of linear dynamic systems with applications
to kalman filtering. IEEE Trans. on Automatic Control, AC-16(1), February 1971.

139

(_ _·_ I · _1__� �_�1_1_1 11 X ·� _



[41] Peter R. Paluzzi et al. Computer image processing in marine resource exploration.
In Oceans '76 Conference Proceedings, pages 4D-1 to 4D-10, Washington, D.C.,
September 1976. IEEE-MTS.

[42] Peter R. Paluzzi et al. Computer rectification and mosaicking of side-looking sonar
images. In Proceedings of the 13-th Annual Offshore Technology Conference, pages
103-114, Houston, Texas, May 1981.

[431 Athanasios Papoulis. Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, Inc., New York, 2 nd edition, 1984.

[44] J. M. Preston. Coordinates as determined by side scan sonar. Technical Memoran-
dum 88-2, Defence Research Establishment Pacific, Victoria, BC, January 1988.

[451 David B. Prior, James M. Coleman, and Louis E. Garrison. Digitally acquired
undistorted side scan sonar images of submarine landslides, Mississippi River delta.
Geology, 7:423-425, September 1979.

[46] Thomas Beckett Reed IV and Donald Hussong. Digital image processing techniques
for enhancement and classification of SeaMARC II side scan sonar imagery. J. of
Geophysical Research, 94(B6):7469-7490, June 1989.

[47] Stuart Rusby. A long range side-scan sonar for use in the deep sea (G.L.O.R.I.A.
Project). Int. Hydrogr. Rev., 47(2):25-39, 1970.

[48] I. C. Russel. Dual channel sidescan sonar. Int. Hydrogr. Rev., 55(1):27-100, January
1978.

[49] Mhasaaki Shishido and Kenji Naito. A study on picture improvement for side looking
sonar - part 1. NEC Research & Development, (53):62-74, April 1979.

[50] Merrill Ivan Skolnik. Introduction to Radar Systems. McGraw-Hill, Inc., New York,
2nd edition, 1980.

[51] M. L. Somers et al. GLORIA II - an improved long range sidescan sonar. In
Oceanology International Conference Proceedings, pages 16-24, London, 1978.

[52] M. L. Somers and A. R. Stubbs. Sidescan sonar. IEEE Proceedings, 131(3):243-256,
June 1984.

[531 James Spottiswoode and Maxwell Dobson. A fibre optic recording oscilloscope for
the display of side-scan sonar and seismic data. Marine Geology, 18(5):M73-M76,
1975.

[54] T. K. Stanton. Sonar estimates of seafloor microroughness. J. Acoust. Soc. Am.,
75(3):809-818, March 1984.

[551 W. Kenneth Stewart, Jr. Multisensor Modeling Underwater with Uncertain Infor-
mation. PhD thesis, Massachusetts Institute of Technology, Cambridge, Mass., July
1988.

140

II _ __ __



[56] A. R. Stubbs. Identification of patterns on asdic records. Int. Hydrogr. Rev.,
40(2):53-68, 1963.

[57] P. G. Teleki et al. Sonar survey of the U.S. atlantic continental slope; acoustic
characteristics and image processing techniques. In Proceedings of the 13-th Annual
Offshore Technology Conference, pages 91-102, Houston, Texas, May 1981.

[58] D. G. Tucker. Sideways looking sonar for marine geology. Geo-Marine Technology,
2(9):18-23, October 1966.

[59] M. J. Tucker and A. R. Stubbs. A narrow-beam echo-ranger for fishery and geological
investigations. British J. Appl. Phys., 12:103-110, 1961.

[60] R. J. Urick. Principles of Underwater Sound for Engineers. McGraw-Hill, New
York, 1967.

[61] C. D. T. Walker. Development of a ground speed corrected side scan sonar display
system. Ultrasonics, 16:108-110, May 1978.

[62] E. Whipp and D. A. Horne. Digitising of side-scan sonar signals. Ultrasonics,
14(5):201-204, September 1976.

141




