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by
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Abstract

The cost of implementation of discrete-time filters is often strongly dependent on the num-
ber of non-zero filter coefficients or the precision with which the coefficients are represented.
This thesis addresses the design of sparse and bit-efficient filters under different constraints
on filter performance in the context of frequency response approximation, signal estimation,
and signal detection. The results have applications in several areas, including the equal-
ization of communication channels, frequency-selective and frequency-shaping filtering, and
minimum-variance distortionless-response beamforming.

The design problems considered admit efficient and exact solutions in special cases.
For the more difficult general case, two approaches are pursued. The first develops low-
complexity algorithms that are shown to yield optimal or near-optimal designs in many
instances, but without guarantees. The second focuses on optimal algorithms based on the
branch-and-bound procedure. The complexity of branch-and-bound is reduced through the
use of bounds that are good approximations to the true optimal cost. Several bounding
methods are developed, many involving relaxations of the original problem. The approx-
imation quality of the bounds is characterized and efficient computational methods are
discussed. Numerical experiments show that the bounds can result in substantial reduc-
tions in computational complexity.

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Engineering
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Chapter 1

Introduction

Discrete-time filters are widely used in signal processing applications spanning digital com-

munications, radar and sonar, consumer electronics, biomedical diagnostics, and many ad-

ditional domains. The prevalence of discrete-time filtering is expected to increase as more

devices are endowed with sensing, processing, and communication capabilities. Accordingly,

the design of discrete-time filters has remained an area of ongoing research.

As with many problems in engineering, filter design can be viewed as a trade-off be-

tween achieving a desired level of performance and maintaining low complexity. Naturally,

it is desirable to make the most efficient use of resources to accomplish a filtering task.

The measure of efficiency that is most relevant depends on the medium in which the fil-

ter is implemented and the availability of different resources. For example, the amount of

computation may still be a limiting factor when processing data at high rates or in high

dimensions, notwithstanding advances in digital electronics. If the filter is to be imple-

mented on a wireless device as is increasingly common, power consumption may be the

primary concern. In integrated circuit implementations, circuit area is often used as a mea-

sure of complexity. Similar considerations carry over to the design of sensor arrays, which

is a close analogue to discrete-time filter design in many cases. Sensors can be expensive

and can therefore dominate the cost in applications such as underwater acoustic arrays, or

they can be inexpensive and consequently constrained in terms of computation, power, and

communication.

The efficiency of a filter implementation also depends on many factors at different stages

of the design and implementation process. For example, the ultimate speed and fabrica-
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tion cost of integrated circuit implementations are strongly influenced by the underlying

technology. Numerous techniques at the circuit and architectural levels can be employed to

increase speed or decrease area and power consumption. With sensor arrays, the physical

design of the individual sensors determines to a large extent the cost and capabilities of the

array.

Given the variety of relevant complexity measures and contributors to efficiency, from a

signal processing standpoint it is useful to define more abstract measures of complexity that

are appropriate for design at the algorithmic level. With these abstractions, the design of

the filter, or more precisely the specification of the algorithm embodied by the filter, can be

done without the need for detailed knowledge of the implementation. Indeed, as discussed

above, the filter designer often does not have full control over the physical realization of

the filter. The choice of more abstract measures of complexity (and also of performance)

is somewhat of an art as it should balance faithfulness to the eventual implementation

against the tractability of the design problem. On the one hand, it is desirable that the

chosen measure of complexity be an accurate reflection of the true implementation cost. On

the other hand, the ease of generating and optimizing designs depends on the measures of

complexity and performance selected, and also on the relationship between them.

A conventional abstraction in this regard is to measure the complexity of a filter by

the total number of coefficients, which is often referred to as the order of the filter. The

order can be a reasonable metric since it controls both the amount of computation and

the amount of memory at the same time. Many classical methods in filter design optimize

different performance measures given a fixed filter order. For example, the Parks-McClellan

algorithm [5] minimizes the Chebyshev error with respect to an ideal frequency response

for a linear-phase FIR filter of a given length. If the error is instead measured in a least-

squares sense, an optimal design can be specified in closed form. In a similar vein, when

the filter length is restricted, the linear minimum mean-square error (MMSE) estimate of

a random process is given by the FIR Wiener filter. These conventional methods make it

straightforward to determine an optimal trade-off between performance and filter order.

This thesis addresses the design of discrete-time filters according to less conventional

measures of complexity that can be more representative of the actual cost of implementation

in several common forms. A variety of complexity and performance measures are consid-

ered, giving rise to different trade-offs and problem formulations. Once a particular pair
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of measures has been selected, a natural objective is to obtain the best possible trade-off

between them. Accordingly, the tools of optimization, both theoretical and practical, will

play a prominent role throughout the thesis. The problem can be posed as either one of min-

imizing complexity given performance specifications, or of maximizing performance given

complexity constraints, depending on which formulation is more convenient. It will be seen

however that for the complexity measures considered in this thesis, an optimal trade-off

is often computationally difficult to determine. The difficulty of optimal design necessi-

tates a second trade-off involving the design algorithm, specifically a trade-off between the

optimality of the design and the computational complexity of the algorithm.

At one end of the spectrum, we will be interested in algorithms that are constructed

to be low in complexity. Such algorithms are desirable in situations where the amount of

computation is limited, for example when a filter is redesigned adaptively. In some special

cases, low-complexity algorithms are sufficient to ensure optimal designs, but in the general

case they do not. It will be seen however in numerical experiments and design examples

that low-complexity algorithms can yield designs that are optimal or near optimal in many

instances. Unfortunately, these algorithms by themselves do not provide any indication of

the proximity to the true optimum.

An equally important objective is to develop optimal algorithms. Aside from the obvious

benefit of guaranteeing optimal solutions, the main value of optimal algorithms lies in

determining fundamental limits and serving as a benchmark against which lower-complexity

algorithms may be compared. This last point can be especially relevant when it is the

lower-complexity algorithms that will be used in practice. In this thesis, we will focus on

a general-purpose combinatorial optimization procedure known as branch-and-bound. The

emphasis will be on improving the efficiency of branch-and-bound to mitigate the high

intrinsic complexity of the design problem. The principal approach to achieving greater

efficiency is to develop approximations that lead to bounds on the true optimal value (true

minimum complexity or maximum performance) that can be leveraged by the branch-and-

bound algorithm.

A third alternative intermediate between the first two can be obtained by limiting the

complexity of the branch-and-bound algorithm, for example by terminating it after a spec-

ified period of time. In this case, the design returned is at least as good as one given

by a low-complexity algorithm, and we have in addition a bound on the deviation from
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optimality. This intermediate option will be used in some of the design examples in the

thesis.

In the next section, the measures of complexity emphasized in this thesis are discussed

and motivated in the context of common filter implementations. We also delineate the scope

of the thesis by briefly discussing areas of filter design that are not addressed further. Section

1.2 summarizes previous work in designing filters according to the complexity measures

introduced in Section 1.1. In Section 1.3, the organization of the body of the thesis is

described and the content of each chapter is highlighted.

1.1 Complexity measures and scope of thesis

As noted in the introduction, the total number of coefficients is traditionally used as an

indication of filter complexity. It is often the case however that the cost of implementation

is dominated by arithmetic operations. In these situations, the number of non-zero coeffi-

cients may be a more appropriate metric given that operations associated with zero-valued

coefficients may be omitted. This leads to a desire for designs with fewer non-zero coef-

ficients, i.e., sparse designs, which can be exploited to reduce computation, hardware, or

power consumption, depending on the form of implementation. For instance, in integrated

circuit implementations, multipliers and adders can be deactivated or even eliminated to

save power and area, or the supply voltage may be lowered to take advantage of the slower

rate at which computations can be performed. Sparsity is perhaps of even greater interest

in the case of sensor arrays since a sparse design allows for the elimination of array elements,

yielding savings in data acquisition and communication costs. With these motivations in

mind, a major part of the thesis focuses on the design of sparse filters. We note here that

it is straightforward to generalize the coefficient value associated with lower cost, which is

zero in the case of sparse filters, to an arbitrary non-zero value.

The metric of coefficient sparsity assumes implicitly that all operations involving non-

zero coefficients are equally costly. This assumption is largely true when the operations are

performed by standard units, e.g. generic multiplier circuits or calls to multiplication func-

tions. However, there are other situations where the specific values of non-zero coefficients

can significantly affect the complexity. In digital implementations in particular, coefficients

must be quantized and the complexity depends on the number of bits used to represent each

24



coefficient. Usually the number of bits is the same for all coefficients and is referred to as

the coefficient wordlength. In this thesis, we consider a measure of complexity that refines

the concept of wordlength by permitting different numbers of bits for each coefficient. We

assume a conventional sign-magnitude binary representation and measure the cost of each

coefficient by the position of the most significant non-zero bit, or equivalently, by the num-

ber of bits excluding leading zeros. Hence we refer to this cost measure as the number of

non-leading-zero (NLZ) bits. The NLZ criterion is motivated by the tendency of arithmetic

operations involving larger coefficients to be more expensive, requiring for instance larger

multipliers or more active bits when all multipliers are constrained to be of the same size.

Electrical switching activity also increases with larger coefficients [6,7]. Thus a decrease in

the total number of NLZ bits can result in corresponding decreases in power and hardware.

The NLZ measure assumes that it is relatively simple to avoid operations associated

with leading zero bits. The idea can be naturally extended to include trailing zeros and

zeros between non-zero bits, leading to a so-called multiplierless implementation in which

multiplications are realized using a combination of additions and bit shifts, omitting addi-

tions corresponding to zero-valued bits. In the context of multiplierless implementations, it

has been observed that the number of non-zero bits, and hence the number of additions, can

be significantly reduced by using a number representation based on signed powers-of-two

(SPTs). In an SPT representation, each filter coefficient is represented in the form

P−1∑

p=0

sp2
p, sp ∈ {−1, 0,+1},

where P is the maximum allowable wordlength. In terms of implementation, a value of

+1 for the digit sp indicates an addition following a bit shift by p positions, whereas sp =

−1 indicates subtraction. The use of signed digits enables greater efficiency in terms of

the number of additions and subtractions; for example, multiplication by the constant

15 = 24 − 1 can be implemented through one subtraction instead of three additions in an

unsigned representation. It can be seen that the SPT representation of a number is not

unique, and even the representation with the minimal number of non-zero digits may not be

unique. Among minimal representations, one uniquely defined choice is the canonic signed

digit (CSD) representation, which has the additional property that no two non-zero digits

are adjacent [8]. A CSD representation reduces the number of additions and subtractions
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by about 1/3 on average relative to a conventional two’s complement representation [9].

Accordingly, many researchers have chosen to focus on the CSD representation, and we will

do the same in this thesis. Specifically, the complexity of a design will be measured by the

total number of non-zero digits in all coefficients.

We note that the NLZ measure can be viewed as an intermediate step between coefficient

sparsity and bit sparsity in a multiplierless setting. The NLZ measure is emphasized in

this thesis because of its mathematical properties, notably monotonicity with respect to

coefficient magnitude, and because it is often possible to omit leading zeros without resorting

to a full multiplierless implementation.

Thus far, we have discussed only time-domain implementations of linear time-invariant

filters. FIR filters can also be implemented in the frequency domain through multiplication

with the discrete Fourier transform of the input sequence. Frequency-domain implementa-

tions can be particularly efficient in terms of computation thanks to FFT algorithms; for

a filter with impulse response of length N , the computation of N output samples requires

on the order of N logN arithmetic operations compared to N2 for direct convolution [10].

However, this comparison does not take into account other measures of efficiency. Depend-

ing on the implementation, FFT-based filtering may require more complicated data access,

control mechanisms, and/or additional memory, leading to higher hardware cost and power

consumption. The latency introduced by filtering the input in blocks may also be unaccept-

able. Moreover, the computational complexity of FFT-based filtering is usually dominated

by the FFT itself, and further optimization of the complexity is mainly an issue of FFT

implementation and not of filter design. Hence in keeping with the emphasis on filter design,

we will restrict our attention to time-domain implementations.

This thesis focuses mainly on FIR filters, and more specifically on direct form structures

which are commonly used in the FIR case. Since the design of direct-form FIR filters is

analogous to the design of linear sensor arrays, the methods in this thesis are directly

applicable to the latter as well and some of the design examples are motivated by array

processing problems. The algorithms that we develop for direct-form structures can be seen

as complementary to the many approaches for reducing computational complexity that

rely on cascade structures [11–22]. Most of the cascade-form techniques are restricted to

frequency-selective filters and narrowband filters in particular, for which specific cascade

configurations have been found to be efficient. Moreover, they do not apply to sensor arrays.
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In contrast, our algorithms are equally applicable to all types of filters. Furthermore, most of

the constituent filters in the cascade structures cited above are assumed to be implemented

in direct form and designed using conventional algorithms. Thus the problem of optimizing

the computational complexity of direct-form filters is still unresolved. Direct-form and

cascade techniques can also be combined to yield more efficient implementations than with

either alone as demonstrated in [23,24].

IIR filters can be more attractive than FIR filters in terms of efficiency, assuming that

linear phase is not a requirement and that issues with stability and roundoff error feed-

back can be managed. In particular, given similar frequency responses, the total number

of coefficients for an IIR filter is usually lower than for an FIR filter. Methods developed

for direct-form FIR filters can be applied to design the numerator polynomial in the trans-

fer function of an IIR filter. Similarly, the design of the denominator polynomial can be

transformed into an FIR design problem provided that there is some means to ensure the

stability of the filter. However, even for the FIR case, the problems of optimizing the com-

plexity measures we have chosen, namely the number of non-zero coefficients, the number of

NLZ bits, and the number of non-zero digits in a CSD representation, generally have non-

polynomial complexity and are computationally difficult. As we will see, the difficulty is

mitigated somewhat in the FIR case by the linear or convex quadratic relationship between

the filter coefficients and the performance measures considered in the thesis. In contrast, in

the general IIR problem of simultaneously designing the transfer function numerator and

denominator, there is a nonlinear, non-convex relationship between the chosen performance

measures and the most common choices for implementation parameters, i.e., the coefficients

in a direct form or cascade form structure or the locations of polynomial roots. While de-

signs can be obtained heuristically or in some special cases with the aid of design formulas,

optimal design is difficult even in the conventional setting of fixed filter order. For these

reasons, we do not treat the IIR case in this thesis. Similar statements apply to lattice

structures and other structures for which there is a complicated relationship between the

coefficients in the implementation domain and the measure of performance.
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1.2 Previous work

In this section, we summarize previous work in filter design that relates to the measures of

complexity identified in Section 1.1. The design of sparse filters is treated in Section 1.2.1

and the design of filters with a reduced number of bits or SPTs is treated in Section 1.2.2.

1.2.1 Sparse filter design

A classical problem in filter design is the approximation of an ideal frequency response.

Previous work on the design of sparse filters to approximate frequency responses can be

broadly categorized into two approaches. In the first approach, which is applicable mostly

to frequency-selective filters, the locations of zero-valued coefficients are pre-determined in

accordance with the characteristics of the desired frequency response. In examples such

as interpolated FIR filters [17, 18] and the frequency-response masking technique [20, 21],

a sparse filter is cascaded with one or more equalizing filters. Sparse direct-form designs

for approximately nth-band filters were developed in [25] 1. The second approach is more

general and does not pre-specify the locations of zero-valued coefficients, instead attempt-

ing to choose them optimally to minimize the number of non-zero coefficients subject to

frequency response constraints. The resulting combinatorial optimization problem can be

solved exactly using integer programming [3,26]. The complexity of optimal design has also

motivated the development of low-complexity heuristics, based for example on forcing small

coefficients to zero [27], orthogonal matching pursuit [1], or ℓ1 relaxation [28]. A non-convex

approximate measure of sparsity based on the p-norm has also been proposed [29].

All of the references above address the approximation of frequency responses according

to a Chebyshev error criterion. In comparison, weighted least-squares criteria have received

less attention. As discussed in [30], a weighted least-squares metric is commonly employed

as an alternative to the Chebyshev metric because of greater tractability and an association

with signal energy or power. Approaches based on zeroing small coefficients [31] and subset

selection [22] have been developed for the weighted least-squares case.

A second application of discrete-time filters is in estimating the values of a signal from

those of another. In the context of sparsity, a particularly important example is the equal-

ization of communication channels, which involves the estimation of transmitted symbols

1An n-th band filter has the property that every nth impulse response coefficient is equal to zero except
for the central coefficient.
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from received samples corrupted by noise and inter-symbol interference. It has been ob-

served that the sparsity of the power-delay profiles of many communication channels can

be exploited in the design of the equalizer. While there are numerous specialized methods

for estimating sparse channel responses that can be combined with conventional equaliza-

tion techniques (for example in [32]), here we focus on methods for designing equalizers

that are also intended to be sparse. Optimal algorithms for minimizing the mean squared

estimation error given a fixed number of equalizer taps are developed in [33] and [34], the

former based on branch-and-bound for discrete-time equalizers and the latter based on non-

linear optimization for continuous-time tapped-delay-line equalizers. In [35], the locations

of non-zero equalizer coefficients are chosen to coincide with the locations of large channel

coefficients. This approach is refined in [36] and [37], which derive analytical expressions for

the coefficients of non-sparse equalizers in terms of the channel coefficients and use these

expressions to allocate non-zero taps in a sparse equalizer. A modified decision-feedback

equalizer (DFE) structure is proposed in [38] to better exploit the sparsity of the channel re-

sponse. An alternative class of approximate methods allocates taps according to simplified

mean squared error (MSE) or output signal-to-noise ratio (SNR) metrics. The allocation

can be done in a single pass [39], two alternating passes [40], or one tap at a time in a

recursive manner [41,42]. The sparsity of the channel response is used in [42] to reduce the

tap allocation search space. A method based on the theory of statistical sampling design is

also presented in [41].

Another variant of the estimation problem is signal prediction in which past values of a

signal are used to predict future values. Sparse linear prediction is discussed in [43], which

uses iteratively reweighted ℓ1 minimization to promote sparsity in the predictor coefficients

and in the residuals, thereby improving the efficiency of speech coding.

A third context in which filters are used is in the detection of signals in noisy environ-

ments, where the objective of filtering is to increase the probability of detection. A widely

used measure of performance in detection is the SNR of the filter output. It is well-known

that the SNR is monotonically related to the probability of detection in the case of Gaussian

noise [44]. Motivated by the desire to reduce communication costs in distributed systems,

Sestok [2,45] considered the design of linear detectors that use only a subset of the available

measurements.
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1.2.2 Bit-efficient filter design

The effect of coefficient quantization on the frequency response has long been a concern

in filter design. One method for combating coefficient quantization is to carry out some

or all of the design in the discrete-valued domain. Early heuristic efforts [46, 47] demon-

strated that discrete optimization can reduce the coefficient wordlength necessary to satisfy

given frequency response specifications when compared to straightforward rounding of a

continuous-valued design. The wordlength can also be reduced by minimizing a certain

statistical measure before rounding [48]. More recently, there has been research into rep-

resenting coefficients by their differences or applying other transformations to decrease the

dynamic range and wordlength [6,7]. Perhaps the first application of integer programming

to the problem is by Kodek in [49] for the case of Chebyshev-optimal linear-phase FIR

filters. A simplified branch-and-bound algorithm was suggested in [50]. For the specific

case of uniformly quantized coefficients, a comparison between integer programming and

local search methods suggested that integer programming offers a small performance benefit

relative to its much greater complexity [51].

In contrast, integer programming was found to significantly improve performance in the

case of non-uniform coefficient quantization, and specifically for coefficients that are sums

of a limited number of SPTs [52]. As discussed in Section 1.1, SPT representations are

particularly attractive for multiplierless filter design, and hence there is a significant body

of research directed at these representations that is summarized in the remainder of the

section.

When the number of SPTs per coefficient is restricted, the coefficient values that can be

realized are non-uniformly distributed. Many authors have therefore considered the option

of scaling the filter coefficients by an overall factor to improve the approximation to an

ideal frequency response. Formal algorithms for choosing an appropriate scale factor are

presented in [53].

Several techniques have been developed to alleviate the complexity of integer program-

ming by exploiting properties of the filter design problem. In [54], the convexity of the

minimax criterion was exploited to reduce the complexity of a branch-and-bound procedure.

In a similar spirit, it was observed in [55] that nearby subproblems in a branch-and-bound

tree often exhibit similar sets of active constraints, suggesting a way to reduce the number
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of constraints in the solution of subsequent subproblems. Theoretical limits on the perfor-

mance achievable by discrete-coefficient filters were used to improve lower bounds on the

optimal cost of subproblems in [56].

As a complement to integer programming, various local search strategies have been

devised in which the search complexity is controlled by limiting the number of coefficients

that are varied and the number of values that are searched at any one time [8, 57, 58].

Other techniques include using heuristic sensitivity criteria to guide the quantization of

coefficients [59,60].

Later it was observed by many researchers that the quality of the frequency response

approximation tends to saturate when the number of SPTs is constrained on a per-coefficient

basis. Cascade structures [61], filter sharpening [58,62] and differential coefficients [63] were

proposed to circumvent this fundamental limit. The saturation effect can also be avoided to

some extent and without increasing the implementation complexity by constraining only the

total number of SPTs and allowing them to be distributed as needed among the coefficients.

An integer programming formulation of the minimization of the total number of SPTs

subject to frequency response constraints was given in [64]. In both [64] and [65], knowledge

of the feasible range for each coefficient was used to reduce the number of free variables. The

idea of using information provided by feasible ranges was further developed and combined

with an empirically effective branching strategy in [66].

Alternatives to integer programming are also available for the case in which the total

number of SPTs is fixed rather than the number for each coefficient. A low-complexity

strategy for allocating SPTs is given in [67]. Li et al. have developed an efficient algorithm

for minimizing the Chebyshev error in the impulse response domain rather than in the

frequency domain under a constraint on the total number of SPTs [68]. While a close

approximation of the impulse response tends to result in a close approximation of the

frequency response, this is not guaranteed and there is no direct control over the quality of

the frequency response approximation. More sophisticated extensions of the algorithm in

[68] attempt to incorporate a measure of the frequency response performance as well [9,69].

In a related approach, Llorens et al. consider the minimization of the impulse response error

in a p-norm sense for finite values of p [70].

While the majority of the literature has focused on Chebyshev approximation of fre-

quency responses, algorithms have also been developed to design discrete-coefficient FIR
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filters that minimize the weighted squared error. The weighted least-squares case is com-

putationally easier than the Chebyshev case because the continuous-valued version of the

problem has a closed-form solution. Branch-and-bound algorithms are presented in [71,72],

while an approach based on moving time horizons is proposed in [73]. The approach in [73]

can be seen as a generalization of sigma-delta quantization methods (e.g. [74]) in which the

frequency response distortion is directed away from a band of interest.

Given that the optimal design of discrete-coefficient filters often involves difficult discrete

optimization problems, a number of authors have been motivated to apply general-purpose

stochastic algorithms. Examples in this category include simulated annealing [75], mean

field annealing [76], and genetic algorithms [77,78].

A different approach altogether to reducing the computational complexity of multiplier-

less filters is to identify and eliminate redundant patterns of bits shared by many coefficients,

a technique known as common subexpression elimination. Computational savings are real-

ized by performing the computation specified by the bit pattern once and then distributing

the result to all coefficients that require it. Algorithms for common subexpression elimina-

tion can be found in [79–83].

1.3 Outline of thesis

The remainder of the thesis is organized into three parts. Each part examines a different

class of performance-complexity trade-offs. A conclusion and suggestions for future work

follow in Chapter 9.

The first part consists of Chapters 2–4 and addresses the design of sparse filters under

a quadratic constraint on performance. In Chapter 2, it is shown that three different

filter design problems: weighted least-squares approximation of frequency responses, signal

estimation, and signal detection, can be accommodated within this general framework. In

the remainder of Chapter 2, we present design algorithms that are restricted to be low in

computational complexity. Some of these algorithms are directed at special cases for which

they result in optimal designs. For the general case, we discuss a heuristic algorithm that

frequently yields optimal or near-optimal designs as seen in the examples in Chapter 4.

At the other end of the optimality-complexity trade-off, Chapter 3 discusses optimal

algorithms for quadratically constrained sparse filter design. An algorithm is developed
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based on the branch-and-bound procedure, which is reviewed in Section 3.1. As will be

made clear in that section, the complexity of branch-and-bound is strongly affected by the

quality of available lower bounds on the optimal cost. Therefore the bulk of Chapter 3

is focused on the development of lower bounds. Emphasis is placed on understanding the

quality of the bounds from both analytical and numerical perspectives. Equally important

is the complexity involved in computing the bounds, and hence we also discuss efficient

computational methods in Chapter 3.

In Chapter 4, the algorithms developed in Chapters 2 and 3 are applied to a range of

examples. We verify that the heuristic algorithm from Chapter 2 produces near-optimal

designs, and that the lower bounds derived in Chapter 3 can significantly reduce the com-

plexity of the branch-and-bound algorithm. Potential applications of the algorithms are

illustrated through design examples, specifically the design of sparse equalizers for wireless

communication channels and the design of sparse beamformers for detection and interference

rejection.

Chapters 5–7 form the second part of the thesis and extend the development of Chapters

2–4 to measures of complexity for quantized representations, specifically the number of

NLZ bits in a sign-magnitude binary representation and the number of SPTs in a CSD

representation. The same quadratic performance constraint is considered and our framework

applies again to the three problems of frequency response approximation, signal estimation,

and signal detection as discussed in Chapter 5. Chapter 5 also presents low-complexity

design algorithms, specifically exact algorithms for special cases and a heuristic algorithm

for the general case as in Chapter 2.

Chapter 6 follows the structure of Chapter 3 in developing optimal branch-and-bound

algorithms for bit-efficient filter design under a quadratic constraint. Much of the chapter

is again focused on lower bounds. The techniques of Chapter 3 are extended to the bit-

based complexity measures and the quality of the resulting bounds is evaluated. Efficient

computational methods are also addressed.

In Chapter 7, we discuss the application of the design algorithms in Chapters 5–6 to

a variety of examples. Similar to Chapter 4, it is shown that the lower bounds developed

in Chapter 6 are capable of making the branch-and-bound algorithm more efficient. We

also revisit some of the design examples from Chapter 4 and observe similar trade-offs and

dependences for the bit-based cost metrics.
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The third part of the thesis consists of Chapter 8 and is centered on the design of

sparse filters under a Chebyshev constraint in the frequency domain, i.e., a bound on the

maximum weighted frequency response error. We extend some of the methods of Chapters

2–3 to the Chebyshev error criterion. Two low-complexity heuristic algorithms are discussed

and some of the bounding techniques of Chapter 3 are generalized. However, because of

the significant increase in computational complexity, optimal algorithms are not developed

fully. We illustrate the performance of the heuristic algorithms and lower bounds through

several examples involving the design of frequency-selective filters and beamformers and a

frequency response equalizer.
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Chapter 2

Sparse filter design under a

quadratic constraint: Problem

formulations and low-complexity

algorithms

In Chapters 2–4, we consider three related problems in sparse filter design, the first involving

a weighted least-squares constraint on the frequency response, the second a constraint on

MSE in estimation, and the third a constraint on SNR in detection. It is shown in Section

2.1 that all three problems can be formulated under a common framework corresponding to

min
b

‖b‖0 s.t. (b− c)TQ(b− c) ≤ γ, (2.0.1)

where b is a vector of coefficients, Q is a symmetric positive definite matrix, c is a vector

of the same length as b, and γ > 0. We use for convenience the zero-norm notation ‖b‖0
to refer to the number of non-zero components in b. The abstract formulation in (2.0.1)

allows for a unified approach to solving not only the three stated problems but also others

with quadratic performance criteria as in (2.0.1).

The design of sparse filters according to (2.0.1) is in general a computationally difficult

problem. As is explained in Section 2.1, sparse filter design differs from the problem of

obtaining sparse approximate solutions to underdetermined systems of linear equations,
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i.e., the sparse linear inverse problem, which has received considerable attention recently in

compressive sensing. Therefore a different set of approaches is required. In this chapter, we

focus on design algorithms that are low in complexity. In some special cases, low-complexity

algorithms are sufficient to ensure optimal solutions to problem (2.0.1). Section 2.2 presents

three such cases in which the matrix Q is diagonal, block-diagonal, or banded. For the more

difficult general case, a low-complexity heuristic algorithm is developed in Section 2.3. This

algorithm occupies one end of the optimality-computational complexity trade-off discussed

in Chapter 1. Numerical experiments and design examples in Chapter 4 demonstrate that

the algorithm often yields optimal or near-optimal solutions, albeit without guarantees.

Optimal algorithms are considered later in Chapter 3.

2.1 Problem formulations and reductions

We begin this section with a discussion of the abstract problem (2.0.1), interpreting it from

a geometric perspective and contrasting it with the sparse linear inverse problem. We then

formulate in Sections 2.1.1–2.1.3 the problems of sparse filter design for weighted least-

squares approximation of frequency responses, for estimation or prediction under an MSE

constraint, and for signal detection under an SNR constraint. It is shown that all three

problems can be reduced to (2.0.1), making it sufficient to focus on (2.0.1) alone.

Problem (2.0.1) is characterized by a single quadratic constraint,

(b− c)TQ(b− c) ≤ γ. (2.1.1)

This constraint may be interpreted geometrically as specifying an ellipsoid centered at c.

As will be noted in Sections 2.1.1–2.1.3, the center c corresponds to the solution that

maximizes performance when all coefficients are permitted to be non-zero. The matrix Q

and parameter γ determine the size and shape of the set of feasible solutions surrounding c.

Specifically, as illustrated in Fig. 2-1, the eigenvectors and eigenvalues of Q determine the

orientation and relative lengths of the axes of the ellipsoid while γ determines its absolute

size. We will make reference to the ellipsoidal interpretation of (2.1.1) at several points in

Chapters 2–7.

The problem of sparse filter design as stated in (2.0.1) differs in at least two important

respects from the sparse linear inverse problem and more specifically its manifestations in

36



b1

b2

c

√
γ
λ1
v1

√
γ
λ2
v2

Figure 2-1: Ellipsoid consisting of solutions satisfying the quadratic constraint (2.1.1). λ1
and λ2 are eigenvalues of Q and v1 and v2 are the associated eigenvectors.

compressive sensing with noisy measurements [84,85], atomic decomposition in overcomplete

dictionaries [86], sparsity-regularized image restoration (e.g. [87] and references therein), and

sparse channel estimation [32,88,89]. The sparse linear inverse problem can be formulated

as

min
x

‖x‖0 s.t. ‖Φx− y‖2 ≤ ε, (2.1.2)

where ε is a parameter that limits the size of the residual Φx − y. The first distinction

between sparse filter design (2.0.1) and the sparse linear inverse problem (2.1.2) is in the

structure of the feasible solution sets. In many applications of (2.1.2), the dimension of y

is significantly lower than that of x and the system of equations is underdetermined. This

is deliberately the case in compressive sensing and in overcomplete decomposition, while

in channel estimation it is desirable to use relatively few measurements to estimate a long

but sparse response, especially if done adaptively. As a consequence, the matrix ΦTΦ,

which corresponds to Q in (2.0.1), is rank-deficient and the set of feasible solutions is not a

bounded ellipsoid but instead has infinite extent along certain directions. The second dif-

ference between sparse filter design and sparse linear inverse problems is one of perspective.

In compressive sensing, image restoration, and sparse channel estimation, a certain level

of sparsity or near-sparsity is assumed to enable reconstruction or estimation from fewer

measurements. This assumption leads to a formulation such as in (2.1.2). However, the

actual sparsity of a solution to (2.1.2) is of secondary importance as long as the larger goal

of accurate reconstruction or estimation is achieved. In contrast, in sparse filter design,
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maximizing sparsity is the main objective, while no prior assumption is made regarding the

expected level of sparsity. An algorithm that produces designs that are near-sparse in the

sense of having many small but non-zero coefficients is not sufficient by itself.

In the remainder of this section, the three problems considered in Chapters 2–4 are

reduced to problem (2.0.1). More specifically, it is shown that the performance constraint

in each problem can be reduced to

bTQb− 2fTb ≤ β, (2.1.3)

which is equivalent to (2.1.1) with f = Qc and β = γ − cTQc.

As mentioned in Section 1.1, this thesis is focused on FIR filter design, and we will use N

to denote the total number of coefficients, i.e., the dimension of the vector b. The choice of

N is governed by two considerations. First, N should be large enough to ensure the existence

of designs meeting the performance specifications. Equivalently, the parameter γ must be

positive. In Sections 2.1.1–2.1.3, it will be made clear how γ depends on the specifications in

each problem. As N is increased beyond the minimum required for feasibility, the optimal

cost in problem (2.0.1), i.e., the minimum number of non-zero coefficients, decreases or at

least stays the same. This is because all solutions that are feasible for a smaller value of N

are also feasible for a larger N . Thus to maximize sparsity, N should be chosen based on

the maximum allowable number of delay elements in a given application. For this reason,

we will often refer to N as the length of the filter, with the understanding that the final

design may require fewer delays if coefficients at the ends of the vector b are zero.

2.1.1 Weighted least-squares filter design

In this problem, we wish to design a causal FIR filter with coefficients b0, b1, . . . , bN−1 and

frequency response

H(ejω) =

N−1∑

n=0

bne
−jωn (2.1.4)

chosen to approximate a desired frequency response D(ejω) (assumed to be conjugate sym-

metric). Specifically, the weighted integral of the squared error is constrained to not exceed

a tolerance δ, i.e.,
1

2π

∫ π

−π
W (ω)

∣∣H(ejω)−D(ejω)
∣∣2 dω ≤ δ, (2.1.5)
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where W (ω) is a non-negative and even-symmetric weighting function. The number of

non-zero coefficients is to be minimized. Substituting (2.1.4) into (2.1.5), expanding, and

comparing the result with (2.1.3), we can identify

Qmn =
1

2π

∫ π

−π
W (ω) cos

(
(m− n)ω

)
dω, m = 0, . . . , N − 1, n = 0, . . . , N − 1, (2.1.6a)

fn =
1

2π

∫ π

−π
W (ω)D(ejω)ejωn dω, n = 0, . . . , N − 1, (2.1.6b)

β = δ − 1

2π

∫ π

−π
W (ω)

∣∣D(ejω)
∣∣2 dω. (2.1.6c)

The matrix Q defined by (2.1.6a) is symmetric, Toeplitz, and positive definite, the last

property holding as long as W (ω) is non-zero over some interval. Thus the frequency

response constraint (2.1.5) can be rewritten in the form of (2.1.3) or (2.1.1). The fact that

Q is Toeplitz is relatively unimportant as we will often work with submatrices extracted

from Q, which in general are no longer Toeplitz.

In the present case, the parameter γ is given by

γ = δ −
(

1

2π

∫ π

−π
W (ω)

∣∣D(ejω)
∣∣2 dω − cTQc

)
.

It can be seen from (2.1.3) and (2.1.5) that c = Q−1f is the minimum-error design of length

N and the quantity in parentheses above is the corresponding error. Hence γ is the amount

by which δ exceeds the minimum error.

The weighted least-squares criterion in (2.1.5) can arise as the result of modelling the

input to the filter as a wide-sense stationary (WSS) random process x[n] and using the

mean-squared deviation of the filter output from the ideal output as the error metric. The

error signal of interest e[n] is depicted in Fig. 2-2. The mean-squared error E{e[n]2} is given
by the left side of (2.1.5) with W (ω) = Φxx(e

jω), the power spectral density of the input.

In this case, (2.1.6) can be rewritten in terms of the autocorrelation function φxx[m] as

Qmn = φxx [|m− n|] ,

fn =

∞∑

k=−∞
d[k]φxx[n− k],

β = δ −
∞∑

k=−∞

∞∑

l=−∞
d[k]d[l]φxx[k − l],
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where d[n] is the inverse Fourier transform of D(ejω).

x[n]

D(ejω)

H(ejω)

+
−

e[n]

Figure 2-2: Definition of error signal e[n].

A slightly different criterion that also leads to a problem of the same form is

1

2π

∫ π

−π

∣∣G(ejω)H(ejω)−D(ejω)
∣∣2 dω ≤ δ, (2.1.7)

where G(ejω) is the frequency response of a given system and H(ejω) is chosen such that the

response of the cascade does not deviate from D(ejω) by more than δ in the mean-square

sense. The filter to be designed can be regarded as a compensator for G(ejω). The entries

of Q, f , and β are now given by

Qmn =
1

2π

∫ π

−π

∣∣G(ejω)
∣∣2 cos

(
(m− n)ω

)
dω =

∞∑

k=−∞
g[k]g[(m − n) + k],

fn =
1

2π

∫ π

−π
G(e−jω)D(ejω)ejωn dω =

∞∑

k=−∞
g[k]d[n + k],

β = δ − 1

2π

∫ π

−π

∣∣D(ejω)
∣∣2 dω,

assuming that g[n] and d[n] are real-valued. The addition of a weighting function to the

constraint in (2.1.7) can be readily accommodated.

2.1.2 Estimation, prediction, and equalization

Another problem that can be reduced to the formulation in (2.0.1) is the estimation of a

random process x[n] from observations of a second random process y[n] under the assump-

tion that x[n] and y[n] are jointly WSS. The estimate x̂[n] is produced by processing y[n]

with a causal FIR filter of length N ,

x̂[n] =

N−1∑

m=0

bmy[n−m]. (2.1.8)
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The goal is to minimize the number of non-zero coefficients bm while keeping the mean-

squared estimation error below a threshold δ, i.e.,

E
{
(x̂[n]− x[n])2

}
≤ δ. (2.1.9)

Substituting (2.1.8) into (2.1.9), expanding, and comparing with (2.1.3), we find

Qmn = φyy [|m− n|] , (2.1.10a)

fn = φxy[n], (2.1.10b)

β = δ − φxx[0], (2.1.10c)

where we have defined the cross-correlation as φxy[m] = E{x[n+m]y[n]}. The matrix Q is

again symmetric, Toeplitz, and positive definite. In the estimation context, the vector c =

Q−1f corresponds to the causal Wiener filter of length N , φxx[0]−cTQc is the corresponding

error, and γ is again equal to the difference between δ and the minimum error.

The problem of p-step linear prediction is a special case of the estimation problem with

x[n] = y[n+p] and p a positive integer. Equation (2.1.10a) remains unchanged while φxy[n]

is replaced with φyy[n+ p] in (2.1.10b) and φxx[0] with φyy[0] in (2.1.10c).

An important application of the basic estimation problem formulated above is to the

equalization of communication channels, in which case x[n] represents a transmitted signal.

For the case of linear equalization, y[n] corresponds to the received sequence and can be

modelled according to

y[n] =

∞∑

k=−∞
h[k]x[n − k] + η[n], (2.1.11)

where h[k] represents samples of the overall impulse response due to the combination of

the transmit pulse, channel, and receive filter, and η[n] is additive noise, assumed to be

zero-mean, stationary with autocorrelation φηη [m], and uncorrelated with x[n]. Under this

channel model, the auto-correlation and cross-correlation in (2.1.10) can be expressed as

φyy[m] =

∞∑

k=−∞
φhh[k]φxx[m− k] + φηη [m], (2.1.12a)

φxy[m] =

∞∑

k=−∞
h[k]φxx[m+ k], (2.1.12b)
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where φhh[k] is the deterministic autocorrelation of the channel response h[n]. Equation

(2.1.12a) in particular implies that if h[n] is nearly sparse or decays at a certain rate and

if the correlation times of x[n] and η[n] are short, then the autocorrelation φyy[m] and the

matrix Q also tend to be nearly sparse or decay at the same rate. The formulation in

this subsection can be extended in a straightforward manner to more elaborate equalization

techniques such as decision-feedback equalization, channel shortening, and MIMO systems;

see [90] for more details on these extensions.

Under the complex-baseband equivalent channel model for quadrature-amplitude mod-

ulation (QAM), all of the quantities above become complex-valued, including the equalizer

coefficients bn, and Q becomes Hermitian positive definite. We can accommodate complex-

valued coefficients within our real-valued framework by separating the real and imaginary

parts of b to create a 2N -dimensional vector b̃ of real coefficients. The vector c, which is

still equal to Q−1f , is transformed similarly. If the real and imaginary components of b are

interleaved in b̃, i.e., b̃ =
[
Re(b1) Im(b1) Re(b2) Im(b2) . . .

]T
, then the corresponding

transformation for Q is to replace each complex-valued entry Qmn with the 2×2 submatrix


Re(Qmn) − Im(Qmn)

Im(Qmn) Re(Qmn)


 .

The resulting matrix Q̃ will generally have the same sparsity and decay properties as Q.

The zero-norm
∥∥∥b̃
∥∥∥
0
now measures the number of non-zero real and imaginary components

of b counted separately as opposed to the number of non-zero components of b as a complex

vector. Counting the number of non-zero real and imaginary components separately is a

reasonable metric because the cost of implementation is usually determined by the number

of operations on real numbers, even for complex-valued filters. As an example, if the

real part of a coefficient is zero, multiplication by that coefficient requires only two real

multiplications instead of the usual four.

2.1.3 Signal detection

The design of sparse filters for use in signal detection can also be formulated as in (2.0.1).

We assume that a signal s[n] is to be detected in the presence of stationary zero-mean

additive noise η[n] with autocorrelation φηη [m]. The received signal is processed with an
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FIR filter of length N and sampled at n = N − 1, yielding

y[N − 1] =
N−1∑

n=0

bn (s[N − 1− n] + η[N − 1− n])

when the signal is present. The filter coefficients bn are chosen such that the SNR is greater

than a pre-specified threshold ρ, where the SNR is defined as the ratio of the mean of

y[N − 1] given that the signal is present to the standard deviation of y[N − 1], the latter

being the same under both hypotheses. By defining s ∈ RN and R ∈ RN×N according to

sn = s[N − 1− n] and Rmn = φηη [|m− n|], the problem of sparse design can be expressed

as

min
b

‖b‖0 s.t.
sTb√
bTRb

≥ ρ. (2.1.13)

While the SNR constraint in (2.1.13) cannot be rewritten directly in the form of (2.1.3),

we show that problems (2.1.13) and (2.0.1) can be made equivalent in the sense of having

the same optimal solutions. To establish the equivalence, we determine conditions under

which feasible solutions to (2.0.1) and (2.1.13) exist when an arbitrarily chosen subset of

coefficients, represented by the index set Z, is constrained to have value zero. Given bn = 0

for n ∈ Z and with Y denoting the complement of Z, (2.1.3) becomes

bT
YQYYbY − 2fTY bY ≤ β, (2.1.14)

where bY is the |Y|-dimensional vector formed from the entries of b indexed by Y (similarly

for other vectors), and QYY is the |Y|× |Y| matrix formed from the rows and columns of Q

indexed by Y (similarly for other matrices). We consider minimizing the left-hand side of

(2.1.14) with respect to bY . If the minimum value is greater than β, then (2.1.14) cannot

be satisfied for any value of bY and a feasible solution with bn = 0, n ∈ Z cannot exist. It

is straightforward to show by differentiation that the minimum occurs at bY =
(
QYY

)−1
fY ,

and consequently the condition for feasibility is

− fTY (QYY)
−1 fY ≤ β. (2.1.15)

We refer to an index set Y (equivalently its complement Z) as being feasible if (2.1.15) is

satisfied.
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Similarly in the case of problem (2.1.13), a subset Y is feasible if and only if the modified

constraint
sTYbY√

bT
YRYYbY

≥ ρ

is satisfied when the left-hand side is maximized. The maximizing values of bY are propor-

tional to (RYY)
−1 sY and correspond to the whitened matched filter for the partial signal

sY (a.k.a. the restricted-length matched filter in [45]). The resulting feasibility condition is√
sTY (RYY)

−1 sY ≥ ρ, or after squaring,

sTY (RYY)
−1 sY ≥ ρ2. (2.1.16)

Condition (2.1.16) is identical to (2.1.15) for all Y with the identifications Q = R, f = s,

and β = −ρ2. It follows that an index set Y is feasible for problem (2.1.13) exactly when it

is feasible for problem (2.0.1), and therefore the optimal index sets for (2.0.1) and (2.1.13)

coincide.

One application of the basic detection problem above is in minimum-variance distor-

tionless response (MVDR) beamforming in array processing (see [91] for background). In

this context, the target signal s is defined by a direction of interest, R is the correlation

matrix of the array output, and the mean-squared value of the array output is minimized

subject to a unit-gain constraint on signals propagating in the chosen direction. To fit

the present formulation, the mean-squared output is bounded instead of being minimized,

which is equivalent to bounding the SNR as in (2.1.13). Section 4.2.3 presents an example

of designing sparse MVDR beamformers.

In the problems discussed in this section, the assumption of stationarity is not necessary

for equivalence with the abstract problem (2.0.1). In the absence of stationarity, the values

of Q, f , and β may vary with time, resulting in a succession of instances of (2.0.1).

It has been shown in this section that several filter design problems can be formulated

in the form of (2.0.1). Accordingly, in the remainder of this chapter and in Chapter 3, we

focus on the solution of (2.0.1). To apply the methods to be developed to a specific design

problem, it suffices to determine the values of the parameters Q, f , β or Q, c, γ using the

expressions provided in this section.
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2.2 Special cases

In general, problem (2.0.1) is a difficult combinatorial optimization problem for which no

polynomial-time algorithm is known. Efficient and exact solutions do exist however when

the matrix Q has special structure. In this section, we discuss several such examples in

which Q is diagonal, block-diagonal, or banded.

The methods presented in this section solve (2.0.1) by determining for each K = 1, 2, . . .

whether a feasible solution with K zero-valued coefficients exists. To derive a condition

for the existence of a solution with a given number of zero components, we start from

(2.1.15), which specifies whether a solution exists when a specific subset Z of coefficients is

constrained to have zero value. Condition (2.1.15) may be extended to take into account all

possible subsets of a given size using an argument similar to that made in deriving (2.1.15).

Specifically, if the minimum value of the left-hand side of (2.1.15) taken over all subsets

Y of size N −K is greater than β, then no such subset Y is feasible and there can be no

solution with K zero-valued entries. After a sign change, this gives the condition

max
|Y|=N−K

{
fTY (QYY)

−1fY
}
≥ −β (2.2.1)

for the existence of a feasible solution with K zero-valued components. The number of

subsets Y of size N −K is
(N
K

)
, which can be very large, and in the general case a tractable

way of maximizing over all choices of Y is not apparent. However, for the special cases

considered in this section, (2.2.1) can be evaluated efficiently.

We will find it convenient to express the conditions in (2.1.15) and (2.2.1) in terms of

the set Z rather than Y, especially when Z is smaller than Y. With bn = 0 for n ∈ Z, the
quadratic constraint (2.1.1) becomes

[
(bY − cY)T −cTZ

]

QYY QYZ

QZY QZZ




bY − cY

−cZ




= (bY − cY)
TQYY(bY − cY)− 2cTZQZY(bY − cY) + cTZQZZcZ ≤ γ, (2.2.2)

where QYZ denotes the submatrix of Q with rows indexed by Y and columns indexed by Z.
As in the derivation of (2.1.15), we minimize the left-hand side of (2.2.2) with respect to bY

to obtain a condition for feasibility. The minimizer is given by bY − cY = (QYY)−1QYZcZ ,
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resulting in

cTZ(Q/QYY)cZ ≤ γ, (2.2.3)

where Q/QYY is the Schur complement of QYY , defined as [92]

Q/QYY = QZZ −QZY(QYY)−1QYZ =
((
Q−1

)
ZZ
)−1

. (2.2.4)

Condition (2.2.3) is equivalent to (2.1.15). Similarly, the counterpart to (2.2.1) is

min
|Z|=K

{
cTZ(Q/QYY)cZ

}
≤ γ. (2.2.5)

2.2.1 Diagonal Q

The first example we consider is that of diagonal Q, which arises in certain special cases

of the problems presented in Section 2.1. For example, in least-squares filter design with

uniform weighting (W (ω) = 1 in (2.1.5)), (2.1.6a) implies that Q = I. In the estima-

tion problem, if the observations y[n] are white, then Q in (2.1.10a) is proportional to I.

Similarly, R is proportional to I in the detection problem when the noise is white.

Assuming Q is diagonal, Q/QYY = QZZ and (2.2.5) simplifies to

min
|Z|=K

{
∑

n∈Z
Qnnc

2
n

}
≤ γ. (2.2.6)

The solution to the minimization is to choose Z to correspond to the K smallest values of

Qnnc
2
n. Letting ΣK({Qnnc

2
n}) denote the sum of the K smallest Qnnc

2
n, (2.2.6) becomes

ΣK

(
{Qnnc

2
n}
)
≤ γ. (2.2.7)

Problem (2.0.1) can be solved in the diagonal case by checking condition (2.2.7) for succes-

sively increasing values of K. The minimum zero-norm is given by N −K∗, where K∗ is

the largest value of K for which (2.2.7) holds. One particular optimal solution results from

setting bn = cn for n corresponding to the N − K∗ largest Qnnc
2
n, and bn = 0 otherwise.

This solution has an intuitive interpretation in the context of the problems discussed in

Section 2.1. In least-squares filter design with W (ω) = 1, we have fn = d[n] from (2.1.6b)

and cn = fn. Thus the solution is to match the N−K∗ largest values of the desired impulse
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response d[n] and have zeros in the remaining positions. In the estimation problem with

white observations, cn ∝ fn = φxy[n], and hence the cross-correlation between x[n] and

y[n] plays the role of the desired impulse response. Similarly, in the detection problem with

white noise, the largest values of the signal s[n] are matched. If y[n] or η[n] is white but

non-stationary, the matrices Q and R remain diagonal and the solution takes into account

any weighting due to a time-varying variance.

2.2.2 Block-diagonal Q

A generalization of the diagonal structure considered in Section 2.2.1 is the case of block-

diagonal Q. In the problems discussed in Section 2.1, Q often represents a covariance matrix

and is therefore block-diagonal if the underlying random process can be partitioned into

subsets of variables with the property that variables from different subsets are uncorrelated.

This may occur for example in a sensor array in which the sensors occur in clusters sepa-

rated by large distances. We note that the presence of block-diagonal structure precludes

stationarity except in the pure diagonal case addressed in Section 2.2.1. This is because

stationarity implies that Q is Toeplitz, whereas block-diagonality implies that every diag-

onal of Q other than the main diagonal includes at least one zero-valued entry, and hence

the only matrices satisfying both properties are multiplies of I.

We assume that Q has the following form:

Q =




Q1

Q2

. . .

QL



, (2.2.8)

where each block Qb, b = 1, 2, . . . , L, is of dimension Nb×Nb,
∑

bNb = N , and indices have

been permuted if necessary to convert Q to block-diagonal form. For an arbitrary index set

Y, let Yb be the set of indices in Y that correspond to the bth block. Then

QYY =




QY1Y1

QY2Y2

. . .

QYLYL



,
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which is also block-diagonal. Hence the maximization in (2.2.1) can be rewritten as

max
L∑

b=1

fTYb
(QYbYb

)−1fYb

s.t.
L∑

b=1

|Yb| = N −K.
(2.2.9)

The maximization in (2.2.9) can be solved via dynamic programming. To derive the

dynamic programming recursion, define Vg(M) to be the maximum value over all subsets

Y of size M that are confined to the first g blocks, i.e.,

Vg(M) = max

g∑

b=1

fTYb
(QYbYb

)−1fYb

s.t.

g∑

b=1

|Yb| =M

(2.2.10)

for g = 1, 2, . . . , L. The maximum value in (2.2.9) is thus VL(N −K). Also define vb(Mb)

to be the maximum value over subsets of size Mb restricted to the bth block,

vb(Mb) = max
|Yb|=Mb

fTYb
(QYbYb

)−1fYb
, b = 1, . . . , L, Mb = 0, 1, . . . , Nb. (2.2.11)

It follows that V1(M) = v1(M). For g = 2, . . . , L, Vg(M) may be computed through the

following recursion:

Vg(M) = max
Mg=0,1,...,min(M,Ng)

{vg(Mg) + Vg−1(M −Mg)} . (2.2.12)

Equation (2.2.12) states that the maximum value after g blocks may be obtained by opti-

mally allocating Mg indices to the gth block, optimally allocating the remaining M −Mg

indices to the first g − 1 blocks, and then maximizing over all choices of Mg between 0 and

min(M,Ng) (Mg cannot exceed Ng, the total number of indices in block g).

The dynamic programming procedure outlined above involves carrying out the recur-

sion in (2.2.12) as well as computing the values of vb(Mb) in (2.2.11) for each block. We

consider first the computational complexity of the recursion. We assume that (2.2.9) is to

be evaluated for N − K = 0, 1, . . . ,M0 and that M0 grows proportionally with N . This

requires the calculation of Vg(M) for g = 2, . . . , L and M = 0, . . . ,M0 at most. For fixed g
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and M , the maximization in (2.2.12) requires at most Ng + 1 additions and comparisons.

Therefore the total number of operations is proportional to

L∑

g=2

M0∑

M=0

(Ng + 1) = (M0 + 1)(N −N1 + L− 1) ∼ O(N2).

In comparison, the computational complexity of computing vb(Mb) can be much higher.

Assuming again that the values of VL(0), . . . , VL(M0) are to be determined, we require

the values of vb(Mb) for b = 1, . . . , L and Mb = 0, 1, . . . ,min(M0, Nb). In the worst case,

if M0 ≥ Nb for all b, subsets of all possible sizes need to be considered within each block,

resulting in 2Nb subsets for the bth block. Since the matrix inversion in (2.2.11) takes O(N3
b )

operations and dominates the computation of each vb(Mb), the total number of operations

is O
(∑L

b=1N
3
b 2

Nb

)
. Thus the block sizes Nb must be small in an absolute sense in order

for the dynamic programming algorithm to be efficient. However, even if the block sizes are

not small, using dynamic programming in the block-diagonal case still offers computational

savings relative to an exhaustive evaluation of (2.2.1) for N − K = 0, . . . ,M0. The latter

requires on the order of 2N matrix inversions, one for each subset up to size M0, for a total

complexity that scales as N32N . It can be shown that

2N ≥
L∑

b=1

2Nb for N ≥ 2,
L∑

b=1

Nb = N, Nb ≥ 1,

which implies that dynamic programming has a lower order of growth.

2.2.3 Banded Q

Another generalization of the diagonal case is to consider banded matrices. We assume in

this subsection that the non-zero entries of Q are restricted to a band of width 2W + 1

centered on the main diagonal withW < N , again after a permutation of indices if necessary.

In the applications discussed in Section 2.1, Q matrices with banded structure can occur if

the correlation distance of the random processes x[n], y[n] or η[n] is small. Specifically, a

bandwidth of 2W + 1 for Q implies that any two variables with indices differing by more

than W are uncorrelated.

The maximization problem in (2.2.1) with banded Q was considered by Sestok in [2],

who developed a dynamic programming algorithm to exploit the banded structure. This
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algorithm is similar in spirit to the one presented in Section 2.2.2 for block-diagonal Q.

In the block-diagonal case, the quadratic form in (2.2.1) can be decomposed into a sum of

quadratic forms of smaller dimension if the subset Y spans multiple blocks. The algorithm

of [2] relies upon a similar decomposition in the banded case: if Q has bandwidth 2W + 1,

a decomposition is possible if Y can be partitioned into multiple subsets such that any two

indices taken from different subsets differ by more than W .

Sestok showed that the computational complexity of the dynamic programming algo-

rithm is O(N5) in the tridiagonal case, i.e., for W = 1. While a generalization to larger

bandwidths was described in [2], the increase in computational complexity was not explicitly

characterized. We now claim that even in the pentadiagonal case (W = 2), the complexity

grows exponentially with N . Our argument is based on the number of quadratic forms that

must be evaluated in the course of the algorithm. Specifically, we need to consider quadratic

forms as in (2.1.15) for all subsets Y up to a certain size and with the property that when

the indices in Y are placed in order, no two adjacent indices differ by more than W . The

values of these quadratic forms play a role analogous to the values of vb(Mb) in (2.2.11) in

the block-diagonal case. For W = 1, the subsets in question are composed of consecutive

indices and there are O(N2) of them. For W = 2, the number of subsets grows as N · 2αN ,

where α is a constant between 0 and 1. A detailed counting argument is presented in Ap-

pendix A.1. As a consequence, the complexity of the dynamic programming algorithm of [2]

increases exponentially with N for W = 2, and by extension, for W > 2 as well. As in the

block-diagonal case, the rate of growth for dynamic programming is still lower than that of

exhaustive evaluation of (2.2.1), which involves on the order of 2N subsets.

A variation on the banded case is that of Q−1 being banded. Unlike in the diagonal

or block-diagonal cases, Q having a certain bandwidth does not imply that Q−1 has the

same bandwidth, and vice versa. If Q−1 has low bandwidth, we may use the alternative

condition in (2.2.5) instead of (2.2.1). Sestok’s algorithm then applies with Q replaced by

Q−1, f by c, and maximization by minimization. In the case of (2.2.5), it is the number of

zero coefficients, K, that is incremented as opposed to the number of non-zero coefficients

M .
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2.2.4 Challenges in generalizing to unstructured Q

In Sections 2.2.1–2.2.3, we have seen several special cases in which the structure of the

matrix Q allows for an efficient solution to problem (2.0.1). It is natural to ask whether

instances with unstructured matrices can be solved through a transformation into one of

the special cases. In particular, given that any symmetric matrix can be diagonalized by

a unitary transformation, one may be led to consider the possibility of exploiting such

transformations to reduce the general problem to the diagonal case of Section 2.2.1. In this

subsection, we give some indications as to why this approach to generalization does not

appear to be straightforward.

In the context of the applications in Section 2.1, one way of reducing an instance to the

diagonal case is to apply whitening. In the estimation problem, the whitening is done on

the observations y[n], while in the detection problem, it is the noise η[n] that is whitened.

The process of whitening, however, requires additional processing of the input, often in the

form of a prefilter. The task then shifts to designing an efficient whitening prefilter that

does not add significantly to the total implementation cost. Moreover, since the whitening

is likely to be imperfect, further measures may be needed. There are also applications in

which cascade structures are not applicable, e.g. arrays.

A different approach that we explore in greater depth is to solve a sparsity maximization

problem such as (2.0.1) by first transforming the feasible set into one that is easier to

optimize over and then inverting the transformation to map the solution found in the

transformed space to one in the original space. For this procedure to guarantee an optimal

solution to the original problem, it is necessary that the transformation preserve the ordering

of vectors by the number of non-zero components. We give a negative result stating that

the only invertible linear transformations that preserve ordering by sparsity in a global

sense are composed of diagonal scalings and permutations. The transformations in this

class are therefore rather limited; in particular, most dense matrices cannot be transformed

into diagonal, block-diagonal, or banded matrices using diagonal scalings and permutations

alone.

To state the result more precisely, let T : RN 7→ RM be a linear transformation that

maps the original ellipsoid specified by (2.1.1), which we denote by EQ, to its image T(EQ).
We assume that EQ is full-dimensional, i.e., it has non-zero extent along every axis, which
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corresponds to all of the eigenvalues ofQ being finite. The assumption of full-dimensionality

requires that rank(T) = N , as otherwise T(EQ) would be contained in a subspace of di-

mension less than N and could not be mapped back to EQ through a linear transformation.

Then for M = N , T has an inverse, and for M > N , T has a left-inverse, both of which

will be denoted as T−1.

EQ T(EQ)

T

T−1b∗
x∗

Figure 2-3: Solving problem (2.0.1) through a linear transformation.

We consider solving (2.0.1) by first determining an optimal solution x∗ to the trans-

formed problem

min
x∈T(EQ)

‖x‖0 ,

and then computing a solution to (2.0.1) as b∗ = T−1x∗. This process is represented

graphically in Fig. 2-3. Requiring b∗ to be optimal over EQ is the same as the condition

∥∥T−1x
∥∥
0
≥
∥∥T−1x∗∥∥

0
∀ x ∈ T(EQ),

since EQ can be equivalently thought of as the image of T(EQ) under T−1. Given that x∗ is

not known a priori, to guarantee optimality it is natural to impose a similar order-preserving

condition for arbitrary pairs of vectors in T(EQ), i.e.,

‖x1‖0 ≥ ‖x2‖0 =⇒
∥∥T−1x1

∥∥
0
≥
∥∥T−1x2

∥∥
0
∀ x1,x2 ∈ T(EQ).

We show that if the previous condition is extended to all of RM , i.e.,

‖x1‖0 ≥ ‖x2‖0 =⇒
∥∥T−1x1

∥∥
0
≥
∥∥T−1x2

∥∥
0
∀ x1,x2 ∈ RM , (2.2.13)

then T must be a composition of a diagonal scaling and a permutation.

Theorem 1. If T : RN 7→ RM is a linear transformation with left-inverse T−1 satisfying
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(2.2.13), then M is necessarily equal to N and T is a composition of a diagonal scaling and

a permutation of the coordinates.

The proof of Theorem 1 can be found in Appendix A.2. Since the only effect of a

permutation is to relabel coordinates, we may assume without loss of generality that the

permutation in T is the identity permutation. This leaves diagonal scalings as the only

invertible linear transformations that preserve ordering by sparsity in the sense of (2.2.13).

Since diagonal scalings are insufficient to transform a dense Q matrix into one that is

diagonal, block-diagonal, or banded, it is not possible to reduce problem (2.0.1) in its

general form to one of the special cases using a linear transformation of this type.

2.2.5 Generalization to separable non-quadratic constraint functions

It is possible to generalize the special cases in Sections 2.2.1–2.2.3 to a larger class of sparsity

maximization problems involving constraint functions that are not necessarily quadratic.

For instance, a generalization of the diagonal case is to have a single constraint that can

be separated into a sum of univariate functions Fn, each taking as input a single coefficient

bn.
1 The problem takes the form

min
b

‖b‖0 s.t.
N−1∑

n=0

Fn(bn) ≤ γ, (2.2.14)

where Fn(bn) = Qnn(bn − cn)2 in the quadratic case. For index sets Z and Y defined as

before, the analogue to (2.2.6) is

min
|Z|=K

{
∑

n∈Z
Fn(0) +

∑

n∈Y
min
bn

Fn(bn)

}
≤ γ, (2.2.15)

where the second term on the left-hand side is zero in the quadratic case. The minimum

value of the left-hand side of (2.2.15) is attained by choosing Z to correspond to the K

smallest differences Fn(0)−minFn(bn), leading to a generalization of (2.2.7).

A similar generalization of the block-diagonal case would involve a constraint function

that is block-separable, i.e., expressible as
∑L

b=1 Fb(bb), where the vectors bb are composed

of disjoint subsets of coefficients. The banded case can be generalized by preserving the

1The separability can be with respect to a generalized notion of summation, e.g., a product of non-negative
functions is also regarded as separable.
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key property of decomposability given subsets that are separated by more than a certain

number of indices.

The results of this section can be summarized as follows: In some special cases, specifi-

cally the diagonal, block-diagonal, and banded cases, problem (2.0.1) admits solutions that

are both efficient and exact. Hence the methods discussed in this section should be used

when the design parameters are such that the matrix Q belongs to one of the special classes.

At the same time, the simplifications exploited in these special cases do not appear to be

generalizable in a straightforward manner. In particular, it was argued in Section 2.2.4 that

a dense Q matrix cannot be transformed into a diagonal, block-diagonal, or banded matrix

by means of a sparsity-preserving linear transformation. Hence (2.0.1) remains a difficult

problem in its general form.

2.3 Low-complexity algorithm for the general case

We now begin our discussion of the general case in which the matrix Q does not have any

of the properties identified in the previous section. In keeping with the emphasis in this

chapter on low-complexity algorithms, in this section we present a heuristic algorithm for

solving (2.0.1) that we refer to as successive thinning. Optimal algorithms are discussed

later in Chapter 3.

The basic idea in the algorithm is to successively thin a pre-designed, usually non-sparse

filter by constraining more and more coefficients to zero while re-optimizing the remaining

non-zero coefficients to compensate. Similar approaches were proposed in [2] for a slightly

different problem formulation, in [41, 42] for channel equalization, and more generally for

subset selection in regression [93]. Here the algorithm is adapted to problem (2.0.1) and an

efficient implementation is described that does not require multiple matrix inversions.

As will be seen in Chapter 4, the successive thinning algorithm discussed in this section

produces solutions that are in many instances either optimally sparse or close to opti-

mal. Optimality or near-optimality is certified by running the branch-and-bound algorithm

described in Chapter 3, which does guarantee an optimal solution. Thus the successive

thinning algorithm is useful as a method for obtaining sparse solutions with relatively little

computation.

We first give an overview of the algorithm before entering into a more detailed descrip-
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tion. In Section 2.2 it was suggested that problem (2.0.1) may be solved by determining

for each K = 1, 2, . . . , N whether a feasible solution with K zero-valued coefficients exists,

which is equivalent to checking condition (2.2.5). As K increases from 1 (or decreases from

N), the complexity of evaluating (2.2.5) grows as least as fast as
(N
K

)
, the number of sub-

sets of size K, and eventually becomes prohibitive. Successive thinning can be viewed as

a simplification of the foregoing procedure. For K = 1, the successive thinning algorithm

carries out the minimization in (2.2.5) exactly. We denote by Z(1) the minimizing subset

(in this case a single index). For K = 2, we restrict the minimization to only those pairs of

indices that include Z(1). Let Z(2) represent the minimizer over this restricted collection of

subsets of size 2. More generally for larger values of K, the subsets considered in the mini-

mization are constrained to contain Z(K−1), the minimizer for the previous value of K, thus

limiting the search to adding one new index to Z(K−1). Thus the algorithm resembles the

class of greedy algorithms [94] in that decisions regarding zero-valued coefficients made in

previous iterations are never revisited. The algorithm terminates when the minimum value

corresponding to Z(K+1) exceeds γ for some K, at which point the last feasible subset Z(K)

becomes the final subset of zero-valued coefficients. Given Z = Z(K), we may then solve for

the values of the non-zero coefficients to produce a feasible solution with zero-norm equal

to N−K. It is often desirable in this last step to choose values that maximize performance.

The successive thinning algorithm greatly reduces the number of subsets that are ex-

plored compared to evaluating (2.2.5) exactly. The number of subsets evaluated in the Kth

stage is at most N −K + 1, corresponding to the N − (K − 1) choices for the index to be

added to Z(K−1). Since the number of stages can be at most N , the total number of subsets

grows only quadratically with N .

Successive thinning is guaranteed to result in a maximally sparse solution when the

matrix Q is diagonal. From Section 2.2.1, the solution to the minimization in (2.2.5) in

the diagonal case is to choose Z to correspond to the K smallest Qnnc
2
n. Since the subset

of the K smallest Qnnc
2
n is contained in the subset of the K + 1 smallest, the nesting

property assumed by the algorithm is satisfied and the algorithm finds the true minimizing

subsets. In other cases however, successive thinning does not appear to guarantee an optimal

solution. Nevertheless, the examples in Section 4.1 demonstrate that the algorithm often

yields optimal or near-optimal designs.

We now describe the algorithm in more detail. We use Z as above to represent the
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subset of coefficients constrained to zero. The complement of Z is now partitioned into two

subsets U and F . The subset U consists of those coefficients for which a value of zero is no

longer feasible because of the zero-value constraints on coefficients in Z, which restrict the

feasible set. The subset F consists of the remaining coefficients for which a value of zero is

still feasible. Each iteration of the algorithm is characterized by the assignment of variables

to the subsets Z, U , and F . For example, in the beginning no coefficients are constrained

to zero, i.e., Z = U = ∅ and F = {1, . . . , N}. In subsequent iterations, both Z and U grow

while F shrinks, giving rise to increasingly constrained versions of the original problem

that we refer to as subproblems. To simplify the algorithm, we exploit the fact that every

subproblem can be reduced to a lower-dimensional instance of the original problem (2.0.1).

It is shown in Appendix A.3 that a subproblem defined by (Z,U ,F) can be expressed in

the following form:

min
bF

|U|+ ‖bF‖0

s.t. (bF − ceff )
T Qeff (bF − ceff) ≤ γeff ,

(2.3.1)

where

Qeff = QYY/QUU = QFF −QFU (QUU)
−1QUF , (2.3.2a)

ceff = cF + (Qeff)
−1
(
QFZ −QFU(QUU )

−1QUZ
)
cZ , (2.3.2b)

γeff = γ − cTZ(Q/QYY)cZ . (2.3.2c)

In (2.3.1), the variables bn for n ∈ Z are absent because they have been set to zero and the

variables bn, n ∈ U have also been eliminated. The term |U| accounts for the cost of the

non-zero variables in U and is a constant with respect to bF . Hence subproblem (2.3.1)

is of the same form as the original problem (2.0.1) with |F| variables instead of N and

effective parameters Qeff , ceff , and γeff given by (2.3.2). As a consequence, each iteration

of the algorithm after the first can be treated as if it were the first iteration acting on a

lower-dimensional instance of (2.0.1).

In the remainder of this section, we use a superscript K to label quantities associated

with iteration K. In particular, Q(K), c(K), and γ(K) represent the parameters of the

subproblem in iterationK. We also defineR(K) =
(
Q(K)

)−1
and will find it more convenient
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to specify the computations in terms of R rather than Q. The algorithm is initialized by

setting Z(0) = U (0) = ∅, F (0) = {1, . . . , N}, R(0) = Q−1, c(0) = c, and γ(0) = γ.

The first task in each iteration is to update the subsets Z, U , and F . First we identify

the coefficients in F (K) that no longer yield feasible solutions when constrained to a value

of zero. Determining whether a feasible solution exists when a single coefficient bn is set

to zero can be done by specializing condition (2.2.3), which specifies when a subset Z of

zero-valued coefficients is feasible. With Z = {n}, (2.2.3) simplifies to

c2n(
Q−1

)
nn

≤ γ, (2.3.3)

using the second definition of the Schur complement in (2.2.4). For the Kth subproblem,

cn,
(
Q−1

)
nn
, and γ in (2.3.3) are replaced by c

(K)
n , R

(K)
nn , and γ(K). The indices n for which

(2.3.3) is not satisfied correspond to coefficients for which a zero value is infeasible. We

remove these indices from F (K) and add them to U (K) to form

U (K+1) = U (K) ∪
{
n ∈ F (K) :

(
c
(K)
n

)2

R
(K)
nn

> γ(K)

}
. (2.3.4)

If no indices remain in F (K) after this removal, the filter cannot be thinned any further

and the algorithm terminates. Otherwise, a new index m ∈ F (K) is selected to be added to

Z(K), resulting in

Z(K+1) = Z(K) ∪ {m}. (2.3.5)

As described earlier, the index m is chosen to minimize the left-hand side of (2.2.5) over all

Z(K+1) of the form in (2.3.5). In terms of the parameters of the current subproblem, this

is equivalent to choosing

m = arg min
n∈F(K)

(
c
(K)
n

)2

R
(K)
nn

. (2.3.6)

The indices remaining in F (K) after removing m form the new subset F (K+1).

The second task is to calculate the values of the new parameters R(K+1), c(K+1), and

γ(K+1) from the current parameters R(K), c(K), and γ(K). We can adapt the results of

Appendix A.3 for this purpose. In the present scenario, the Kth (i.e., current) subproblem

plays the role of the original problem, Z = {m} to represent the additional zero-value

constraint, U is composed of the indices added to U (K) in (2.3.4), and F = F (K+1). Equation
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(2.3.2a) then gives Q(K+1) in terms of Q(K) after making the appropriate replacements. It

can be shown that the equivalent recursion for R is

R(K+1) = R
(K)

F(K+1)F(K+1) −
1

R
(K)
mm

R
(K)

F(K+1),m
R

(K)

m,F(K+1) . (2.3.7)

Similarly, (2.3.2b) shows how c(K+1) may be determined from c(K) and Q(K). The equiva-

lent formula using R(K) instead of Q(K) is

c(K+1) = c
(K)

F(K+1) −
c
(K)
m

R
(K)
mm

R
(K)

F(K+1) ,m
. (2.3.8)

Note that neither (2.3.7) nor (2.3.8) require the inversion of a matrix. Lastly, (2.3.2c) gives

the following recursion for γ:

γ(K+1) = γ(K) −
(
c
(K)
m

)2

R
(K)
mm

. (2.3.9)

This completes the operations in iteration K. A summary of the algorithm is given below.

Algorithm 1 Successive thinning for problem (2.0.1)

Input: Parameters Q, c, γ
Output: Sparse solution b to (2.0.1)

Initialize: K = 0, Z(0) = U (0) = ∅, F (0) = {1, . . . , N}, R(0) = Q−1, c(0) = c, γ(0) = γ.
Update U according to (2.3.4) and remove indices added to U (0) from F (0).
while F (K) 6= ∅ do

Determine m from (2.3.6).
Z(K+1) = Z(K) ∪ {m}, F (K+1) = F (K)\m.
Update R, c, γ using (2.3.7)–(2.3.9).
K ← K + 1.
Update U according to (2.3.4) and remove indices added to U (K) from F (K).

Return solution: Compute bY(K) from (2.3.10), bn = 0 for n ∈ Z(K).

Once the successive thinning algorithm has terminated with a final subset Z(K) of zero-

valued coefficients, it remains to determine the values of the non-zero coefficients bY(K) .

We choose bY(K) specifically to maximize the margin in the quadratic constraint subject to

bn = 0 for n ∈ Z(K), i.e., to minimize the left-hand side of (2.2.2). The solution that was

given in Section 2.2 is

bY(K) = cY(K) +
(
QY(K)Y(K)

)−1
QY(K)Z(K)cZ(K) . (2.3.10)
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Chapter 3

Sparse filter design under a

quadratic constraint: Optimal

algorithm for the general case

In Sections 2.2 and 2.3, low-complexity algorithms were presented for solving the sparse filter

design problem (2.0.1) exactly in some special cases and approximately in the general case

of unstructured Q matrices. In this chapter, we turn our attention to developing a general

optimal algorithm for (2.0.1) based on a standard approach to combinatorial optimization

known as branch-and-bound. An overview of the branch-and-bound procedure as it applies

to (2.0.1) is given in Section 3.1. Additional background on branch-and-bound can be found

in [95]. A detailed description of our branch-and-bound algorithm is deferred until the end

of this chapter in Section 3.7.

Branch-and-bound is a general strategy applicable to a wide range of combinatorial op-

timization problems, and as such can be highly computationally intensive. Our emphasis is

on reducing the complexity of branch-and-bound in the specific context of problem (2.0.1).

Two key factors in reducing complexity are the availability of nearly optimal solutions and

the availability and quality of lower bounds on the optimal cost of (2.0.1). We elaborate

further on these points in Section 3.1. As mentioned in Section 2.3, nearly optimal so-

lutions can often be provided by the successive thinning algorithm. The development of

lower bounds is the subject of this chapter. We note that neither of the branch-and-bound

algorithms in [26] and [33] make much use of bounds, while [3] uses a commercial solver
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that does not exploit the properties of problem (2.0.1). In Section 3.2, we present first

some lower bounds that can be computed with minimal effort. To derive stronger bounds,

in Section 3.3 we discuss the technique of linear relaxation, while in Section 3.4 we discuss

an alternative method, referred to as diagonal relaxation, in which Q is replaced by a di-

agonal matrix. Significant attention is given to analyzing the approximation properties of

the two relaxations and the quality of the resulting lower bounds. Numerical experiments

in Section 3.6 support our analysis and demonstrate that the lower bounds from diagonal

relaxations are often substantially tighter than those from linear relaxations. Computa-

tional efficiency in solving relaxations is also important for reducing the overall algorithm

complexity. Techniques for solving diagonal relaxations efficiently are described in Section

3.5.

3.1 Branch-and-bound

In this section, the branch-and-bound procedure is reviewed in the context of problem

(2.0.1). For ease of presentation, we reformulate (2.0.1) as a mixed integer optimization

problem. For each coefficient bn, we introduce a binary-valued indicator variable in with

the property that in = 0 if bn = 0 and in = 1 otherwise. The sum of the indicator variables

is therefore equal to the zero-norm ‖b‖0. Using this fact, problem (2.0.1) can be restated

as follows:

min
b,i

N∑

n=1

in

s.t. (b− c)TQ(b− c) ≤ γ,

|bn| ≤ Bnin ∀ n,

in ∈ {0, 1} ∀ n,

(3.1.1)

where Bn is a positive constant for each n. The second constraint in (3.1.1) ensures that

in behaves as an indicator variable, specifically by requiring that bn = 0 if in = 0 and also

forcing in to zero if bn = 0 because the sum of the in is being minimized. When in = 1,

the second constraint becomes a bound on the absolute value of bn. The constants Bn are

chosen to be large enough so that these bounds on |bn| do not further restrict the set of

feasible b from that in (2.0.1). Specific values for Bn will be chosen later in Section 3.3
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when we discuss linear relaxation.

The branch-and-bound procedure solves problem (3.1.1) by dividing it successively into

subproblems with fewer variables. The first two subproblems are formed by selecting an

indicator variable in and fixing it to zero in the first subproblem and to one in the second.

Each of the two subproblems, if not solved directly, is subdivided into two more subproblems

by fixing a second indicator variable to zero or one. This process, referred to as branching,

produces a binary tree of subproblems as depicted in Fig. 3-1.

i1 = 0 i1 = 1

i2 = 0 i2 = 1 i3 = 0 i3 = 1

i4 = 0 i4 = 1

3

4

4

55

5

67

∞

root incumbent solution
with cost 6

infeasible

Figure 3-1: Example of a branch-and-bound tree. Each node represents a subproblem and
the branch labels indicate the indicator variables that are fixed in going from a parent
to a child. The number labelling each node is a lower bound on the optimal cost of the
corresponding subproblem. Given an incumbent solution with a cost of 6, the subproblems
marked by dashed circles need not be considered any further.

The bounding part of the algorithm consists of computing a lower bound on the optimal

cost of each subproblem that is not solved directly. Infeasible subproblems can be regarded

as having a lower bound of +∞. Since a child subproblem is related to its parent by the

addition of one constraint, the lower bound for the child cannot be less than that for the

parent. This non-decreasing property of the lower bounds is illustrated in Fig. 3-1. In

addition, feasible solutions may be obtained for certain subproblems. The algorithm keeps

a record of the feasible solution with the lowest cost thus far, referred to as the incumbent

solution.
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To avoid an exhaustive enumeration of all 2N potential subproblems, the following

observation is employed: If the lower bound for a subproblem is equal to or higher than the

cost of the incumbent solution, then the subproblem cannot lead to better solutions and

can thus be eliminated from the tree along with all of its descendants. This operation is

referred to as pruning the tree.

Although in worst-case examples the complexity of branch-and-bound remains expo-

nential in N [95], for typical instances the situation can be much improved. The efficiency

of a branch-and-bound algorithm depends strongly on the availability and quality of lower

bounds for the subproblems. Stronger lower bounds result in more subproblems being

pruned. At the same time, the lower bounds should be efficiently computable so as not to

increase the overall complexity of the algorithm. Our focus in Sections 3.2–3.4 is on de-

veloping lower bounds that can be computed efficiently. In Section 3.2, we discuss bounds

that are very inexpensive to compute but have pruning power only for low-dimensional

or severely constrained subproblems. Improved lower bounds can be obtained through re-

laxations of problem (2.0.1). Two types of relaxations are explored in Sections 3.3 and

3.4.

While our presentation in Sections 3.2–3.4 focuses on the root problem (3.1.1), all of

the techniques we develop are equally applicable to arbitrary subproblems. This is because

each subproblem can be reduced to a lower-dimensional instance of the root problem. In

a given subproblem, the indices for which in = 0 and in = 1 correspond respectively to

coefficients that have been constrained to zero and coefficients that have been designated

as being non-zero in terms of cost. These two subsets correspond to the subsets Z and

U defined in Section 2.3. The remaining indices make up the subset F . Using the results

of Appendix A.3, each subproblem can be expressed as in (2.3.1), which is an instance of

(2.0.1) or equivalently (3.1.1), with parameters given by (2.3.2) and (A.3.6).

A second important ingredient in a branch-and-bound algorithm is the availability of

an initial feasible solution that is nearly optimal. As with lower bounds, an optimal or

nearly optimal incumbent solution allows for more subproblems to be eliminated compared

to an incumbent solution with a higher cost. A near-optimal initial solution can often be

provided by the successive thinning algorithm of Section 2.3. Other heuristic algorithms

are also possible.

Two other variable elements in the branch-and-bound procedure are the rule for deciding
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which indicator variable to fix in a subproblem to generate its children, and the order in

which open subproblems are processed. These choices are addressed in Section 3.7 where

we provide a detailed description of our algorithm.

3.2 Low-complexity lower bounds

This section discusses lower bounds for problem (2.0.1) that require little computational

effort to obtain. While the bounds tend to be weak when used in isolation, they become more

powerful as part of a branch-and-bound algorithm where they can be applied inexpensively

to each new subproblem, improving lower bounds incrementally as the algorithm descends

the tree.

For a subproblem specified by index sets (Z,U ,F) as defined in Section 3.1, the number

of elements in U is clearly a lower bound on the optimal cost of the subproblem. This

lower bound may be updated by checking for coefficients in F that cannot yield feasible

solutions when constrained to zero. As discussed in Section 2.3, such coefficients can be

identified by evaluating condition (2.3.3) for n ∈ F (substituting the parameters for the

current subproblem). For coefficients such that a zero value is infeasible, the corresponding

indicator variables can be set to 1, thereby decreasing |F| and increasing |U|. In terms of

the branch-and-bound tree, this corresponds to eliminating in = 0 branches because they

lead to infeasible subproblems. The resulting subproblem is of lower dimension and the

reduction in dimension can be significant if γ is relatively small so that (2.3.3) is violated

for many indices n.

We will assume henceforth that the above test is performed on every subproblem and

indicator variables are set to 1 as appropriate. Thus we need only consider subproblems

for which (2.3.3) is satisfied for all n ∈ F , i.e., a feasible solution exists whenever a single

coefficient bn is constrained to zero.

It is only necessary to check for potential additions to the set U for subproblems derived

from a parent by fixing an indicator variable to zero. Setting an indicator variable to one

does not change the set of feasible b, and consequently any coefficient for which a value of

zero is feasible in the parent subproblem retains that property in the child subproblem.

It is possible to generalize the test to larger subsets of coefficients that are simultane-

ously constrained to zero values. The required computation increases dramatically however
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because the number of subsets grows rapidly as the subset size is increased, and because the

matrix inversions in the general feasibility condition (2.2.3) become more complex. More-

over, incorporating information from tests involving larger subsets is less straightforward

than simply setting certain in to 1.

A second category of tests makes use of (2.1.15) to determine whether there exist feasible

solutions with small numbers of non-zero elements. In the extreme case, the solution b = 0

is feasible if β = γ − cTQc ≥ 0, which corresponds to Y = ∅ in (2.1.15). Hence β being

negative implies a lower bound of at least one (|U| + 1 for a general subproblem) on the

minimum zero-norm. For a set Y consisting of a single index n, (2.1.15) becomes

− f2n
Qnn

≤ β. (3.2.1)

If (3.2.1) is satisfied for some n ∈ F , Y = {n} is feasible and the minimum zero-norm is

1 (|U|+ 1 in general) provided that the solution b = 0 has been excluded. Otherwise, the

minimum zero-norm is no less than 2 (|U|+2). The enumeration can be extended to larger

subsets of coefficients, resulting in either an optimal solution or progressively higher lower

bounds. However, the increase in computational effort is the same as for (2.2.3).

3.3 Linear relaxation

In the previous section, we discussed lower bounds that are simple to compute but rela-

tively weak. Better bounds can be obtained through relaxations of problem (2.0.1).1 These

relaxations are designed to be significantly easier to solve than the original problem. Fur-

thermore, their optimal values are guaranteed to be lower bounds on the original optimal

cost. As discussed in Section 3.1, when these lower bounds are close approximations to

the true optimal cost, solving relaxations can substantially decrease the complexity of a

branch-and-bound algorithm directed at the original problem.

In this section, we apply a common technique known as linear relaxation to (2.0.1).

More specifically, in Section 3.3.1 we derive the linear relaxation that results in the highest

possible lower bound on the optimal cost of (2.0.1). An alternative type of relaxation is

developed in Section 3.4.

1Following common usage in the field of optimization, we use the term relaxation to refer to both the
technique used to relax certain constraints in a problem as well as the modified problem that results.
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In general, given a relaxation of an optimization problem, it is of interest to understand

the conditions under which the relaxation is either a good or a poor approximation to the

original problem. The quality of approximation is often characterized by the approximation

ratio, defined as the ratio between the optimal values of the relaxation and the original

problem. In Section 3.3.2, we construct two classes of examples, the first showing that

the (strongest possible) linear relaxation can yield an approximation ratio equal to 1 (i.e.,

the relaxation can be tight), and the second showing that the approximation ratio can

be arbitrarily close to zero. We then derive in Section 3.3.3 an absolute bound on the

optimal value of the linear relaxation in terms of the number of coefficients N . The bound

is interpreted as a limitation on the ability of the linear relaxation to approximate many

instances of (2.0.1).

3.3.1 Derivation of the tightest possible linear relaxation

To apply linear relaxation to (2.0.1), we start with its alternative formulation as a mixed

integer optimization problem (3.1.1). A linear relaxation of (3.1.1) is obtained by relaxing

the binary constraints on in, instead allowing in to range continuously between 0 and 1. The

minimization may then be carried out in two stages. In the first stage, b is held constant

while the objective is minimized with respect to i, resulting in in = |bn| /Bn for each n.

Substituting back into (3.1.1) gives the following minimization over b:

min
b

N∑

n=1

|bn|
Bn

s.t. (b− c)TQ(b− c) ≤ γ.
(3.3.1)

The linear relaxation in (3.3.1) is a convex optimization problem that can be solved effi-

ciently. Since the set of feasible indicator vectors i is enlarged in deriving (3.3.1) from the

original problem (3.1.1), the optimal value of (3.3.1) is a lower bound on that of (3.1.1).

More precisely, since the optimal value of (3.1.1) must be an integer, it follows that the

ceiling of the optimal value of (3.3.1) is also a lower bound.

To obtain the highest possible lower bound on the original optimal value through linear

relaxation, the optimal value of (3.3.1) should be made as large as possible. The form of the

objective in (3.3.1) implies that its optimal value is larger for smaller values of Bn. At the

same time, Bn must be large enough to leave the feasible set unchanged from that in (2.0.1)
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as discussed in Section 3.1. Specifically, this requires that Bn ≥ |bn| for all n whenever b

satisfies the quadratic constraint (2.1.1). These two competing requirements imply that Bn

should be chosen as

Bn = max
{
|bn| : (b− c)TQ(b− c) ≤ γ

}

= max
{
max

{
bn : (b− c)TQ(b− c) ≤ γ

}
, max

{
−bn : (b− c)TQ(b− c) ≤ γ

}}
.

(3.3.2)

The inner maximizations in (3.3.2) can be solved in closed form as shown in Appendix B.1,

yielding

max
{
bn : (b− c)TQ(b− c) ≤ γ

}
=
√
γ
(
Q−1

)
nn

+ cn, (3.3.3a)

max
{
−bn : (b− c)TQ(b− c) ≤ γ

}
=
√
γ
(
Q−1

)
nn
− cn. (3.3.3b)

Hence (3.3.2) can be simplified to

Bn =
√
γ
(
Q−1

)
nn

+ |cn| . (3.3.4)

The value of Bn can be decreased even further if it can be made to depend on the sign

of bn. For example, if bn is known to be positive, Bn only needs to be greater than or

equal to the quantity in (3.3.3a) without regard to (3.3.3b), while the reverse is true if bn

is negative. Unless cn = 0, one of the quantities in (3.3.3a) and (3.3.3b) is smaller than the

value in (3.3.4). The key to allowing Bn to depend on the sign of bn is to separate bn into

its positive and negative parts. We express each bn as

bn = b+n − b−n , b+n , b
−
n ≥ 0. (3.3.5)

Under the condition that one of b+n , b
−
n is always zero, the representation in (3.3.5) is unique,

bn = b+n when bn > 0, and bn = −b−n when bn < 0. Hence b+n and b−n can be interpreted as

the positive and negative parts of bn. We assign to each pair b+n , b
−
n corresponding pairs of

binary-valued indicator variables i+n , i
−
n and positive constants B+

n , B
−
n . We then consider
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the following generalization of (3.1.1):

min
b+,b−,i+,i−

N∑

n=1

(
i+n + i−n

)

s.t. (b+ − b− − c)TQ(b+ − b− − c) ≤ γ,

0 ≤ b+n ≤ B+
n i

+
n , 0 ≤ b−n ≤ B−

n i
−
n ∀ n,

i+n ∈ {0, 1}, i−n ∈ {0, 1} ∀ n.

(3.3.6)

The first constraint is the quadratic constraint (2.1.1) rewritten in terms of b+ and b−.

The second line of constraints ensures that i+n and i−n act as indicator variables for b+n and

b−n respectively. Furthermore, the condition that at least one of b+n , b
−
n is zero for every

n is automatically satisfied at an optimal solution to (3.3.6). Otherwise, if b+n and b−n are

both non-zero for some n, both could be decreased by min{b+n , b−n } without affecting the

first constraint while driving the smaller of b+n , b
−
n to zero and allowing one of i+n , i

−
n to be

decreased from one to zero, contradicting optimality. It follows from this property that at

least one of i+n , i
−
n is zero at an optimal solution, with both being zero if b+n = b−n = 0. Thus

the objective function in (3.3.6) behaves exactly like the zero-norm ‖b‖0.

To guarantee that (3.3.6) is a valid reformulation of (2.0.1), the constants B+
n , B

−
n

should be large enough to not constrain b+, b− any further than the quadratic constraint

already does. This requirement is met by choosing

B+
n =

√
γ
(
Q−1

)
nn

+ cn, (3.3.7a)

B−
n =

√
γ
(
Q−1

)
nn
− cn, (3.3.7b)

since (3.3.3a) and (3.3.3b) represent the largest possible values of b+n and b−n respectively

under the quadratic constraint.

As before with (3.1.1), a linear relaxation of (3.3.6) is obtained by replacing the binary

constraints on i+n and i−n with unit-interval constraints and then minimizing with respect

to i+ and i− while holding b+ and b− constant. The resulting linear relaxation is given by

min
b+,b−

N∑

n=1

(
b+n
B+

n
+
b−n
B−

n

)

s.t. (b+ − b− − c)TQ(b+ − b− − c) ≤ γ, b+ ≥ 0, b− ≥ 0.

(3.3.8)
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Using a standard technique based on the representation in (3.3.5) to replace the absolute

value functions in the first linear relaxation (3.3.1) with linear functions (see [96]), it can

be seen that (3.3.1) is a special case of (3.3.8) with B+
n = B−

n = Bn. Since Bn must satisfy

(3.3.4) for (3.3.1) to be a valid relaxation of (2.0.1) while B+
n and B−

n can be chosen as in

(3.3.7), the optimal value of (3.3.8) is at least as large as that of (3.3.1). Hence (3.3.8) is a

stronger relaxation than (3.3.1).

An alternative interpretation of the linear relaxation in (3.3.1) is as a weighted ℓ1 relax-

ation of the ℓ0 minimization in (2.0.1). In (3.3.8), the weights are also allowed to depend on

the signs of the coefficients. The values of B+
n and B−

n in (3.3.7) correspond to the choice

of weights that gives the tightest relaxation in this class. For this reason, we will use the

term linear relaxation to refer henceforth to (3.3.8) with B+
n and B−

n given by (3.3.7).

Fig. 3-2 shows a two-dimensional graphical representation of the linear relaxation as an

asymetrically-weighted ℓ1 minimization. The values of B±
n are given by the maximum extent

of the feasible ellipsoid along the positive and negative coordinate directions and can be

found graphically as indicated in Fig. 3-2. The asymmetric diamond shape represents a level

contour of the ℓ1 norm weighted by 1/B±
n . The solution to the weighted ℓ1 minimization

can be visualized by inflating the diamond until it just touches the feasible ellipsoid. The

point of tangency is the optimal solution and the tangent contour corresponds to the optimal

value. In Section 3.3.2, we will draw upon this geometric intuition to construct best-case and

worst-case examples in terms of the strength of the bound provided by the linear relaxation.

Lemaréchal and Oustry [97] have shown that a common semidefinite relaxation technique

is equivalent to linear relaxation when applied to sparsity maximization problems such as

(2.0.1). As a consequence, the properties of the linear relaxation (3.3.8) to be discussed in

Sections 3.3.2 and 3.3.3 also apply to this type of semidefinite relaxation.

In Section 3.3.2, we will also require the dual of the linear relaxation (3.3.8), given by

max
µ

cTµ−
√
γµTQ−1µ

s.t. − g− ≤ µ ≤ g+,

(3.3.9)

with g+n = 1/B+
n and g−n = 1/B−

n for all n. The derivation of the dual problem can

be found in Appendix B.2. Since the primal problem (3.3.8) is convex and has a strictly

feasible solution b+−b− = c, and the dual has a strictly feasible solution µ = 0, by Slater’s
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Figure 3-2: Interpretation of the linear relaxation as a weighted ℓ1 minimization and a
graphical representation of its solution.

condition the optimal values of the primal and dual are equal [98]. The dual is a nonlinear

optimization problem with upper and lower bound constraints on each of the variables and

is generally easier to solve than the primal because of the nature of the constraints.

While this thesis focuses on linear relaxation as a means of bounding the optimal cost

of problem (2.0.1), linear relaxation can also be used to generate a feasible solution. Once

the linear relaxation (3.3.8) has been solved, we may define a subset Z of zero-valued

coefficients by setting a threshold between 0 and 1 and including in Z those indices n for

which both i+n = b+n /B
+
n and i−n = b−n /B

−
n fall below the threshold. In effect, the fractional

i±n values returned by the linear relaxation are rounded up to 1 or down to 0 based on the

threshold. We then use condition (2.2.3) to determine whether the subset Z is feasible. To

obtain the sparsest solution possible through this method, the threshold can be adjusted

until Z is a minimal feasible subset. This rounding technique has been applied to other

integer optimization problems as a way of obtaining a solution with provable approximation

guarantees [95]. The present case is complicated by the fact that the minimum threshold

required for feasibility is difficult to predict. It may still be possible however to establish

an approximation guarantee for a solution produced in this manner.
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3.3.2 Best-case and worst-case examples

We now investigate the approximation properties of the linear relaxation (3.3.8). In this

subsection, we construct two classes of examples, the first of which shows that the approx-

imation ratio can equal 1, the highest possible value, while the second shows that the ratio

can be arbitrarily close to zero for large N . The examples contribute to an understanding

of when the linear relaxation is expected to be a good approximation to problem (2.0.1)

and when it is expected to be poor. Together these examples also imply that it is not

possible to establish a non-trivial constant bound on the approximation ratio that holds for

all instances of the problem.

Throughout this subsection, we set c = e, a vector of all ones, and γ = 1, which can

be regarded as a normalization. For the best-case examples, we wish to construct instances

of (2.0.1), and more specifically ellipsoids parameterized by Q, for which the optimal value

of the linear relaxation is large. Based on the intuition of Fig. 3-2, this can be done by

choosing all but one of the ellipsoid axes to be short and orienting the remaining major axis

so that it is nearly parallel to the level surfaces of the ℓ1 norm. This gives the ℓ1 diamond

more room to grow before intersecting the ellipsoid. In addition, to ensure that (2.3.3) is

satisfied, the ellipsoid should contain a point at which bn = 0 for each n.

To translate the geometric intuition into an algebraic specification, we assume that Q

has the following eigendecomposition:

Q =
[
v1 V⊥

]

λ1

λ2I




v

T
1

VT
⊥


 , (3.3.10)

where λ1 = 1/N and λ2 is very large relative to λ1 so that the minor axes of the ellipsoid

are small. For N even, the eigenvector v1 corresponding to λ1 is chosen to have half of its

components equal to +1/
√
N and the other half equal to −1/

√
N . For N odd, (N + 1)/2

components of v1 are equal to +1/
√
N and (N−1)/2 components are equal to −1/

√
N . The

matrix V⊥ of eigenvectors corresponding to λ2 is chosen so that
[
v1 V⊥

]
is an orthogonal

matrix, i.e.,

[
v1 V⊥

]

v

T
1

VT
⊥


 = v1v

T
1 +V⊥V

T
⊥ = I. (3.3.11)

Ellipsoids that correspond to these choices of Q, c, and γ are sketched in Fig. 3-3 for the
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cases N = 2 and N = 3.

b1

b2

c = (1, 1)

v1

c+
√
2v1 = (0, 2)

c−
√
2v1 = (2, 0)

(a)

b1

b2

b3

c = (1, 1, 1)

v1

c+
√
3v1 = (0, 0, 2)

c−
√
3v1 = (2, 2, 0)

(b)

Figure 3-3: Ellipsoids corresponding to the first class of examples for (a) N = 2 and (b)
N = 3.

Given the values of λ1 and v1 above, the points b = c±
√
Nv1 are feasible for problem

(2.0.1) as can be verified by substitution into (2.1.1). Furthermore, if N is even, both

c +
√
Nv1 and c −

√
Nv1 have N/2 zero-valued components. If N is odd, one of these

points has (N−1)/2 non-zero components and the other has (N+1)/2 non-zero components.

Assuming that λ2 is large enough, i.e., the minor ellipsoid axes are short enough, the points

c±
√
Nv1 have the greatest number of zero components and hence the minimum zero-norm

in (2.0.1) is equal to N/2 for N even and (N − 1)/2 for N odd. In Appendix B.3, we show

that the linear relaxation leads to a lower bound on (2.0.1) that is also equal to N/2 or

(N − 1)/2, thus proving that the approximation ratio can equal 1.

We now present a second class of examples to show that the approximation ratio can

be arbitrarily close to zero for large N . The approximation ratio cannot be exactly equal

to zero since that would require the optimal value of the linear relaxation to be zero, which

occurs only if b = 0 is a feasible solution to (2.0.1), i.e., only if the minimum zero-norm

in the original problem is also equal to zero. Thus our goal in the following construction is

to have the optimal value of the linear relaxation be less than 1, so that the lower bound

on (2.0.1) is equal to 1 after taking the ceiling. In addition, given our assumption that
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the feasible range for each coefficient bn includes zero, i.e., that (2.3.3) is satisfied for all

n, the optimal cost in (2.0.1) can be no greater than N − 1. Accordingly we require in

the construction that the optimal cost of (2.0.1) be equal to N − 1. The difference of

N − 2 between the true optimal cost and the lower bound provided by linear relaxation is

essentially the worst possible, and the approximation ratio of 1/(N − 1) clearly approaches

zero as N increases.

To achieve the goals laid out above, we refer again to the geometry of Fig. 3-2. The

optimal value of the linear relaxation can be made small by orienting the major axis of

the ellipsoid so that it points toward the origin, thus limiting the growth of the ℓ1 dia-

mond. At the same time, the minor axes should be chosen large enough for the ellipsoid

to intersect the hyperplanes bn = 0 for all n, but also small enough to not intersect any of

the hyperplanes defined by two components being equal to zero. Assuming again that Q

has the eigendecomposition shown in (3.3.10), these requirements can be met by choosing

λ1 = 1/(N − 1), v1 = (1/
√
N)e, and λ2 = (N − 1)/2. In Appendix B.4, we verify that this

choice of parameters leads to an optimal value of N − 1 for (2.0.1) and an optimal value

less than 1 for its linear relaxation.

3.3.3 Absolute upper bound

The examples in the previous subsection demonstrate that there does not exist a non-trivial

constant bound on the ratio between the optimal value of the linear relaxation (3.3.8) and

the optimal value of the original problem. It is possible however to obtain an absolute

upper bound on the optimal value of the linear relaxation in terms of N , the total number

of coefficients. We use the fact that any feasible solution to the primal form (3.3.8) of the

linear relaxation provides an upper bound on the optimal value. Choosing b+ − b− = c,

i.e., b+n = cn, b
−
n = 0 for cn ≥ 0 and b+n = 0, b−n = |cn| for cn < 0, we obtain an upper bound

of
∑

n:cn>0

cn

B+
n

+
∑

n:cn<0

|cn|
B−

n
=

N∑

n=1

|cn|√
γ
(
Q−1

)
nn

+ |cn|
, (3.3.12)

using (3.3.7). Since we have assumed that (2.3.3) is satisfied for all n, each of the fractions on

the right-hand side of (3.3.12) is no greater than 1/2. As a consequence, the optimal value

of the linear relaxation can be no larger than N/2. This upper bound can be strengthened

by scaling the solution b+−b− = c, which is in the center of the feasible set, so that it lies

72



on the boundary instead. A scale factor that meets this criterion is

θ = 1−
√

γ

cTQc
, (3.3.13)

which is less than 1 and also greater than 0 provided that b+ − b− = 0 is not a feasible

solution to (3.3.6). Thus the upper bound in (3.3.12) can be reduced by the factor θ.

It is apparent from (3.3.12) that the lower bound resulting from the linear relaxation

cannot be tight if the optimal cost in (2.0.1) is greater than ⌈N/2⌉. We infer that it is

unlikely for the linear relaxation to be a good approximation to (2.0.1) in most instances,

since if it were, this would imply that the optimal value of (2.0.1) is not much greater than

N/2 in most cases, a fact that is considered unlikely. The situation is exacerbated if the

factor θ in (3.3.13) is small. This motivates the consideration of a second type of relaxation

as we describe next.

3.4 Diagonal relaxation

As an alternative to linear relaxations, this section introduces relaxations of problem (2.0.1)

in which the matrix Q is replaced by a diagonal matrix, an approach we refer to as diagonal

relaxation. As seen in Section 2.2.1, the solution to the problem of sparse design is straight-

forward in the diagonal case, thus making it attractive as a relaxation of the problem when

Q is non-diagonal. In Section 3.4.1, we show how to obtain diagonal relaxations of (2.0.1),

in particular the tightest possible diagonal relaxation.

As with linear relaxations, we are interested in understanding how well diagonal re-

laxations can approximate the original problem. It is clear that if Q is already diagonal,

the diagonal relaxation and the original problem coincide and the approximation ratio is

equal to 1. In Section 3.4.2, we exhibit worst-case examples in which the approximation

ratio is equal to zero. While this implies that diagonal relaxation is no better than linear

relaxation in terms of the range of approximation ratios encountered over all possible in-

stances, diagonal relaxation can yield a more favorable approximation for certain classes of

instances. Several such examples are illustrated by means of numerical comparisons in Sec-

tion 3.6. To complement the numerical results, in this section we analyze how the quality

of approximation depends on properties of the matrix Q, or equivalently of the ellipsoid

EQ corresponding to Q. In Section 3.4.4, the approximation quality is characterized based
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on the condition number of Q, while in Section 3.4.5, the case of diagonally dominant Q is

considered. In Section 3.4.6, we analyze the case in which the axes of the ellipsoid EQ are

nearly aligned with the coordinate axes, which can be viewed as the geometric counterpart

to the diagonally dominant case. To strengthen some of our results, we exploit the invari-

ance of both problem (2.0.1) and its diagonal relaxation to diagonal scaling transformations,

properties that are derived in Section 3.4.3.

3.4.1 Derivation of the tightest possible diagonal relaxation

To obtain a diagonal relaxation, the quadratic constraint in (2.1.1) is replaced with a similar

constraint involving a positive definite diagonal matrix D:

(b− c)TD(b− c) =

N∑

n=1

Dnn(bn − cn)2 ≤ γ. (3.4.1)

Geometrically, constraint (3.4.1) specifies an ellipsoid, denoted as ED, with axes that are

aligned with the coordinate axes. Since the relaxation is intended to provide a lower bound

for the original problem, we require that the coordinate-aligned ellipsoid ED enclose the

original ellipsoid EQ so that minimizing over ED yields a lower bound on the minimum over

EQ. Because of symmetry, the two ellipsoids can be made concentric without any loss in the

quality of the relaxation. Then the nesting of the ellipsoids is equivalent to Q −D being

positive semidefinite, which we write as Q−D � 0 or Q � D. Sufficiency follows from the

inequality

(b− c)TD(b− c) ≤ (b− c)TQ(b− c) ∀ b, (3.4.2)

so if b ∈ EQ, i.e., b satisfies (2.1.1), then it also satisfies (3.4.1) and belongs to ED. The

condition Q � D is necessary because Q � D implies the existence of a vector b that

violates the inequality in (3.4.2), and by scaling b − c so that the right side of (3.4.2) is

equal to γ, we see that b satisfies (2.1.1) but does not satisfy (3.4.1).

For every D satisfying 0 � D � Q, minimizing ‖b‖0 subject to (3.4.1) results in a lower

bound for problem (2.0.1). Thus the set of diagonal relaxations is parameterized by D, as

shown graphically in Fig. 3-4. As with linear relaxations in Section 3.3.1, we are interested

in finding a diagonal relaxation that is as tight as possible, i.e., a matrix Dd such that the

minimum zero-norm associated with Dd is maximal among all valid choices of D. To see
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EQ

ED1

ED2

Figure 3-4: Two different diagonal relaxations.

how such a relaxation may be obtained, recall from Section 2.2.1 that constraint (3.4.1)

admits a feasible solution with K zero-valued elements if and only if the condition in (2.2.7)

is met (with Dnn in place of Qnn). Based on (2.2.7), the tightest diagonal relaxation may

be determined by solving the following optimization problem starting from K = 0:

max
D

ΣK

(
{Dnnc

2
n}
)

s.t. 0 � D � Q,

D diagonal.

(3.4.3)

Denote by Ed(K) the optimal value of (3.4.3). If Ed(K) is less than or equal to γ, then

condition (2.2.7) holds for every D satisfying the constraints in (3.4.3), and consequently

a feasible solution b with K zero-valued coefficients exists for every such D. We conclude

that no diagonal relaxation can give a minimum zero-norm greater than N −K. The value

of K is then incremented by 1 and (3.4.3) is re-solved. If on the other hand Ed(K) is greater

than γ for some K = Kd +1, then according to (2.2.7) there exists a Dd for which it is not

feasible to have a solution with Kd+1 zero elements. When combined with the conclusions

drawn for K ≤ Kd, this implies that the minimum zero-norm with D = Dd is equal to

N − Kd. It follows that N − Kd is the tightest lower bound achievable with a diagonal

relaxation.

The foregoing procedure determines both the tightest possible diagonal relaxation and

its optimal value at the same time. For convenience, we will refer to the overall procedure
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as solving the diagonal relaxation. The term diagonal relaxation will refer henceforth to

the tightest diagonal relaxation.

The main computational burden in solving the diagonal relaxation lies in solving (3.4.3)

for multiple values of K. Problem (3.4.3) can be recast as a semidefinite optimization

problem to which efficient interior-point algorithms as well as other simplifications may be

applied. A detailed discussion of the solution of (3.4.3) can be found in Section 3.5.

As with the linear relaxation, our main interest in the diagonal relaxation is as a method

of bounding the optimal cost of the original problem (2.0.1). However, the solution of the

diagonal relaxation also suggests a heuristic for obtaining a feasible solution to (2.0.1).

The procedure described above terminates with a matrix D∗ such that the sum of the K∗

smallest D∗
nnc

2
n is no greater than γ. This implies that the index set Z corresponding to

the K∗ smallest D∗
nnc

2
n is feasible for the relaxed problem. Using condition (2.2.3), we can

check whether Z is also feasible for the original problem (2.0.1). If it is, (2.0.1) is solved

because the zero-norm N −K∗ of this solution is equal to the lower bound provided by the

diagonal relaxation. If not, Z is reduced in size to correspond to the K∗−1 smallest D∗
nnc

2
n

and the feasibility test is repeated. The size of Z is successively decreased in this manner

until Z becomes feasible, yielding a solution with zero-norm equal to N −|Z|. If |Z| is only
slightly smaller than K∗, then this solution is close to optimal.

3.4.2 Worst-case examples

In the remainder of this section, the approximation properties of the diagonal relaxation

are explored. In this subsection, we show that the approximation ratio associated with

diagonal relaxation can equal zero. Intuitively, the diagonal relaxation is expected to result

in a poor approximation when the original ellipsoid EQ is far from being coordinate-aligned.

This occurs for example if EQ is dominated by a single long axis that has equal components

in all coordinate directions, thus forcing the enclosing coordinate-aligned ellipsoid ED to

be much larger than EQ. To show that the approximation ratio can actually equal zero

in these instances, we use the examples in Section 3.3.2 in which c = e, γ = 1, and the

eigenvector v1 has equal-magnitude components. The objective function in (3.4.3) reduces

in this case to the sum of the K smallest diagonal entries of D, and the maximum value

Ed(K) is compared to 1 to determine whether there exists a feasible solution to the diagonal

relaxation with K zero-valued components. We make use of the following lemma, which
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holds for the case c = e:

Lemma 1. If c = e, the optimal value Ed(K) of (3.4.3) is bounded from below byKλmin(Q),

where λmin(Q) is the smallest eigenvalue of Q. This lower bound is tight if the eigenvector

v1 corresponding to λmin(Q) has components of equal magnitude.

Proof. The matrix D = λmin(Q)I satisfies D � Q and is therefore a feasible solution to

(3.4.3). Hence the corresponding objective value Kλmin(Q) is a lower bound on Ed(K). To

show that this lower bound can be tight, first note that for any D satisfying D � Q,

vT
1 Dv1 =

N−1∑

n=0

Dnn

(
v1

)2
n
≤ vT

1 Qv1 = λmin(Q) ‖v1‖22 . (3.4.4)

If v1 has equal-magnitude components, e.g.
∣∣(v1

)
n

∣∣ = 1/
√
N for all n assuming that v1 is

normalized to have unit 2-norm, (3.4.4) reduces to

N−1∑

n=0

Dnn ≤ Nλmin(Q). (3.4.5)

Since (3.4.5) holds for any D such that D � Q and is met with equality for D = λmin(Q)I,

λmin(Q)I is an optimal solution to (3.4.3) when c = e, K = N , and v1 has equal-magnitude

components. This proves that the lower bound of Kλmin(Q) is tight in the case K = N .

Using the fact that the average of the K smallest Dnn for K < N is no greater than the

average of all N diagonal entries, it follows from (3.4.5) that

ΣK

(
{Dnn}

)
≤ Kλmin(Q), K = 1, 2, . . . , N − 1, (3.4.6)

for all D such that D � Q. Since the solution D = λmin(Q)I also satisfies (3.4.6) with

equality, λmin(Q)I is an optimal solution to (3.4.3) for all K under the assumptions of the

lemma. Hence Kλmin(Q) is a tight lower bound on Ed(K).

In the first class of examples in Section 3.3.2, λmin(Q) = λ1 = 1/N and the corre-

sponding eigenvector v1 satisfies the property of having equal-magnitude components. It

follows from Lemma 1 that Ed(K) is given by Kλ1 = K/N for all values of K. Ed(K)

does not exceed γ = 1 for any K, and hence the solution b = 0 is feasible for the diagonal

relaxation. Since the minimum zero-norm in the unrelaxed problem (2.0.1) is either N/2
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or (N − 1)/2 depending on whether N is even or odd, the approximation ratio is zero. In

addition, given that the linear relaxation results in an approximation ratio of 1 for these

examples, we observe that there is no strict dominance relationship between the linear and

diagonal relaxations (diagonal relaxations are clearly dominant in the case of diagonal Q).

In the second class of examples in Section 3.3.2, λmin(Q) = λ1 = 1/(N − 1) assuming

that N ≥ 3, and the eigenvector v1 again has equal-magnitude components. Ed(K) is equal

to K/(N − 1) and does not exceed γ = 1 for any K < N but does for K = N . Therefore

the minimum zero-norm under the diagonal relaxation is equal to 1 and the resulting lower

bound on the optimal cost in (2.0.1) is the same as that given by linear relaxation. As

mentioned in Section 3.3.2, the difference of N − 2 between the optimal cost of (2.0.1) and

the lower bound provided by both relaxations is essentially the largest possible assuming

that (2.3.3) is satisfied.

The examples in this subsection demonstrate that it is not possible to place a non-trivial

constant bound on the approximation ratio associated with diagonal relaxation that holds

for all instances. However, for Q matrices with certain properties, the diagonal relaxation

tends to be a good approximation to the original problem. We analyze some of these cases in

detail in Sections 3.4.4–3.4.6. Numerical evidence of the approximation quality of diagonal

relaxations is presented in Section 3.6.

3.4.3 Invariance under diagonal scaling

Before proceeding to the main analytical results in Sections 3.4.4–3.4.6, we first show that

both problem (2.0.1) and its diagonal relaxation are invariant to diagonal scalings of the

ellipsoid EQ. More precisely, we show that the optimal value of (2.0.1) and the optimal

value Ed(K) of (3.4.3) are invariant. This invariance property will be used to strengthen

certain bounds in Sections 3.4.4–3.4.6.

To show that the optimal value of (2.0.1) is invariant under diagonal scaling of the

feasible set EQ, we let S be an arbitrary invertible diagonal matrix. The image of EQ under

S is given by

{y = Sb : (b− c)TQ(b− c) ≤ γ} = {y : (y − Sc)TS−1QS−1(y − Sc) ≤ γ},

i.e., an ellipsoid with center Sc and shape matrix S−1QS−1. The minimization of the
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zero-norm over S(EQ) reads

min
y

‖y‖0 s.t. (y − Sc)TS−1QS−1(y − Sc) ≤ γ. (3.4.7)

By substituting y = Sb, simplifying the constraint, and recognizing that ‖Sb‖0 = ‖b‖0
because S is diagonal, we recover problem (2.0.1). This establishes that (2.0.1) and its

scaled counterpart (3.4.7) have the same optimal value.

Next we consider the diagonal relaxation of the scaled problem (3.4.7). The tightest

possible diagonal relaxation can be found by solving

max
D

ΣK

(
{Dnn(Snncn)

2}
)

s.t. 0 � D � S−1QS−1,

D diagonal,

(3.4.8)

which is equivalent to

max
D

ΣK

(
{(SnnDnnSnn)c

2
n}
)

s.t. 0 � SDS � Q,

D diagonal,

since S is invertible. By absorbing the diagonal scaling by S into the matrix D, we recover

problem (3.4.3). This shows that the optimal value Ed(K) of (3.4.3) is invariant under

diagonal scaling. As a consequence, the value of Kd, the largest K such that Ed(K) ≤ γ, is
also invariant.

Recall from Section 2.2.4 that diagonal scalings are essentially the only invertible linear

transformations that preserve globally the ordering of vectors by sparsity. We infer from the

invariance of Ed(K) that it is not possible to obtain a more favorable diagonal relaxation

of problem (2.0.1) by first applying a linear transformation in this class to the feasible

set. However, some of the bounds that we derive in Sections 3.4.4–3.4.6 do change under

diagonal scaling and can therefore be strengthened by an appropriate choice of scaling.
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3.4.4 Condition number bound on the approximation ratio

In this subsection, the quality of approximation of the diagonal relaxation is characterized

in terms of the condition number of the matrix Q. Geometrically, the condition number

κ(Q) corresponds to the ratio between the longest and shortest axes of the ellipsoid EQ.
We expect intuitively that the diagonal relaxation will yield a good approximation when

the condition number is low. A small value for κ(Q) implies that the ellipsoid EQ is nearly

spherical and can therefore be enclosed by a coordinate-aligned ellipsoid ED of comparable

size. This is illustrated in Fig. 3-5 in the two-dimensional case. Given that EQ can be

approximated well by ED in terms of volume, one would expect a close approximation in

terms of sparsity as well. Our purpose in this subsection is to formalize the geometric

intuition by deriving a bound on the approximation ratio based on the conditioning of Q.

EQ
EQ

ED
ED

Figure 3-5: Diagonal relaxations for two ellipsoids with contrasting condition numbers.

Our first step is to bound the optimal value of (2.0.1) using the eigenvalues of Q. Toward

this end we consider condition (2.2.5), which determines whether there exists a solution to

(2.0.1) with K zero-valued coefficients. Define E0(K) to be the left-hand side of (2.2.5)

and denote by K∗ the maximum value of K for which (2.2.5) is satisfied, i.e., the maximum

number of zero-valued coefficients that is feasible for problem (2.0.1). By bounding E0(K)

in terms of the smallest and largest eigenvalues of Q, λmin(Q) and λmax(Q), we derive the

following bounds on K∗:

Lemma 2. The maximum number of zero-valued coefficients in problem (2.0.1), K∗, is

bounded from above by

K = max{K : λmin(Q)ΣK

(
{c2n}

)
≤ γ} (3.4.9)
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and from below by

K = max{K : λmax(Q)ΣK

(
{c2n}

)
≤ γ}. (3.4.10)

Furthermore,

K

K
≤ ⌈(K + 1)κ(Q)⌉ − 1

K
≈ κ(Q).

The proof of Lemma 2 is provided in Appendix B.5.

Next we relate Kd, the maximum number of zero-valued coefficients in the diagonal

relaxation of (2.0.1), to the bounds in Lemma 2. Specifically, we show that Kd is a tighter

upper bound on K∗ than K in (3.4.9). To prove that Kd ≤ K, we recall that Kd is the

largest value of K for which Ed(K) ≤ γ, where Ed(K) is the optimal value of (3.4.3). An

upper bound on Kd can be obtained through a lower bound on Ed(K). Ed(K) can be

bounded from below by observing that D = λmin(Q)I is a feasible solution to (3.4.3), and

hence Ed(K) is no smaller than the corresponding objective value λmin(Q)ΣK

(
{c2n}

)
. As a

consequence, the largest value of K for which λmin(Q)ΣK

(
{c2n}

)
≤ γ is an upper bound on

Kd, i.e.,

Kd = max{K : Ed(K) ≤ γ} ≤ max{K : λmin(Q)ΣK

(
{c2n}

)
≤ γ} = K,

which is the desired result.

Combining the preceding inequality with Lemma 2 allows us to bound the ratio between

Kd and K∗ by the condition number κ(Q).

Theorem 2. The maximum number Kd of zero-valued coefficients in the diagonal relaxation

of problem (2.0.1) satisfies K∗ ≤ Kd ≤ K with K as given in (3.4.9). Furthermore,

Kd

K∗ ≤
K

K
≤ ⌈(K + 1)κ(Q)⌉ − 1

K
≈ κ(Q).

Both Lemma 2 and Theorem 2 can be strengthened slightly by exploiting the invariance

of the optimal values of (2.0.1) and its diagonal relaxation to diagonal scalings. We consider

the scaled problem (3.4.7) in which the feasible ellipsoid EQ is scaled by a diagonal matrix

S, resulting in Q being replaced by S−1QS−1 and c by Sc. Following the same development

that led to Theorem 2, we see that the definitions of K in (3.4.9) and K in (3.4.10) change,

as does the condition number. However, as shown in Section 3.4.3, the values of K∗ and
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Kd do not change. Theorem 2 can therefore be generalized as follows:

Corollary 1. For any invertible diagonal matrix S, define

K(S) = max{K : λmin(S
−1QS−1)ΣK

(
{Snnc2n}

)
≤ γ},

K(S) = max{K : λmax(S
−1QS−1)ΣK

(
{Snnc2n}

)
≤ γ}.

Then we have the ordering K(S) ≤ K∗ ≤ Kd ≤ K(S) with

Kd

K∗ ≤
K(S)

K(S)
≤
⌈
(K(S) + 1)κ(S−1QS−1)

⌉
− 1

K(S)
≈ κ(S−1QS−1).

In particular, S can be chosen to minimize κ(S−1QS−1), i.e., as an optimal diagonal pre-

conditioner for Q, to obtain a tighter bound on Kd/K
∗.

Theorem 2 and Corollary 1 provide a theoretical explanation for the dependence of the

approximation ratio for diagonal relaxation on the condition number. This dependence is

observed in the numerical experiments of Section 3.6. However, the results in the present

subsection do not explain the additional dependence on the distribution of eigenvalues that

is also observed in Section 3.6. Specifically, distributions in which most of the eigenvalues of

Q are small and comparable are favored. The dependence on eigenvalue distribution can be

explained by the following geometric intuition: Assuming that EQ is not close to spherical,

i.e., κ(Q) is relatively large, it is preferable for most of the ellipsoid axes to be long rather

than short, and for the long axes to be comparable in length. Such an ellipsoid tends to

require a comparatively smaller coordinate-aligned enclosing ellipsoid, and consequently the

diagonal relaxation tends to be a better approximation. For example, in three dimensions, a

severely oblate spheroid can on average be enclosed in a smaller coordinate-aligned ellipsoid

than an equally severely prolate spheroid. Recalling that the eigenvalues of Q are inversely

proportional to the axis lengths of the ellipsoid EQ, this argument based on volume explains

the preference for certain eigenvalue distributions seen in Section 3.6.

In contrast, the diagonal relaxation tends not to perform well in the case of many

large eigenvalues and few small eigenvalues. The examples used in Sections 3.3.2 and 3.4.2

represent extreme cases in this latter category since in both examples there are N−1 equally
large eigenvalues and a single small eigenvalue. The shape of the feasible ellipsoid is largely

determined by the eigenvector v1 associated with the small eigenvalue, and since in both
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cases v1 was chosen to have equal-magnitude coordinates, a relatively large coordinate-

aligned ellipsoid is needed to enclose the original ellipsoid.

In the absence of a rigorous explanation for the observed dependence on the eigenvalue

distribution, we give instead an informal argument based on the results of this subsection.

We focus specifically on the bound K given in (3.4.10), which tends to be conservative. The

value of K depends in turn on the upper bound on E0(K) given in (B.5.2). One of the

inequalities used in the derivation is

λmax

(((
Q−1

)
ZZ
)−1
)
‖cZ‖22 ≤ λmax(Q) ‖cZ‖22 , (3.4.11)

which holds for all subsets Z. However, to obtain an upper bound on E0(K), it suffices to

bound the left-hand side of (3.4.11) only for the subset Z that minimizes the left-hand side

among all subsets of size K. For |Z| = K, the range of possible values for the left-hand side

of (3.4.11) is given by (see [92])

λK(Q)ΣK

(
{c2n}

)
≤ λmax

(((
Q−1

)
ZZ
)−1
)
‖cZ‖22 ≤ λmax(Q)ΣK

(
{c2n}

)
,

where λK(Q) denotes the Kth smallest eigenvalue of Q and ΣK denotes the sum of the K

largest elements of a sequence. Thus the upper bound of λmax(Q)ΣK

(
{c2n}

)
used in (B.5.2)

can be much larger than the minimum of the left-hand side of (3.4.11) over all Z of size K,

especially if λK(Q)≪ λmax(Q). If we assume instead that

min
|Z|=K

λmax

(((
Q−1

)
ZZ
)−1
)
‖cZ‖22 = cλK(Q)ΣK

(
{c2n}

)

where c is a constant not much larger than 1, then (3.4.10) is replaced with

K = max{K : cλK(Q)ΣK

(
{c2n}

)
≤ γ}.

Following the same reasoning leading to Theorem 2, one arrives at an approximate bound of

cλK+1(Q)/λmin(Q) in place of κ(Q) in Theorem 2, and similarly for Corollary 1. The ratio

λK+1(Q)/λmin(Q) can be viewed as a partial condition number involving only the K + 1

smallest eigenvalues of Q. Thus if most of the eigenvalues of Q are small and comparable,

the partial condition number λK+1(Q)/λmin(Q) is small whereas the full condition number
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may be much larger.

3.4.5 The diagonally dominant case

We now consider the case in which the matrix Q is diagonally dominant. The notion of

diagonal dominance used here will be made precise shortly. It is expected in this case that

the original problem can be well-approximated by its diagonal relaxation. Our goal in this

subsection is to determine analytically how the quality of approximation depends on the

chosen measure of diagonal dominance.

As in Section 3.4.4, our strategy is to bound the ratio Kd/K
∗ by determining an upper

bound on Kd and a lower bound on K∗. This can be done by obtaining a lower bound on

Ed(K) and an upper bound on E0(K) respectively. Since Ed(K) is defined as the maximum

value of (3.4.3), any feasible solution to (3.4.3) provides a lower bound on Ed(K). We wish to

choose a feasible solution that is likely to approximate Ed(K) well given thatQ is diagonally

dominant. To do this, we use the following lemma, which determines the optimal value of

(3.4.3) under the additional restriction that D is a multiple of a fixed diagonal matrix.

Lemma 3. Fix a positive definite diagonal matrix D0, and let D = αD0. Then the optimal

value of (3.4.3), Ed(K), satisfies

Ed(K) ≥ λmin

(
D

−1/2
0 QD

−1/2
0

)
· ΣK

(
{(D0)nnc

2
n}
)
.

Proof. With D = αD0, (3.4.3) reduces to

max
α

αΣK

(
{(D0)nnc

2
n}
)

s.t. 0 � αD0 � Q.

(3.4.12)

Since D is restricted to be a multiple of D0 in (3.4.12), the optimal value of (3.4.12) is a

lower bound on Ed(K). Noting that ΣK

(
{(D0)nnc

2
n}
)
is not a function of α and that D0 is

invertible, (3.4.12) has the same optimal solution as

max
α

α

s.t. 0 � αI � D
−1/2
0 QD

−1/2
0 .

(3.4.13)

The solution to (3.4.13) is to set α equal to the smallest eigenvalue of D
−1/2
0 QD

−1/2
0 .
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Multiplying by ΣK

(
{(D0)nnc

2
n}
)
results in the desired bound.

Motivated by the diagonal case in which the optimal solution to (3.4.3) is to set D = Q,

for the diagonally dominant case we let D0 = Diag(Q) in Lemma 3, where Diag(Q) denotes

the diagonal matrix with diagonal entries equal to those of Q. Thus D is chosen to be an

optimally scaled version of Diag(Q).

Next we relate the scale factor α = λmin

(
Diag(Q)−1/2QDiag(Q)−1/2

)
to an explicit

measure of the diagonal dominance of Q. By the Gershgorin circle theorem [92], every

eigenvalue of a symmetric matrix A lies in one of the intervals


Amm −

∑

n 6=m

|Amn| , Amm +
∑

n 6=m

|Amn|




for some m. Applying the theorem to Diag(Q)−1/2QDiag(Q)−1/2 yields

λmin

(
Diag(Q)−1/2QDiag(Q)−1/2

)
≥ 1−max

m

∑

n 6=m

|Qmn|√
QmmQnn

, (3.4.14)

noting that Diag(Q)−1/2QDiag(Q)−1/2 has unit diagonal entries. Combining Lemma 3 and

(3.4.14),

Ed(K) ≥


1−max

m

∑

n 6=m

|Qmn|√
QmmQnn


ΣK

(
{Qnnc

2
n}
)
. (3.4.15)

We assume in this subsection that Q is sufficiently diagonally dominant so that the lower

bound in (3.4.15) is positive and is also an improvement over the previous bound of

λmin(Q)ΣK

(
{c2n}

)
used in Theorem 2.

We now determine an upper bound on E0(K). Since E0(K) is defined as the minimum

value of the left-hand side of (2.2.5), for any subset Z0 of size K we have

E0(K) = min
|Z|=K

{
cTZ(Q/QYY)cZ

}
≤ cTZ0

(Q/QY0Y0)cZ0

= cTZ0

(
QZ0Z0 −QZ0Y0 (QY0Y0)

−1 QY0Z0

)
cZ0

≤ cTZ0
QZ0Z0cZ0 . (3.4.16)

We wish to choose Z0 so that the right-hand side of (3.4.16) is a close approximation to

E0(K). Recall from Section 2.2.1 that if Q is diagonal, the solution to the combinatorial
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minimization in (2.2.5) is to choose Z to correspond to the K smallest values of Qnnc
2
n.

For the diagonally dominant case we assume that this choice of Z, which we denote as ZK ,

results in a good approximation to the true minimum E0(K) and we therefore set Z0 = ZK

in (3.4.16).

To relate the bound in (3.4.16) to the measure of diagonal dominance defined in (3.4.14),

we rewrite the right-hand side of (3.4.16) (with Z0 = ZK) as

cTZK
QZKZK

cZK
= (Diag(QZKZK

)1/2cZK
)T Diag(QZKZK

)−1/2QZKZK
Diag(QZKZK

)−1/2

× (Diag(QZKZK
)1/2cZK

).

Bounding the right-hand side in terms of the largest eigenvalue and then applying the

Gershgorin circle theorem,

cTZK
QZKZK

cZK
≤ λmax

(
Diag(QZKZK

)−1/2QZKZK
Diag(QZKZK

)−1/2
) ∑

n∈ZK

Qnnc
2
n

≤


1 + max

m∈ZK

∑

n∈ZK
n 6=m

|Qmn|√
QmmQnn



∑

n∈ZK

Qnnc
2
n

=


1 + max

m∈ZK

∑

n∈ZK
n 6=m

|Qmn|√
QmmQnn


ΣK

(
{Qnnc

2
n}
)
, (3.4.17)

where the last line follows from the definition of ZK . Combining (3.4.17) with (3.4.16), we

obtain

E0(K) ≤


1 + max

m∈ZK

∑

n∈ZK
n 6=m

|Qmn|√
QmmQnn


ΣK

(
{Qnnc

2
n}
)
. (3.4.18)

Based on the bounds in (3.4.15) and (3.4.18),

Kdd = max




K :


1 + max

m∈ZK

∑

n∈ZK

n 6=m

|Qmn|√
QmmQnn


ΣK

(
{Qnnc

2
n}
)
≤ γ





(3.4.19)

86



is a lower bound on K∗, while

Kdd = max



K :


1−max

m

∑

n 6=m

|Qmn|√
QmmQnn


ΣK

(
{Qnnc

2
n}
)
≤ γ



 (3.4.20)

is an upper bound on Kd. The following theorem summarizes the relationships among K∗,

Kd, Kdd, and Kdd. The proof of the bound on the ratio Kdd/Kdd is similar to the proof of

Lemma 2.

Theorem 3. Assume that Q is diagonally dominant in the sense that

max
m

∑

n 6=m

|Qmn|√
QmmQnn

< 1.

With Kdd and Kdd as defined in (3.4.19) and (3.4.20), we have Kdd ≤ K∗ ≤ Kd ≤ Kdd

and

Kdd

Kdd

≤ ⌈(Kdd + 1)rdd⌉ − 1

Kdd + 1
≈ rdd,

where

rdd =


1 + max

m∈ZKdd+1

∑

n∈ZKdd+1

n 6=m

|Qmn|√
QmmQnn




/
1−max

m

∑

n 6=m

|Qmn|√
QmmQnn


 .

The ratio rdd plays the same role in Theorem 3 as the condition number κ(Q) does in

Theorem 2. If Q is strongly diagonally dominant, rdd is only slightly greater than 1 and

therefore Kdd is not much larger than Kdd. Unlike with Theorem 2, there is no benefit to

generalizing Theorem 3 by means of diagonal scaling transformations because the measure

of diagonal dominance that is used remains unchanged when Q is replaced by S−1QS−1.

3.4.6 The nearly coordinate-aligned case

In this subsection, we analyze in the same manner as in Section 3.4.5 the case in which

the eigenvectors of Q are close to the standard basis vectors, i.e., the ellipsoid EQ is nearly

coordinate-aligned. More specifically, we assume that Q is diagonalized as Q = VΛVT ,

where the eigenvalues λn(Q) and the orthogonal matrix V of eigenvectors are ordered in

such a way that ∆ ≡ V − I is small. It is expected that the diagonal relaxation gives a
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close approximation in the nearly coordinate-aligned case. Our aim in this subsection is to

bound the ratio between K∗ and Kd in terms of a measure of the size of ∆.

To derive an upper bound on Kd, we use Lemma 3 to obtain a lower bound on Ed(K)

as was done in Section 3.4.5. In the present case, we set D0 = Λ, which corresponds

geometrically to restricting the coordinate-aligned ellipsoid ED to be of the same shape as

EQ, a reasonable choice in the nearly coordinate-aligned case. This leads to the following

bound:

Ed(K) ≥ λmin

(
Λ−1/2QΛ−1/2

)
ΣK

(
{λn(Q)c2n}

)
. (3.4.21)

Given that V ≈ I, the matrix Λ−1/2QΛ−1/2 is also approximately equal to I and its smallest

eigenvalue is close to 1. The following lemma makes this precise by providing a lower bound

on λmin

(
Λ−1/2QΛ−1/2

)
in terms of the spectral radius ρ(∆) and the condition number

κ(Q). We also derive an upper bound on the largest eigenvalue for later use.

Lemma 4. Assume that Q has a diagonalization Q = VΛVT such that ∆ = V − I is

small in the sense that κ(Q)ρ(∆) < 1. Then

λmin

(
Λ−1/2QΛ−1/2

)
≥ 1− κ(Q)ρ(∆),

λmax

(
Λ−1/2QΛ−1/2

)
≤ 1 + κ(Q)ρ(∆) + κ(Q)ρ2(∆).

The proof of Lemma 4 can be found in Appendix B.6. Combining (3.4.21) and Lemma 4,

we obtain

Ed(K) ≥ (1− κ(Q)ρ(∆)) ΣK

(
{λn(Q)c2n}

)
. (3.4.22)

As with the bound in (3.4.15), we assume in this subsection that κ(Q)ρ(∆) is small enough

for the lower bound in (3.4.22) to be stronger than the bound of λmin(Q)ΣK

(
{c2n}

)
used in

Theorem 2.

The dependence of the bound in (3.4.22) on the condition number κ(Q) can be explained

by the following geometric phenomenon: If κ(Q) is close to 1, i.e., the original ellipsoid EQ
is close to spherical, and the misalignment between the ellipsoid axes and the coordinate

axes is small, then a coordinate-aligned ellipsoid only needs to be slightly larger in order

to enclose EQ. In the limit of κ(Q) = 1, EQ is spherical and thus already coordinate-

aligned. This agrees with (3.4.22) since in the spherical case V can be chosen equal to I

and ρ(∆) = 0. On the other hand, if κ(Q) is large, even a small misalignment between the
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ellipsoid and coordinate axes results in a much larger coordinate-aligned enclosing ellipsoid.

This behavior is illustrated in Fig. 3-6 in the two-dimensional case.

θθ

Figure 3-6: Relationship between the approximation quality of the diagonal relaxation and
the condition number ofQ in the nearly coordinate-aligned case. For the same small angular
offset θ between the axes of the original ellipsoid and the coordinate axes, the coordinate-
aligned enclosing ellipsoid on the right is comparatively larger.

We now determine an upper bound on E0(K) in the nearly coordinate-aligned case. We

again make use of the bound in (3.4.16), this time choosing Z0 to correspond to the K

smallest λn(Q)c2n. We refer to this subset as Z ′
K . To relate the right-hand side of (3.4.16)

to the proximity measure κ(Q)ρ(∆) appearing in (3.4.22), we rewrite the first as follows:

cTZ′
K
QZ′

K
Z′

K
cZ′

K
=
[
cTZ′

K
0
]

QZ′

K
Z′

K
QZ′

K
Y ′
K

QY ′
K
Z′

K
QY ′

K
Y ′
K




cZ′

K

0




=


Λ1/2


cZ′

K

0






T

Λ−1/2QΛ−1/2


Λ1/2


cZ′

K

0




 .

Bounding the right-hand side in terms of λmax

(
Λ−1/2QΛ−1/2

)
and combining with Lemma

4 and (3.4.16), we arrive at

E0(K) ≤
(
1 + κ(Q)ρ(∆) + κ(Q)ρ2(∆)

)
ΣK

(
{λn(Q)c2n}

)
. (3.4.23)
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Equations (3.4.22) and (3.4.23) imply that

Knaa = max
{
K :

(
1 + κ(Q)ρ(∆) + κ(Q)ρ2(∆)

)
ΣK

(
{λn(Q)c2n}

)
≤ γ

}
(3.4.24)

is a lower bound on K∗ and

Knaa = max
{
K : (1− κ(Q)ρ(∆)) ΣK

(
{λn(Q)c2n}

)
≤ γ

}
(3.4.25)

is an upper bound on Kd. The following result is analogous to Theorem 3, with a similar

proof.

Theorem 4. Assume that Q has a diagonalization Q = VΛVT such that ∆ = V − I is

small in the sense that κ(Q)ρ(∆) < 1. With Knaa and Knaa as defined in (3.4.24) and

(3.4.25), we have Knaa ≤ K∗ ≤ Kd ≤ Knaa and

Knaa

Knaa

≤ ⌈(Knaa + 1)rnaa⌉ − 1

Knaa + 1
≈ rnaa,

where

rnaa =
1 + κ(Q)ρ(∆) + κ(Q)ρ2(∆)

1− κ(Q)ρ(∆)
.

Theorem 4 characterizes the quality of approximation in terms of the ratio rnaa. If the

ellipsoid EQ is nearly coordinate-aligned and if the condition number κ(Q) is low, rnaa is

close to 1 and the approximation ratio is guaranteed to be small. As with Theorem 2, there

is a potential benefit to considering diagonal scaling transformations since the quantity

corresponding to κ(Q)ρ(∆) may decrease when Q is transformed into S−1QS−1 for certain

choices of S.

3.5 Efficient solution of diagonal relaxations

In Section 3.4, we introduced the diagonal relaxation of problem (2.0.1) and analyzed its

approximation properties. It was seen that the diagonal relaxation can provide good lower

bounds on the optimal cost of (2.0.1) for certain classes of instances, and more evidence

of this will be presented in Section 3.6. However, to be useful as part of a branch-and-

bound algorithm, the diagonal relaxation must also be efficiently solvable. To some extent

this is ensured by the ability to reformulate the core optimization problem (3.4.3) as a
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semidefinite program, allowing the use of efficient solvers such as SDPT3 [99, 100] and

SeDuMi [101] (both accessible via the cvx interface [102]). In our experience however, these

general-purpose solvers are not as efficient at solving (3.4.3) as a more specialized solver. In

this section, we describe some techniques that exploit the structure of the problem at hand

and thereby increase efficiency when combined with standard interior-point algorithms for

semidefinite optimization.

We begin in Section 3.5.1 by rescaling problem (3.4.3) to normalize the vector c and

simplify the presentation in the remainder of the section. In Section 3.5.2, we discuss how

to make more efficient the search for Kd, the largest value of K such that the optimal value

of (3.4.3) is no greater than γ. We then focus on the rescaled version of problem (3.4.3). In

Section 3.5.3, (3.4.3) is reformulated as a standard semidefinite optimization problem and a

primal-dual algorithm is introduced to solve it. The primal-dual nature of the algorithm is

particularly suited to the fact that the optimal value is used only in a threshold test. Later

subsections describe how to improve the efficiency of specific aspects of the primal-dual

algorithm, namely the determination of initial solutions, search directions, and step sizes.

3.5.1 Normalization of the vector c

In Section 3.4.3, it was shown that the optimal value Ed(K) of (3.4.3) does not change

when a diagonal scaling S is applied to the ellipsoid EQ. To facilitate the presentation

in the remainder of the section, we now fix a particular choice for S that normalizes the

ellipsoid center c. Denoting by S the set of n for which cn = 0 and by T the complement

of S, S is chosen as follows:

Snn =





1

cn
, n ∈ T ,

1, n ∈ S.
(3.5.1)

We also define Q = S−1QS−1, i.e.,

Qmn =





cmcnQmn, m, n ∈ T ,

cmQmn, m ∈ T , n ∈ S,

cnQmn, m ∈ S, n ∈ T ,

Qmn, m, n ∈ S.

(3.5.2)

91



With S given by (3.5.1), problem (3.4.8) becomes

max
D

ΣK−|S|
(
{Dnn : n ∈ T }

)

s.t. 0 � D � Q,

D diagonal.

(3.5.3)

The objective function no longer depends on c and involves only the K − |S| smallest

elements in {Dnn : n ∈ T } because the terms Dnnc
2
n for n ∈ S are always zero.

For K ≤ |S|, the optimal value of (3.5.3) is equal to zero. For K > |S|, it is possible to

reformulate (3.5.3) to eliminate the variables Dnn for n ∈ S and reduce the dimensionality

of the problem. By expressing the positive semidefinite constraints 0 � D � Q in terms of

submatrices defined by the index sets S and T , we have the equivalent constraints (from [92])

0 � DSS � QSS , (3.5.4a)

0 � DT T � QT T −QT S
(
QSS −DSS

)−1
QST . (3.5.4b)

Suppose that a pair (DSS ,DT T ) satisfies the constraints in (3.5.4), i.e., it is feasible for

(3.5.3). Then the pair (0,DT T ) has the same objective value as (DSS ,DT T ) since the

variables Dnn, n ∈ S, do not appear in the objective, and (0,DT T ) satisfies (3.5.4a). To

see that (0,DT T ) also satisfies (3.5.4b) whenever (DSS ,DT T ) does, consider the following

chain of inequalities based on well-known properties of semidefinite matrices (see [92]):

DSS � 0 =⇒ QSS −DSS � QSS

=⇒
(
QSS −DSS

)−1 �
(
QSS

)−1

=⇒ QT S
(
QSS −DSS

)−1
QST � QT S

(
QSS

)−1
QST

=⇒ QT T −QT S
(
QSS −DSS

)−1
QST � QT T −QT S

(
QSS

)−1
QST .

Combining the last inequality with (3.5.4b),

DT T � QT T −QT S
(
QSS −DSS

)−1
QST � QT T −QT S

(
QSS

)−1
QST = Q/QSS ,

which implies that (3.5.4b) holds with DSS = 0 if it holds for any other value for DSS . We

have thus shown that DSS can be set to 0 in problem (3.5.3) without loss of optimality,
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yielding the reduced problem

max
DT T

ΣK−|S|
(
{Dnn : n ∈ T }

)

s.t. 0 � DT T � Q/QSS ,

DT T diagonal,

(3.5.5)

which involves only the variables Dnn, n ∈ T .

For ease of notation, we assume henceforth that none of the entries of c are equal to

zero, i.e., that S = ∅ and T = {1, . . . , N} in (3.5.3). Sections 3.5.3–3.5.6 concentrate on

solving (3.5.3) under this assumption. If c does have zero-valued entries, the same methods

can be used to solve (3.5.5) instead.

From a numerical standpoint, it is advisable to expand the set S to include not only

the indices n for which cn = 0, but also those n for which the product Qnnc
2
n is very small

relative to γ. This ensures that none of the diagonal entries of Q, which are equal to Qnnc
2
n

according to (3.5.2), are close to zero, thereby improving the conditioning of Q as well

as that of other matrices used in solving (3.5.3). Moreover, the removal of the variables

Dnn, n ∈ S incurs a negligible loss of optimality. Under the constraint D � Q, we have

Dnnc
2
n ≤ Qnnc

2
n for every n, so if Qnnc

2
n is small compared to γ, the contribution of Dnnc

2
n

to the sum in (3.4.3) is also small.

3.5.2 Search over K

As discussed in Section 3.4.1, solving the diagonal relaxation involves a search over K =

1, . . . N to determine Kd, the largest K such that Ed(K) ≤ γ. Thus the computational

complexity depends on the number of values of K for which Ed(K) needs to be evaluated,

keeping in mind that each evaluation of Ed(K) requires solving or re-solving problem (3.5.3).

We describe in this subsection how the required number of evaluations of Ed(K) may be

reduced.

First we observe that Ed(K) increases monotonically with K. This follows because

the objective function in (3.5.3) increases monotonically with K for every fixed D. The

monotonicity of Ed(K) allows the transition point Kd between Ed(K) ≤ γ and Ed(K) > γ

to be determined through a bisection search. Starting from an initial interval of K values,

Ed(K) is evaluated at the midpoint Kmid of the current interval (rounded to the nearest
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integer if necessary). If Ed(Kmid) ≤ γ, then Ed(K) ≤ γ for all K < Kmid and the lower

limit of the new interval is set to Kmid + 1. Similarly if Ed(Kmid) > γ, Ed(K) > γ for all

K > Kmid and the upper limit of the new interval is set to Kmid− 1. The process continues

until the interval is empty, at which point Kd is determined. The number of evaluations of

Ed(K) in the worst case is approximately log2N , which is better than the worst case of N

evaluations for a linear search.

Furthermore, it is not necessary to initialize the bisection search with the full interval

[1, N ]. In particular, the lower limit can be increased based on an easily computed upper

bound on Ed(K) which we now derive. Given the constraint D � Q in (3.5.3), the nth

smallest eigenvalue of D is bounded from above by the nth smallest eigenvalue of Q for all

n [92]. Since the eigenvalues of D are also its diagonal elements, it follows that

ΣK

(
{Dnn}

)
≤

K∑

n=1

λn(Q) (3.5.6)

where the eigenvalues of Q are indexed from smallest to largest. Since (3.5.6) is true for all

D such that D � Q, it is true for the D that maximizes ΣK

(
{Dnn}

)
, and hence

Ed(K) ≤
K∑

n=1

λn(Q). (3.5.7)

Define K
Q

to be the largest value of K for which the right-hand side of (3.5.7) is less than

or equal to γ. Then (3.5.7) implies that Ed(KQ) ≤ γ, and hence the lower limit of the

initial interval can be set to KQ +1, the smallest K for which the relationship of Ed(K) to

γ is not yet known. Note that evaluating K
Q

requires knowledge only of the eigenvalues of

Q.

It is also possible to initialize the upper limit of the interval to a value smaller than

N if the diagonal relaxation is being solved in an attempt to improve upon an existing

lower bound on the optimal cost of a subproblem. Suppose that the optimal cost of a

subproblem is known to be bounded from below by LB, possibly as a result of the low-

complexity techniques of Section 3.2 or a lower bound inherited from the parent subproblem.

Given the existing lower bound LB, the solution to the diagonal relaxation represents an

improvement only if Kd < N −LB. Otherwise if Kd ≥ N −LB, the exact value of Kd does

not need to be determined. It follows that the largest value of K for which Ed(K) needs
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to be evaluated is N − LB. If Ed(N − LB) ≤ γ, then we infer that Kd ≥ N − LB and

terminate, otherwise Kd < N − LB and the search continues.

In the remainder of this section, we assume that the existing lower bound LB is always

non-zero, implying that it is not necessary to set K = N . This assumption is met in the case

of the branch-and-bound algorithm described in Section 3.7, which uses the low-complexity

tests of Section 3.2 to establish non-zero lower bounds.

3.5.3 Semidefinite reformulation and primal-dual algorithms

In the remainder of Section 3.5, we focus on solving problem (3.5.3) (under the assumption

that S = ∅) for a fixed value ofK. As written, problem (3.5.3) involves the non-differentiable

function ΣK . It is shown in this subsection that the non-differentiability can be avoided

by recasting (3.5.3) as a standard semidefinite optimization problem. Among the many

algorithms available for solving semidefinite optimization problems, we explain how primal-

dual algorithms in particular allow the threshold test Ed(K) ≤ γ to be concluded with fewer

iterations.

To derive a semidefinite formulation of problem (3.5.3), we begin by expressing the

function ΣK in an alternative way. Specifically, ΣK

(
{Dnn}

)
is equal to the optimal value

of the following linear program:

min
t

dT t

s.t. eT t = K,

0 ≤ t ≤ e,

(3.5.8)

where d ≡ diag(D). The equivalence holds because the minimum in (3.5.8) is attained

with tn = 1 for n corresponding to the K smallest Dnn and tn = 0 otherwise. The linear

programming dual of problem (3.5.8) is given by

max
y0,v

Ky0 + eTv

s.t. d− y0e− v ≥ 0,

v ≤ 0,

(3.5.9)

and its optimal value is also equal to ΣK

(
{Dnn}

)
. Substituting (3.5.9) into (3.5.3), com-
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bining the two maximizations into one, and making the change of variables w = d − y0e,
we arrive at

max
y0,v,w

Ky0 + eTv

s.t. 0 � y0I+Diag(w) � Q,

w − v ≥ 0,

v ≤ 0,

(3.5.10)

where Diag(w) denotes a diagonal matrix with the entries of w along the diagonal. It will

be seen in Section 3.5.5 that the change from d to w results in a convenient block structure

for the matrix used to determine search directions. Problem (3.5.10) may be rewritten in

the standard form consisting of a linear objective and a linear matrix inequality, i.e.,

max
y0,v,w

Ky0 + eTv + 0Tw

s.t. S ≡ C− y0A0 −
N∑

n=1

vnAn −
N∑

n=1

wnAN+n � 0, (3.5.11)

where

A0 =




I

−I
0

0



, (3.5.12a)

An =




0

0

En

En



, n = 1, . . . , N, (3.5.12b)

An =




En

−En

−En

0



, n = N + 1, . . . , 2N, (3.5.12c)
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C =




Q

0

0

0



, (3.5.12d)

and En = Diag(en).

Since problem (3.5.10) is to be solved using a primal-dual algorithm, we also require the

dual problem given as follows:

min
X

C •X

s.t. A0 •X = K,

An •X = 1, n = 1, . . . , N,

An •X = 0, n = N + 1, . . . , 2N,

X � 0,

where A •X = tr(AX) denotes the standard inner product between symmetric matrices.

It is straightforward to verify that both the primal and the dual are strictly feasible and

hence the optimal value of the dual is also equal to Ed(K). The 4N ×4N matrix X may be

assumed to have the same sparsity pattern as An and C and can therefore be partitioned

as

X =




Z

Diag(s)

Diag(t)

Diag(u)



, (3.5.13)

where Z is an N × N symmetric matrix and s, t, and u are N -dimensional vectors. This

allows the dual problem to be rewritten with fewer decision variables as

min
Z,s,t,u

Q • Z

s.t. diag(Z)− s = t,

eT t = K,

t+ u = e,

Z � 0, s ≥ 0, t ≥ 0, u ≥ 0.

(3.5.14)
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Primal-dual algorithms solve the primal (3.5.10) and dual (3.5.14) problems simulta-

neously, iteratively improving solutions in both spaces. The relationship of the common

optimal value Ed(K) to the threshold γ can be determined without solving either problem

to optimality. First, since the primal is a maximization, the objective value of any feasible

solution to the primal is by definition a lower bound on Ed(K). Thus the algorithm can

terminate as soon as a primal solution has been obtained with an objective value greater

than γ, implying that Ed(K) > γ. Conversely, the dual is a minimization and any dual

solution must have an objective value greater than or equal to Ed(K). As soon as the dual

objective value falls below γ, the algorithm can terminate with the conclusion Ed(K) ≤ γ.

Thus a primal-dual algorithm can decide whether or not Ed(K) is greater than γ in fewer

iterations than a primal-only or dual-only algorithm.

The pair of semidefinite optimization problems (3.5.10) and (3.5.14) can be solved using

a variety of general-purpose primal-dual algorithms. Our aim in Sections 3.5.4–3.5.6 is

to show how the efficiency of these algorithms can be improved by exploiting both the

algebraic structure of (3.5.10) and (3.5.14) as well as any existing solutions for previous

values of K. We work with a particular potential-reduction algorithm from [103, 104] in

which the potential function is given by

ϕ = (4N + 2ν
√
N) ln(Q • Z−Ky0 − eTv)− ln detS− ln detX− 4N ln 4N. (3.5.15)

The first term in (3.5.15) represents a penalty on the duality gap Q • Z−Ky0 − eTv, the

difference between the primal and dual objective values. The duality gap is non-negative

for all feasible primal and dual solutions and is zero at an optimal pair of solutions. Con-

sequently it is used as a measure of optimality. The second and third terms in (3.5.15)

are barrier functions that enforce the constraints S � 0 and X � 0, so-called because

their values become infinite as S or X approach the boundary of the positive semidefinite

cone. The parameter ν controls the relative weight of the duality gap term; computational

experiments indicate that choosing ν ∼ 20 yields faster convergence.

We use the duality gap and the number of iterations as secondary stopping criteria in

addition to comparing the primal and dual objective values to the threshold γ as previously

discussed. If neither of the terminating conditions involving γ is met first, the algorithm is

terminated when the duality gap falls below a tolerance or when the number of iterations
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exceeds a maximum limit.

3.5.4 Initialization

Primal-dual interior-point algorithms require as input an initial solution in the interior of

the feasible set for both the primal and the dual. Choosing an initial solution closer to

the optimal solution naturally leads to faster convergence. In the present context, multiple

instances of (3.5.10) and (3.5.14) are solved with the only difference being the value of

K. It is reasonable therefore to expect that initializing based on the final solution for the

previous value of K results in faster convergence compared to independent initialization.

We describe in this subsection how existing solutions can be modified to become feasible

under a new value of K. We also develop initial primal and dual solutions for the first value

of K for which existing solutions are not available.

Consider first the case in which a previous instance of (3.5.10) and (3.5.14) has been

solved, and let Kc and Kp denote the current and previous values of K. Since the feasible

set for the primal (3.5.10) does not depend on K, no modification is needed to reuse the

final primal solution for K = Kp as the initial primal solution for K = Kc. We concentrate

therefore on modifying the dual solution and consider the two cases Kc > Kp and Kc < Kp.

For the case Kc > Kp, we first observe that the second constraint in (3.5.14) can be

equivalently replaced by the constraint eTu = N − K. The equivalence can be seen by

multiplying the third constraint in (3.5.14) from the left by eT . Based on this alternative

set of constraints with eTu = N − K, we construct an initial dual solution for K = Kc

(denoted using a subscript c) in terms of the final dual solution for K = Kp (denoted using

a subscript p) as follows:

uc =
N −Kc

N −Kp
up, (3.5.16a)

tc = e− uc, (3.5.16b)

sc = sp, (3.5.16c)

(Zc)nn = (sc)n + (tc)n, n = 1, . . . , N, (3.5.16d)

(Zc)mn = (Zp)mn, m 6= n.

When Kc > Kp, the multiplier in front of up in (3.5.16a) is between 0 and 1 and scales
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up down to satisfy the new constraint eTuc = N − Kc while preserving positivity. Note

that the barrier term − ln detX in (3.5.15) ensures that Zp, sp, tp, and up are strictly

positive definite. The vector tc satisfies the third constraint in (3.5.14) by construction and

remains positive because tp = e − up is positive and uc < up component-wise. Equation

(3.5.16d) enforces the first constraint in (3.5.14) and has the effect of adding a positive

definite diagonal matrix to Zp, thus keeping Zc positive definite.

For the case Kc < Kp we use instead the following initialization:

tc =
Kc

Kp
tp, (3.5.17a)

uc = e− tc, (3.5.17b)

Zc = Zp, (3.5.17c)

(sc)n = (Zc)nn − (tc)n, n = 1, . . . , N. (3.5.17d)

Now tp is scaled down to satisfy the new constraint eT tc = Kc while uc and sc are increased

relative to up and sp. Equations (3.5.17) are consistent with all constraints in (3.5.14) for

K = Kc. Our computational experiments indicate that initializing the solver according to

(3.5.16) or (3.5.17) decreases the solution time by a factor of 2 to 3 relative to independent

initialization.

For the first value of K, existing solutions to (3.5.10) and (3.5.14) are not available.

In this case we suggest the following approach to obtain initial interior solutions. First,

based on the fact that D = λmin(Q)I is a positive definite feasible solution to (3.5.3), we

set D = (1 − ǫ)λmin(Q)I with ǫ a small positive constant to ensure that D ≺ Q strictly.

We then constrain v, w, s, t, and u to be proportional to e and Z to be proportional to I

with constants of proportionality v0, w0, s0, t0, u0, and Z0 respectively. From the relation

d = y0e+w and the constraints in (3.5.14), we infer that

y0 = d0 − w0,

t0 =
K

N
,

u0 =
N −K
N

,

Z0 = s0 +
K

N
,

(3.5.18)
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where d0 = (1 − ǫ)λmin(Q). The remaining constants s0, v0, and w0 are determined by

approximately minimizing the potential function (3.5.15) with respect to them. Incorporat-

ing our restrictions on the variables, using (3.5.18), and neglecting constant terms, (3.5.15)

becomes

ϕ = (4N + 2ν
√
N) ln η0 −N

[
ln

(
s0 +

K

N

)
+ ln s0 + ln(w0 − v0) + ln(−v0)

]
,

where

η0 = tr(Q)

(
s0 +

K

N

)
−K(d0 − w0)−Nv0

is the initial duality gap. Setting the derivatives with respect to s0, v0, and w0 equal to

zero and solving the resulting set of equations gives

w0 =
2K −N

K
v0,

v0 = −
tr(Q)s0

(
s0 +

K
N

)

(N −K)
(
2s0 +

K
N

) ,
(3.5.19)

and
tr(Q)(4N + 2ν

√
N)

tr(Q)
(
s0 +

K
N

) (
4s0 +

K
N

)
−Kd0

(
2s0 +

K
N

) =
N

s0
(
s0 +

K
N

) .

The last equation for s0 may be simplified by assuming that Kd0 ≪ tr(Q) and neglecting

the second term in the left-hand denominator, resulting in

s0 =
K

2ν
√
N
. (3.5.20)

Back-substition into (3.5.19) and (3.5.18) completes the initialization. It can be verified

that w0 − v0 > 0 and v0 < 0.

3.5.5 Search directions

In each iteration of a primal-dual algorithm, search directions are determined in both the

primal and dual solution spaces. The algorithm then searches along these directions to

improve upon the current solutions. Search directions are usually computed by solving a

system of linear equations. In this subsection, we demonstrate that in the case of problems

(3.5.10) and (3.5.14), the system of equations corresponding to a particular method for
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computing search directions has a block structure that permits a solution through the

inversion of an N × N matrix as opposed to the full (2N + 1) × (2N + 1) matrix. The

reduction in dimension improves both speed and numerical accuracy. We also develop a

method for correcting the computed directions to ensure that all iterates remain feasible

and that inaccuracies do not propagate.

For the purpose of illustrating how simplifying block structure can arise, we restrict

our attention to the HKM method of computing search directions [105–107]. Similar block

structure can occur when using other methods, e.g. the primal method described in [104]

and attributed to [108]. For notational convenience, we collect all of the primal variables

into a single vector y =
[
y0 vT wT

]T
and all of the dual variables into the matrix X

defined in (3.5.13). The vector y and the matrix X represent the current primal and dual

solutions while ∆y and ∆X represent the search directions to be determined. Under the

HKM method, ∆y is obtained by solving

2N+1∑

n=0

Am •
(
S−1AnX

)
∆yn = ρAm •X−Am • S−1, m = 0, 1, . . . , 2N, (3.5.21)

where S is defined in (3.5.11), ρ = (4N + 2ν
√
N)/η, and η is the current duality gap. The

dual search direction ∆X is given in terms of ∆y as

∆X = S−1 − ρX+ S−1

(
2N∑

n=0

∆ynAn

)
X. (3.5.22)

A straightforward calculation of the coefficients Am •
(
S−1AnX

)
shows that equations

(3.5.21) have the following block structure when written in matrix form:




M00 0 M02

0 M11 M12

MT
02 M12 M22




︸ ︷︷ ︸
M




∆y0

∆v

∆w




︸ ︷︷ ︸
∆y

=




r0

r1

r2




︸ ︷︷ ︸
r

. (3.5.23)

On the left-hand side of (3.5.23), M00 is a scalar given by

M00 = A0 •
(
S−1A0X

)
= (Q −D)−1 • Z+

N∑

n=1

sn
Dnn

,
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M02 is a 1×N row vector with components

(M02)n = A0 •
(
S−1AN+nX

)
=

N∑

m=1

[(
(Q−D)−1

)
mn

Zmn

]
+

sn
Dnn

, n = 1, . . . , N,

M11 and M12 are N ×N diagonal matrices with diagonal elements

(M11)nn = An •
(
S−1AnX

)
=

tn
wn − vn

− un
vn
, n = 1, . . . , N,

(M12)nn = An •
(
S−1AN+nX

)
= − tn

wn − vn
, n = 1, . . . , N,

and M22 is an N ×N matrix with elements

(M22)mn = AN+m •
(
S−1AN+nX

)
=





(
(Q−D)−1

)
nn
Znn +

sn
Dnn

+
tn

wn − vn
, m = n,

(
(Q−D)−1

)
mn

Zmn, m 6= n,

for m, n = 1, . . . , N . The right-hand side of (3.5.23) is given by

r0 = ρK − tr
(
(Q−D)−1

)
+ tr

(
D−1

)
,

(r1)n = ρ− 1

wn − vn
+

1

vn
, n = 1, . . . , N,

(r2)n = −
(
(Q−D)−1

)
nn

+
1

Dnn
+

1

wn − vn
, n = 1, . . . , N.

The presence of zero blocks in (3.5.23) and the fact that M11 is diagonal allow for a

more efficient solution to the (2N + 1)× (2N + 1) system of equations for ∆y. We define

MS = M22 −
1

M00
MT

02M02 −M12M
−1
11 M12,

which is the Schur complement of the upper-left block


M00

M11


. Using formulas for

the inverse of a block matrix in terms of its constituent blocks, it can be shown that

∆w = M−1
S

(
r2 −

r0
M00

MT
02 −M12M

−1
11 r1

)
, (3.5.24a)

∆y0 =
r0 −M02∆w

M00
, (3.5.24b)

∆v = M−1
11 (r1 −M12∆w). (3.5.24c)
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Equations (3.5.24) require the inversion of the dense N × N matrix MS and the diagonal

N ×N matrix M11. The gain in efficiency over the direct inversion of the full (2N + 1)×
(2N + 1) matrix M can be significant since the inversion of a matrix without exploiting

structure requires O(N3) arithmetic operations.

The dual search direction ∆X is computed using (3.5.22) once ∆y has been determined

from (3.5.24). Because of numerical errors, the new dual solution X+ τ2∆X, where τ2 is a

positive step size, may not satisfy the constraints in (3.5.14) exactly. Assuming that the old

solution X does satisfy the constraints, this implies that the search direction ∆X violates

the conditions

tr(∆Z)− eT∆s = 0, (3.5.25a)

diag(∆Z)−∆s−∆t = 0, (3.5.25b)

∆t+∆u = 0, (3.5.25c)

which are required for X + τ2∆X to remain feasible. Condition (3.5.25a) is derived from

eT t = K by requiring that eT∆t = 0 and combining this with (3.5.25b). To ensure the

feasibility of the new dual solution, we propose correcting the nominal direction ∆X so

that the corrected direction ∆X′ does satisfy (3.5.25). The size of the correction is to be

minimized in the least-squares sense to perturb ∆X as little as possible. This leads to

min
∆X′

∥∥diag(∆Z′)− diag(∆Z)
∥∥2
2
+
∥∥∆s′ −∆s

∥∥2
2
+
∥∥∆t′ −∆t

∥∥2
2
+
∥∥∆u′ −∆u

∥∥2
2

s.t.




eT −eT 0 0

0 0 I I

I −I −I 0




︸ ︷︷ ︸
A




diag(∆Z′)

∆s′

∆t′

∆u′



= 0,

(3.5.26)

where the matrix A is used to enforce the conditions in (3.5.25). The solution to (3.5.26) is




diag(∆Z′)

∆s′

∆t′

∆u′



=
(
I−AT

(
AAT

)−1
A
)




diag(∆Z)

∆s

∆t

∆u




(3.5.27)
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using the pseudo-inverse of A. The off-diagonal entries of ∆Z′ are unchanged from those

of ∆Z. Equation (3.5.27) can be simplified to the following:

diag(∆Z′) =
1

5
(3 diag(∆Z) + 2∆s+∆t−∆u)− Se,

∆s′ =
1

5
(2 diag(∆Z) + 3∆s−∆t+∆u) + Se,

∆t′ = diag(∆Z′)−∆s′,

∆u′ = −∆t′,

with

S =
1

10N

(
tr(∆Z)− eT∆s+ 2eT∆t− 2eT∆u

)
.

Thus the corrected search direction ∆X′ can be computed with no matrix inversions.

3.5.6 Plane search

We now discuss the determination of the sizes of the steps to be taken in the primal and

dual search directions. Ideally, the primal and dual step sizes are chosen independently so

as to maximize the decrease in the potential function (3.5.15). The resulting two-variable

problem is referred to as a plane search and is discussed in detail in [103]. In this subsection,

we focus on a simplification in which the ratio between the primal and dual step sizes is

fixed, thereby restricting the plane search to a more efficient one-dimensional search. We

have observed that the simplified search performs just as well as the full plane search for

many instances of problems (3.5.10) and (3.5.14).

Let τ1 and τ2 represent the primal and dual step sizes. In our simplified method, the

ratio between τ1 and τ2 is determined based on the region of permissible step sizes. This

depends in turn on the potential function as we now illustrate. Following the same notation

as in Section 3.5.5 and defining

∆S = −
2N∑

n=0

∆ynAn,

the change in the potential function due to steps τ1∆y and τ2∆X in the primal and dual
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spaces is given by

∆φ(τ1, τ2) ≡ φ(y + τ1∆y,X+ τ2∆X)− φ(y,X)

= (4N + 2ν
√
N) ln

(
1 + τ1

Q • Z
η
− τ2

K∆y0 + eT∆v

η

)

− ln det
(
I+ τ1S

−1∆S
)
− ln det

(
I+ τ2X

−1∆X
)

(3.5.28)

after some straightforward combining of terms. By expressing the determinants as products

of eigenvalues and using the fact that the addition of I to a matrix adds 1 to its eigenvalues,

(3.5.28) can be rewritten as

∆φ(τ1, τ2) = (4N + 2ν
√
N) ln

(
1 + τ1

Q • Z
η
− τ2

K∆y0 + eT∆v

η

)

−
4N∑

n=1

ln
(
1 + τ1λn

(
S−1∆S

))
−

4N∑

n=1

ln
(
1 + τ2λn

(
X−1∆X

))
. (3.5.29)

The change in the potential increases to +∞ if any of the arguments of the ln functions in the

second line of (3.5.29) approaches zero. This corresponds to a loss of positive definiteness

in either S+ τ1∆S or X+ τ2∆X. To avoid this situation, the step sizes must be bounded

as follows:

τ1min = − 1

max {λn (S−1∆S)} < τ1 < τ1max = − 1

min {λn (S−1∆S)} , (3.5.30a)

τ2min = − 1

max {λn (X−1∆X)} < τ2 < τ2max = − 1

min {λn (X−1∆X)} . (3.5.30b)

Equations (3.5.30) define the region of permissible step sizes.

We now restrict (τ1, τ2) to be a positive multiple of the maximum step sizes (τ1max, τ2max),

i.e.,

(τ1, τ2) = s(τ1max, τ2max), 0 < s < 1.

Since the search directions ∆y and ∆X are designed to be directions of descent, it is usually

sufficient to consider only positive s to obtain a decrease in the potential. To ensure that

the decrease is sufficiently large, we use the following Armijo condition to determine s:

∆φ(sτ1max, sτ2max) ≤ σs
(
τ1max

∂∆φ

∂τ1
(0, 0) + τ2max

∂∆φ

∂τ2
(0, 0)

)
. (3.5.31)
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Condition (3.5.31) requires that the decrease in φ be at least as large in magnitude as the

decrease predicted by a linear approximation to φ at τ1 = τ2 = 0, scaled by a constant

σ between 0 and 1 (see [98] for background on the Armijo rule). To begin, s is set to an

initial value s0 and condition (3.5.31) is evaluated. If (3.5.31) is not satisfied with s = s0,

s is replaced by θs with 0 < θ < 1 and (3.5.31) is re-evaluated. Once a value of s is found

that satisfies (3.5.31), the step sizes τ1 and τ2 are determined. The process is guaranteed

to terminate as long as the partial derivatives in (3.5.31) are negative, i.e., as long as ∆y

and ∆X are directions of descent. If ∂∆φ/∂τ1 is positive, the method can still be used with

τ1max replaced by τ1min (i.e., by reversing directions), and similarly for τ2. In our numerical

experiments, we have used the values σ = 0.1, s0 = 0.85, and θ = 0.9.

We have found that for most instances of (3.5.10) and (3.5.14), the simplified search

yields step sizes close to those resulting from a full plane search, but with significantly lower

complexity. On occasion however, the simplified search may not produce sufficient decreases

in the potential. This situation can be remedied by re-instituting a full plane search once

the number of iterations in the primal-dual algorithm has become large (e.g. over 100).

3.6 Numerical comparison of linear and diagonal relaxations

In Sections 3.3 and 3.4, we analyzed the quality of the lower bounds on the optimal value of

problem (2.0.1) resulting from linear and diagonal relaxations. In particular, it was observed

in Section 3.4.2 that neither relaxation dominates the other over all possible instances of

(2.0.1). However, for many classes of instances, the bounds provided by diagonal relaxations

tend to be stronger than those from linear relaxations. In this section, we present results

from numerical experiments that compare the two types of relaxations and largely support

the conclusion that diagonal relaxations are superior.

The experiments in this section also serve to further elucidate the approximation proper-

ties of the diagonal relaxation. Specifically, it will be seen that the distribution of eigenvalues

of the matrix Q can play an important role in addition to properties such as the condition

number and diagonal dominance that were identified in Section 3.4. To explore these ef-

fects, a large number of instances of (2.0.1) were created by randomly selecting values for

Q and c according to different methods and probability distributions. The corresponding

ellipsoids EQ have different properties as a result and the quality of approximation for the
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diagonal relaxation is shown to vary accordingly.

We use four different methods to generate instances. For all of the methods, the number

of dimensions N is varied between 10 and 150 and the parameter γ is normalized to 1. The

linear relaxation of each instance, and more specifically the dual form (3.3.9), is solved using

the function fmincon in MATLAB. We use the customized solver described in Section 3.5 for

the diagonal relaxation; a general-purpose solver such as SDPT3 [99,100] or SeDuMi [101]

can also be used to solve problem (3.4.3). In addition, a feasible solution for each instance

is obtained using the successive thinning algorithm of Section 2.3. The ratio of the optimal

value of each relaxation to the objective value of the feasible solution is used to assess the

quality of the relaxation. Note that we are now defining approximation ratios in terms of

the number of non-zero coefficients and not the number of zero coefficients as in Sections

3.4.4–3.4.6. We will use Rℓ and Rd to denote the ratios corresponding to linear and diagonal

relaxations respectively. Since any feasible solution provides an upper bound on the optimal

cost of (2.0.1), Rℓ and Rd are lower bounds on the true approximation ratios, which are

difficult to compute given the large number of instances.

In the first three methods, the eigenvalues and eigenvectors of Q are generated sepa-

rately. The eigenvectors are chosen together as an orthonormal set oriented randomly and

uniformly over the unit sphere in N dimensions. The eigenvalues are specified both in

terms of the condition number κ(Q), which determines their range, as well as their dis-

tribution within the range. For each value of N , κ(Q) is set in turn to
√
N , N , 10N ,

and 100N . The methods differ in the choice of eigenvalue distribution. Once Q is de-

termined, each component cn of the ellipsoid center is drawn uniformly from the interval
[
−
√

(Q−1)nn,
√

(Q−1)nn

]
to ensure that (2.3.3) is satisfied for all n. This choice of c is in

keeping with our assumption that a feasible solution exists whenever a single coefficient is

constrained to zero. For each pair of N and κ(Q), 1000 instances are created according to

the general procedure described above.

In the first method, the eigenvalues of Q are drawn from a distribution f1(λ) ∝ 1/λ

and then scaled to match the specified condition number. This distribution corresponds

to log λ being uniformly distributed. One motivation for considering power-law eigenvalue

distributions stems from the typical channel frequency responses encountered in wireline

communications. A second motivation for choosing a 1/λ distribution is due to its invari-

ance under matrix inversion (up to a possible overall scaling). While no single eigenvalue
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distribution can be representative of all positive definite matrices, the inverse of any positive

definite matrix is also positive definite and hence the distribution f1(λ) can be regarded as

unbiased in this sense.

In Fig. 3-7 we plot the ratios Rℓ and Rd as functions of N and κ(Q), averaged over

the 1000 instances corresponding to each (N,κ(Q)) pair. The linear relaxation ratio Rℓ

does not vary much with N or κ(Q) except for a slight decrease at low N . In contrast,

Rd is markedly higher for lower κ(Q). This dependence agrees qualitatively with Theorem

2 and its geometric interpretation in terms of ellipsoid sphericality. For κ(Q) =
√
N ,

approximation ratios between 0.81 and 0.92 imply that the corresponding lower bounds are

quite strong. Moreover, Rd also improves with increasing N so that even for κ(Q) = 100N

the diagonal relaxation outperforms the linear relaxation for N ≥ 20, with the difference

being substantial at large N .
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Figure 3-7: Average values of Rℓ and Rd for a 1/λ eigenvalue distribution. Within each set
of curves, κ(Q) =

√
N,N, 10N, 100N from top to bottom.

To understand the spreads around the mean values plotted in Fig. 3-7, in Fig. 3-8

we show histograms of the optimal values of the linear and diagonal relaxations and the

objective values of the feasible solutions for the 1000 instances with N = κ(Q) = 100.

There is a wide separation between the histograms corresponding to the linear and diagonal

relaxations. The spread in the histograms around the average values is similar for other
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values of N and κ(Q).
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Figure 3-8: Histograms of the optimal values of linear relaxations (1), the optimal values
of diagonal relaxations (2), and the objective values of feasible solutions (3) for a 1/λ
eigenvalue distribution and N = κ(Q) = 100.

In the second method, the eigenvalues of Q are drawn from a uniform distribution and

then scaled according to the condition number as before. Fig. 3-9 shows the average values

of Rℓ and Rd as a function of N and κ(Q) for the second method. The behavior of Rℓ

is largely unchanged. Each Rd curve however is lower than its counterpart in Fig. 3-7

and the decrease in Rd with increasing condition number is more pronounced. The linear

relaxation is now preferable to the diagonal relaxation when κ(Q) is significantly greater

than N . The difference between Figs. 3-7 and 3-9 can be explained by referring to the

discussion in Section 3.4.4 following Theorem 2. There it was argued that the diagonal

relaxation tends to yield a better approximation when most of the eigenvalues are small

and of comparable size. This situation is better represented by the distribution f1(λ) ∝ 1/λ

than by a uniform distribution, given the same condition number in both cases. Figs. 3-7 and

3-9 demonstrate numerically that eigenvalue distributions that are more heavily weighted

toward small values are preferred. There does not appear to be a similar preference in the

case of linear relaxations.

Histograms corresponding to those in Fig. 3-8 are shown for the uniform eigenvalue

distribution in Fig. 3-10. It is seen that the spreads in the histograms are similar.
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Figure 3-9: Average values of Rℓ and Rd for a uniform eigenvalue distribution. Within each
set of curves, κ(Q) =

√
N,N, 10N, 100N from top to bottom.
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Figure 3-10: Histograms of the optimal values of linear relaxations (1), the optimal values
of diagonal relaxations (2), and the objective values of feasible solutions (3) for a uniform
eigenvalue distribution and N = κ(Q) = 100.
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In the third method, the eigenvalues of Q−1 are drawn from a uniform distribution.

It is straightforward to show that the eigenvalues of Q, which are the reciprocals of the

eigenvalues of Q−1, are distributed according to f2(λ) ∝ 1/λ2. Fig. 3-11 plots the average

values of Rℓ and Rd resulting from the third method. The curves for Rd are higher than

in either Fig. 3-7 or 3-9 and the dependence on κ(Q) is reduced. This is not surprising in

light of the previous discussion since a 1/λ2 distribution is more concentrated toward the

lower end of the eigenvalue spectrum than either a 1/λ or uniform distribution. On the

other hand, the dependence of Rℓ on the eigenvalue distribution is hardly discernible.
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Figure 3-11: Average values of Rℓ and Rd for a 1/λ2 eigenvalue distribution. Within each
set of curves, κ(Q) =

√
N,N, 10N, 100N from top to bottom.

In the fourth method, Q is chosen to correspond to an exponentially decaying autocor-

relation function. Specifically,

Qmn = ρ|m−n|, (3.6.1)

where the decay ratio ρ is varied between 0.05 and 0.99. The vector c is generated as before

based on the diagonal entries of Q−1. It is sufficient to consider only positive values of

ρ. Changing ρ to −ρ can be shown to be equivalent to multiplying b − c component-wise

by the vector
[
+1 −1 +1 −1 . . .

]
. The zero-norm ‖b‖0 remains the same under sign

changes and the distribution for c, which is symmetric about the origin, is also unaffected.
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For ρ ≤ 1/3, the matrix Q specified by (3.6.1) is diagonally dominant in the sense

assumed in Theorem 3. To verify this, we use (3.6.1) to rewrite the left-hand side of the

criterion for diagonal dominance as follows:

max
m

∑

n 6=m

|Qmn|√
QmmQnn

= max
m

∑

n 6=m

ρ|m−n|.

The maximizing index m corresponds to the central row if N is odd, i.e., m = (N + 1)/2,

or to either of the two central rows if N is even, i.e., m = N/2 or m = N/2+1. In all three

cases, the maximum sum is slightly less than 2ρ/(1−ρ) (more precisely, the sum approaches

2ρ/(1− ρ) exponentially from below as a function of N). For ρ ≤ 1/3, 2ρ/(1− ρ) ≤ 1, and

hence the assumption of Theorem 3 is satisfied. On the other hand, Q is not diagonally

dominant for large values of ρ.

For each pair of N and ρ, 1000 instances are generated and evaluated as before. Fig. 3-12

shows the dependence of the average values of Rℓ and Rd on N for selected values of ρ.

As with the condition number κ(Q) in Figs. 3-7, 3-9, and 3-11, the parameter ρ does not

appear to have much effect on Rℓ. Furthermore, while it is expected from the analysis in

Section 3.4.5 that the diagonal relaxation yields a close approximation for ρ = 0.1, it is

somewhat surprising that the performance does not degrade by much even for ρ close to 1.

The results in this section indicate that diagonal relaxations yield better lower bounds

than linear relaxations in many instances. This can be true even when the condition number

κ(Q) or the decay ratio ρ is high, whereas the analysis in Sections 3.4.4–3.4.6 tends to be

more pessimistic. The experiments also confirm the dependence of the diagonal relaxation

on the conditioning and diagonal dominance of Q, and reveal an additional dependence on

the eigenvalue distribution. As noted in Section 3.4.4, the preference for distributions in

which most eigenvalues are small has a geometric basis, but a more rigorous explanation is

currently lacking.

3.7 Description of branch-and-bound algorithm

In Sections 3.2–3.6, we focused on developing lower bounds on the optimal value of problem

(2.0.1) and its subproblems. These bounds are now incorporated in a branch-and-bound

algorithm for solving (2.0.1) exactly. This section describes our algorithm in greater detail,
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Figure 3-12: Average values of Rℓ and Rd for exponentially decaying Q matrices. Within
each set of curves, ρ = 0.1, 0.5, 0.9, 0.99 from top to bottom.

building upon the overview given in Section 3.1.

The algorithm processes a series of subproblems beginning with the root problem (2.0.1).

The subproblems are organized into a tree as depicted in Fig. 3-1. For each subproblem, a

lower bound on its optimal value, denoted by LB in this section, is inherited from its parent

(or initialized to zero in the case of the root problem) and then updated during processing.

The algorithm maintains a list of open subproblems whose lower bounds indicate that they

have the potential to improve upon the incumbent solution. Subproblems are added to the

list by the branching process and are removed as they are visited or pruned. The algorithm

terminates when the list is empty.

A summary of the algorithm is given under Algorithm 2. The processing steps for each

subproblem are numbered and described in more detail below. The indicator variable ilast

refers to the last indicator variable that was fixed in creating a subproblem from its parent.

1. Select subproblem from list: We choose the open subproblem for which the lower

bound inherited from its parent is the smallest. This choice is motivated by the desire

to increase as quickly as possible the global lower bound, which is the minimum of the

lower bounds for currently open subproblems. Thus if the algorithm is terminated

early after a fixed number of iterations, the bound on the deviation of the incum-
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Algorithm 2 Branch-and-bound for problem (2.0.1)

Input: Parameters Q, c, γ
Output: Optimal solution bI to (2.0.1)

Initialize: Place root problem in list with LB = 0 and ilast = 0. Incumbent solution
bI = c with cost ‖bI‖0 = ‖c‖0.
while list not empty do

1) Select subproblem with smallest LB and remove from list.
2) Subproblem parameters Qeff , ceff , γeff , feff given by (2.3.2), (A.3.6).
if ilast = 0 then

3) Identify coefficients in F for which a zero value is no longer feasible using (2.3.3).
Update U , F , Qeff , ceff , feff if necessary.
if |U| ≥ ‖bI‖0 then

Go to step 1.
if LB < |U|+ 2 then

4) Check for solutions with ‖bF‖0 = 0, ‖bF‖0 = 1 (see Section 3.2).
if subproblem solved and |U|+ ‖bF‖0 < ‖bI‖0 then

Update bI and prune list. Go to step 1.
else
LB ← |U|+ 2.
if LB ≥ ‖bI‖0 then

Go to step 1.
5) Generate feasible solution bF using successive thinning (see Section 2.3) or with
‖bF‖0 = |F| − 1.
if |U|+ ‖bF‖0 < ‖bI‖0 then

Update bI and prune list (possibly including current subproblem).
if ilast = 0 and |F| ≥ Nmin then

6) Solve linear or diagonal relaxation (see Section 3.5) and update LB.
if LB ≥ ‖bI‖0 then

Go to step 1.
7) Determinem from (3.7.1). Create two new subproblems by fixing im = 0 and im = 1
and add to list. Go to step 1.

115



bent solution from optimality is as tight as possible. Furthermore, this selection rule

increases efficiency by deferring on subproblems that are more likely to be pruned

without being visited. Whenever the incumbent solution is improved, the subprob-

lems with the highest LB values are pruned first, so the algorithm should concentrate

on processing the subproblems with the lowest bounds.

2. Subproblem parameters: As discussed in Section 3.1, each subproblem is defined by

index sets (Z,U ,F) and is equivalent to an |F|-dimensional instance of the root prob-

lem (2.0.1) with parameters given by (2.3.2) and (A.3.6). The parameter values are

computed only when needed as it is sometimes possible to avoid the computation

entirely.

3. Identify coefficients for which a zero value is no longer feasible: The algorithm checks

whether a zero value is still feasible for all coefficients in F as described in Section 3.2.

This step is not necessary for a subproblem with ilast = 1 since the set of feasible b

is unchanged relative to the parent subproblem. Indicator variables and subproblem

parameters are updated based on the results of these tests. If the new value of |U|
equals or exceeds the cost of the incumbent solution, the current subproblem can be

pruned. Otherwise, after this step it is known that a feasible solution with |U|+|F|−1
non-zero coefficients exists because a zero value is feasible for every coefficient in F .

4. Check for solutions with ‖bF‖0 = 0, ‖bF‖0 = 1: We determine whether there are

any feasible solutions with ‖bF‖0 = 0 (i.e., bF = 0) or ‖bF‖0 = 1 as described in

Section 3.2. This step can result in an optimal solution to the current subproblem

and thus avoid further branching, particularly if |F| is small. If F consists of a single

index, then bF = 0 is feasible by the definition of F . If |F| = 2, there exist solutions

with ‖bF‖0 = 1 and it suffices to check whether bF = 0 is also feasible. Similarly if

|F| = 3, solutions with ‖bF‖0 = 2 must exist and we search for solutions with fewer

than two non-zero components. To decide which one of the three components in F to

make non-zero (in the case ‖bF‖0 = 1) or zero (in the case ‖bF‖0 = 2), we look to

maximize the margin in the overall quadratic constraint (2.1.1), which corresponds to

maximizing the margin in (3.2.1) in the first case and (2.3.3) in the second.

If the current subproblem is solved in this step and the solution has a lower cost

than the incumbent solution, we update the incumbent solution and prune any open
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subproblems with a lower bound greater than or equal to the new incumbent cost. If

the current subproblem is not solved, we can conclude that its optimal value is no less

than |U|+2. This may represent an improvement upon the the lower bound inherited

from the parent subproblem and result in pruning of the current subproblem. On the

other hand, if the inherited lower bound already exceeds |U|+2, the current step can

be skipped entirely. Therefore the execution of this step is conditioned on the value

of LB. In either case, at the end of this step we have a lower bound for the current

subproblem that is at least |U|+ 2.

5. Generate a feasible solution: In this step, we obtain a feasible solution to the current

subproblem, which may result in an update to the incumbent solution and the pruning

of subproblems as described in Step 4. We consider two variants of the algorithm. In

the first variant, we use the successive thinning algorithm of Section 2.3 to obtain a

feasible solution only for the root problem. For all other subproblems, we rely only

on the knowledge that a solution with |U|+ |F| − 1 non-zero coefficients exists by the

definition of F . The single zero-valued coefficient in F in this solution can be chosen

to maximize the margin in (2.3.3) as in Step 4. In the second variant, successive

thinning is used to generate feasible solutions for all subproblems. The incumbent

solution tends to improve more quickly with the second variant at the cost of increased

computation in every iteration. In Section 4.1, we explore the performance of both

variants on randomly generated instances of (2.0.1).

6. Solve relaxation: To improve upon the value of LB, we solve either a diagonal or a

linear relaxation of the current subproblem. If the new lower bound is equal to or

exceeds the cost of the incumbent solution, the current subproblem is pruned. For

diagonal relaxations, we use an efficient custom solver described in Section 3.5. For

linear relaxations, the MATLAB function fmincon is used to solve the dual (3.3.9).

Although the comparisons in Section 3.6 suggest that diagonal relaxation yields better

lower bounds than linear relaxation in most cases, we use and compare both types of

relaxations in the numerical experiments in Section 4.1.

Solving relaxations is by far the most computationally intensive step in the algorithm.

The increased computation is justified if a sufficiently large number of subproblems

can be eliminated as a result of stronger lower bounds. We have found that it is
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not worthwhile to solve a relaxation for every subproblem. In particular, relaxations

of subproblems for which ilast = 1 rarely lead to pruning, so we skip the relaxation

step for these subproblems. In addition, small subproblems can often be solved more

efficiently by relying only on the low-complexity lower bounds of Section 3.2 and the

branch-and-bound process. For this reason, we only solve relaxations of subproblems

for which the dimension |F| is greater than or equal to a parameter Nmin. In Section

4.1, we investigate how the efficiency of the algorithm depends on the value of Nmin.

7. Create new subproblems: At this point, the current subproblem has not been solved,

nor has the value of LB increased enough to eliminate it from consideration. The final

step is to create two new subproblems by fixing an indicator variable in the subset F
to 0 or 1. We choose the index m in F that minimizes the margin in (2.3.3), i.e.,

m = argmin
n∈F

γ − c2n(
Q−1

)
nn

. (3.7.1)

We have observed that this choice of index for branching tends to reduce the number

of subproblems that are visited. Equation (3.7.1) implies that when the coefficient bm

is constrained to a zero value, the resulting subproblem, while still feasible, tends to

be tightly constrained. Therefore the subtree created under the current subproblem

is unbalanced with many more nodes under the im = 1 branch than under the im = 0

branch. Generally speaking, the higher that these asymmetric branchings occur in the

tree, the greater the reduction in the number of subproblems. As an extreme example,

if for the root problem we choose an index for branching such that there are very few

feasible subproblems under one of the branches, then the number of subproblems is

almost halved. This intuition supports the branching rule in (3.7.1).
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Chapter 4

Sparse filter design under a

quadratic constraint: Numerical

experiments and design examples

In this chapter, the successive thinning algorithm of Section 2.3 and the branch-and-bound

algorithm of Chapter 3 are applied to a range of examples. In Section 4.1, we investigate

the properties of the two algorithms using randomly generated problem instances. For

the successive thinning algorithm, the experiments show that the solutions it produces are

usually close to the true optimum. For the branch-and-bound algorithm, the decrease in

complexity due to relaxations, in particular diagonal relaxations, is verified and quantified in

terms of running time. The experiments also illustrate the dependence on properties of the

matrix Q, validating earlier results in Sections 3.4 and 3.6, and on parameters introduced

in Section 3.7 for the branch-and-bound algorithm.

Section 4.2 presents several filter and array design examples. In Sections 4.2.1 and 4.2.2,

the algorithms are used to design sparse equalizers for representative wireless communication

channels. The high levels of sparsity observed by other researchers using heuristic algorithms

is verified using our branch-and-bound algorithm. In Section 4.2.3, non-uniformly spaced

MVDR beamformers are designed to detect signals propagating from target directions in

the presence of noise and discrete interferers. The SNR is observed to increase relative to a

uniformly spaced beamformer, especially in the vicinity of the interferers.
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4.1 Numerical experiments

In this section, we discuss numerical experiments in which the successive thinning and

branch-and-bound algorithms are applied to randomly generated instances of problem (2.0.1).

The results support the claims made at the beginning of the chapter regarding the properties

of the algorithms.

We use the same random generation methods in these experiments as in Section 3.6.

The parameters Q and c are chosen randomly with γ = 1 and both the condition number

κ(Q) and the eigenvalue distribution of Q are varied. More details can be found in Section

3.6. The number of dimensions N is fixed at 60 and κ(Q) is set to
√
N , N , 10N , and 100N

as before. For each value of κ(Q), one hundred (100) instances are created.

We also examine the effect of different choices in the branch-and-bound algorithm,

namely the use of successive thinning to obtain feasible solutions to all subproblems, the

type of relaxation used (linear or diagonal), and the value of the parameter Nmin that

controls when relaxations are solved (see Step 6 in Section 3.7). Each instance is solved

repeatedly with different algorithm choices. The parameter Nmin is varied between 10 and

60 to explore the trade-off inherent in solving relaxations. For Nmin = 60, no relaxations

are solved except for the root problem. As Nmin decreases, more relaxations are solved,

leading to better lower bounds and more subproblems being pruned, but the amount of

computation also increases. Whether relaxations improve the overall complexity depends

on the quality of the lower bounds and the amount of pruning that result. As will be seen, in

some cases the solution time decreases substantially as Nmin decreases and more relaxations

are solved, while in other cases the solution time can actually increase.

The algorithms are implemented in MATLAB running on a Fedora Linux computer with

a 2.4 GHz quad-core processor and 3.9 GB of memory (only one core tends to be used at

a time however). We use the average solution time as the measure of complexity for the

branch-and-bound algorithm; the absolute times are less important than the relative times,

which indicate gains or losses in efficiency.

In Fig. 4-1, we plot the average solution time of the branch-and-bound algorithm against

the relaxation parameter Nmin for the first method of generation in which the eigenvalue

distribution f1(λ) is proportional to 1/λ. The different line types refer to the following

algorithm variants: diagonal relaxations with successive thinning only for the root problem,
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diagonal relaxations with successive thinning for all subproblems, and linear relaxations with

successive thinning only for the root problem. For κ(Q) = 100N , the best strategy appears

to be to use successive thinning on all subproblems while solving as few relaxations as

possible. Successive thinning roughly halves the average solution time, suggesting that the

more rapid improvement of the incumbent solution outweighs the increase in computation.

On the other hand, solving relaxations actually increases the solution time, which is perhaps

expected given the relative weakness of the lower bounds shown in Fig. 3-7 for κ(Q) = 100N .
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Figure 4-1: Average solution time as a function of the relaxation parameter Nmin for a 1/λ
eigenvalue distribution. Solid blue line: diagonal relaxations, no successive thinning for
subproblems; dashed green line: diagonal relaxations, successive thinning for subproblems;
dotted red line: linear relaxations, no successive thinning for subproblems.

In contrast, for κ(Q) = 10N in Fig. 4-1(b), solving diagonal relaxations does decrease the

average solution time as the resulting lower bounds improve. For the solid blue curve corre-

sponding to diagonal relaxations and no successive thinning for subproblems, the minimum
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value at Nmin = 20 is approximately one third lower than the maximum. Adding successive

thinning yields a further decrease in solution time. For κ(Q) = N and κ(Q) =
√
N , the

reduction in complexity due to diagonal relaxations becomes very pronounced. There is a

27-fold difference between the minimum and maximum values of the solid blue curve for

κ(Q) =
√
N . At the same time, the additional gain due to successive thinning decreases.

The varying results of using successive thinning on subproblems is explained later using

Table 4.1. As for linear relaxations, they are seen to offer no benefit at low κ(Q) and to

worsen solution times at high κ(Q).

It is interesting to note that the intrinsic difficulty of problem instances seems to increase

as the condition number decreases. This trend is suggested by the solution times at Nmin =

60 for the solid blue and dotted red curves, i.e., in the absence of relaxations and successive

thinning, leaving only the simple lower bounds of Section 3.2. The solution times increase

from 32 s for κ(Q) = 100N to 135 s for κ(Q) =
√
N . Thus diagonal relaxations appear to

be most beneficial for those instances that are inherently more difficult.

To gain more insight into the behavior seen in Fig. 4-1, we plot in Fig. 4-2 the aver-

age number of relaxations solved per instance as a function of Nmin. As an indication of

effectiveness, we also plot the average number of relaxations that result in the pruning of

the current subproblem. We refer to these relaxations as successful since they eliminate the

need for further branching. Note that a successful relaxation of a larger subproblem elimi-

nates more branches than a successful relaxation of a smaller subproblem. For Nmin > 30,

the number of relaxations solved is small. The number of relaxations increases quickly as

Nmin decreases from 30 before levelling off around Nmin = 15. In the absence of succes-

sive thinning, the fraction of diagonal relaxations that are successful increases from roughly

one third for κ(Q) = 100N to over two thirds for κ(Q) =
√
N , as might be expected

from Fig. 3-7. The total number of diagonal relaxations trends downward as the condition

number decreases, a consequence of increased pruning. With the addition of successive

thinning, the total number of diagonal relaxations decreases slightly while the number of

successful diagonal relaxations increases slightly, both as a result of better incumbent solu-

tions. In contrast, the number of linear relaxations increases as κ(Q) decreases, reflecting

the corresponding increase in solution times seen in Fig. 4-1.

Fig. 4-3 shows the average solution times for the second method of generation in which

the eigenvalues of Q follow a uniform distribution. As expected from comparing Figs. 3-7
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Figure 4-2: Average number of relaxations solved as a function of the relaxation parameter
Nmin for a 1/λ eigenvalue distribution. Solid blue line: diagonal relaxations, no successive
thinning for subproblems; dashed green line: diagonal relaxations, successive thinning for
subproblems; dotted red line: linear relaxations, no successive thinning for subproblems.
For each line type, the upper curve represents the total number of relaxations while the
lower curve represents the number of successful relaxations.

and 3-9, the positive effect of solving diagonal relaxations is reduced and lower values of

κ(Q) are required to realize the same efficiency gains as in Fig. 4-1. For κ(Q) = 100N ,

linear relaxations are in fact preferable to diagonal relaxations. The effect of using successive

thinning on all subproblems is similar to that observed in Fig. 4-1. In the absence of any

relaxations or successive thinning, the decrease in solution times with increasing condition

number is even more apparent than for the 1/λ eigenvalue distribution. Indeed, for κ(Q) =

100N , the solution times fall below 1 s and even the relatively low computational cost of

applying successive thinning to subproblems is not justified.

Fig. 4-4 shows the average solution times for a 1/λ2 eigenvalue distribution. As can
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Figure 4-3: Average solution time as a function of the relaxation parameter Nmin for a uni-
form eigenvalue distribution. Solid blue line: diagonal relaxations, no successive thinning for
subproblems; dashed green line: diagonal relaxations, successive thinning for subproblems;
dotted red line: linear relaxations, no successive thinning for subproblems.

be predicted from Fig. 3-11, solving diagonal relaxations now improves efficiency by a sub-

stantial factor, even at κ(Q) = 100N . For κ(Q) =
√
N , the efficiency gain is over two

orders of magnitude. Compared to diagonal relaxations, neither solving linear relaxations

nor applying successive thinning to subproblems offers significant benefits.

The order of growth of the branch-and-bound algorithm with respect to the dimension N

is investigated in Fig. 4-5. For each N and κ(Q), one hundred instances are generated from

a 1/λ eigenvalue distribution. Four algorithm variants are compared: diagonal relaxations

with Nmin = 20, with and without successive thinning for subproblems, and no relaxations,

also with and without successive thinning. It is clear that for κ(Q) =
√
N , the rate of growth

is substantially slower when diagonal relaxations are used. Even for κ(Q) = 100N , the
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Figure 4-4: Average solution time as a function of the relaxation parameter Nmin for a 1/λ2

eigenvalue distribution. Solid blue line: diagonal relaxations, no successive thinning for
subproblems; dashed green line: diagonal relaxations, successive thinning for subproblems;
dotted red line: linear relaxations, no successive thinning for subproblems.

trend suggests that diagonal relaxations become more beneficial as N increases, resulting

in a slight gain in efficiency at N = 70 over the variants that do not use relaxations.

Successive thinning is more effective at the higher condition number as seen earlier. Further

experiments could be done to extend these results to higher dimensions.

In Fig. 4-6, we examine the behavior of the branch-and-bound algorithm acting on in-

dividual instances rather than in an average sense. The figure shows the progress of lower

and upper bounds on the optimal cost as the number of iterations increases for two con-

trasting instances. For each algorithm variant, the lower bound plotted in Fig. 4-6 is the

smallest of the lower bounds for currently open subproblems, while the upper bound is pro-

vided by the incumbent solution. In both instances, the lower bounds increase most rapidly
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Figure 4-5: Growth of the average solution time with the number of dimensions N for a
1/λ eigenvalue distribution. Solid blue line: diagonal relaxations, no successive thinning
for subproblems, Nmin = 20; dashed green line: diagonal relaxations, successive thinning
for subproblems, Nmin = 20; dash-dot black line: no relaxations, no successive thinning for
subproblems; dotted red line: no relaxations, successive thinning for subproblems.

in the beginning and more slowly as they approach the true optimal value. The fastest

improvement is achieved using diagonal relaxations, followed by linear relaxations and no

relaxations. For the κ(Q) = 100N instance in Fig. 4-6(a), the slightly faster convergence of

the lower bound when relaxations are solved is not enough to offset the added computation.

As a consequence, the algorithm variant in which no relaxations are solved is the fastest

in terms of solution time. On the other hand, for the instance in Fig. 4-6(b), the variants

that use diagonal relaxations also take the least time. With respect to upper bounds, it is

seen in Fig. 4-6(a) that the use of successive thinning for all subproblems results in much

faster convergence to an optimal solution. For the other three variants, an optimal solution

is found only after the lower bound has converged. In Fig. 4-6(b), the initial solution is

already optimal.

We note that the solution times reported in this section depend on the specific algo-

rithms used to obtain feasible solutions and lower bounds, and on how the algorithms are

implemented. This is particularly true of solving relaxations, which is a computationally

intensive step that is performed in a significant fraction of all iterations. Given an inefficient

algorithm or implementation, there may be no benefit to solving diagonal relaxations even

when the resulting lower bounds are strong. Likewise, the situation for linear relaxations
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Figure 4-6: Lower and upper bounds on the optimal cost as functions of the number of
subproblems processed for two contrasting instances generated using a 1/λ eigenvalue dis-
tribution. Solid blue line: diagonal relaxations, no successive thinning for subproblems,
Nmin = 20; dashed green line: diagonal relaxations, successive thinning for subproblems,
Nmin = 20; dotted red line: linear relaxations, no successive thinning for subproblems,
Nmin = 20; dash-dot black line: diagonal relaxation only for the root problem, no succes-
sive thinning for subproblems, Nmin = 60. The filled circles indicate algorithm termination.

may improve somewhat with a more efficient algorithm or implementation.

Thus far we have concentrated on the behavior of the branch-and-bound algorithm. We

are also interested in the extent to which the initial solutions provided by the successive

thinning algorithm deviate from optimality. Since the branch-and-bound algorithm guaran-

tees that the final solution is optimal, it is possible to measure this deviation exactly. Table

4.1 lists the average ratios between the cost of the initial successive thinning solution and

the final optimal solution for different condition number values and eigenvalue distributions.

In all cases, the successive thinning algorithm produces solutions that are close to optimal,

within 5% or less on average. The quality of approximation follows the same pattern as for

diagonal relaxations, i.e., worse for higher condition numbers and more uniform eigenvalue

distributions. This dependence on condition number and eigenvalue distribution explains

the varying results of applying successive thinning to subproblems that is seen in Figs. 4-1,

4-3, and 4-4. When the initial solution is already optimal or very close to it, there is little

to no benefit in using successive thinning for subproblems because the incumbent solution

barely improves while the amount of computation increases. This is the case at low con-

dition number and for λ(Q) ∼ 1/λ2 in Fig. 4-4. When the initial solution is farther from

optimal at higher condition numbers, spending additional effort to improve the incumbent
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solution is justified.

Table 4.1: Average approximation ratios for the successive thinning algorithm.

κ(Q) = 100N κ(Q) = 10N κ(Q) = N κ(Q) =
√
N

λ(Q) ∼ 1/λ 1.024 1.018 1.009 1.002

λ(Q) ∼ uniform 1.052 1.038 1.013 1.003

λ(Q) ∼ 1/λ2 1.001 1.001 1.001 1.001

We summarize the results of this section. For the branch-and-bound algorithm, the use

of diagonal relaxations was shown to significantly reduce complexity in many instances as

measured by the average solution time. Moreover, diagonal relaxations tend to be the most

beneficial for instances in which it is a good approximation to the original problem, i.e.,

when the matrix Q is well-conditioned or when most of the eigenvalues of Q are small as

seen earlier in Section 3.6. For instances in which diagonal relaxations enhance efficiency

and with N = 60, setting the relaxation parameter Nmin ∼ 20 appears to be a good choice.

Linear relaxations on the other hand were observed to provide no gain. In addition, we saw

that the successive thinning algorithm often produces nearly optimal designs. When the

initial solution is very close to optimal, there is usually no benefit to applying successive

thinning to all subproblems in the branch-and-bound algorithm.

4.2 Design examples

In this section, we present several equalizer and beamformer design examples that illustrate

potential applications of the algorithms developed in Chapters 2 and 3.

4.2.1 Equalizers for an idealized multipath communication channel

In this subsection and in Section 4.2.2, we discuss the design of sparse equalizers for mul-

tipath communication channels. The approximate sparsity of multipath channel responses

has been exploited by many researchers to reduce the number of non-zero equalizer coeffi-

cients [33]– [42]. In particular, it has been observed that the trade-off between sparsity and

MSE is quite favorable in the sense that the number of non-zero coefficients can be reduced

substantially with only a small increase in MSE. Nearly all of the references cited above

use heuristic design algorithms. In this section, we use the branch-and-bound algorithm to
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establish the best possible trade-off and thereby verify the previous observation. We also

explore the effect of other parameters such as the equalizer length and the input SNR.

The application of our framework to sparse equalizer design was introduced in Section

2.1.2. Equation (2.1.11) specifies the channel model and (2.1.10) and (2.1.12) together

specify the values of the parameters Q, f , and β in constraint (2.1.3) in terms of the

channel parameters. In this subsection, the channel response h[n] is chosen to represent an

ideal multipath channel with a direct path and two delayed paths that are aligned with the

sampling grid. More precisely,

h[n] = δ[n] + a1δ[n −N1] + a2δ[n −N2],

where the delays N1 and N2 are positive integers and the amplitudes a1 and a2 are sampled

randomly from the interval [−1, 1]. A more realistic channel response with more delayed

paths that are not aligned with the sampling grid is considered in Section 4.2.2. In both

cases, we assume that the transmitted sequence x[n] and the noise η[n] are white so that

φxx[m] = σ2xδ[m] and φηη [m] = σ2ηδ[m]. Either σx or ση can be normalized to 1 since the key

parameter is the signal-to-noise ratio SNR0 = σ2x/σ
2
η . We also assume that x[n] is estimated

with a delay ∆, i.e., x[n] in (2.1.9) is changed to x[n −∆], to accommodate the causality

of both the channel and the equalizer. Equations (2.1.10b) and (2.1.12b) are modified as a

result, yielding

fn = φxy[n−∆] = σ2xh[∆− n].

In this subsection, ∆ is chosen to be equal to the largest channel delay, i.e., ∆ = N2.

In the design experiments, we consider equalizer lengths N ranging from the length

of the channel, N2 + 1, to three times the channel length. For a fixed length N , the

MMSE equalizer (i.e., the causal Wiener filter of length N) is given by c = Q̆−1f̆ , where

Q̆ = σ−2
x Q and f̆ = σ−2

x f are normalized parameters that depend only on h[n] and SNR0.

The corresponding MMSE is

δmin = σ2x

(
1− f̆T Q̆−1f̆

)
.

To design sparse equalizers of the same length N , we set the MSE tolerance δ in (2.1.9)

to be slightly higher than δmin so that solutions other than b = c become feasible. The

129



parameter γ is then given by δ − δmin as discussed in Section 2.1.2. The ratio δ/δmin is a

normalized measure of performance degradation relative to the MMSE equalizer. It will be

seen throughout this subsection and Section 4.2.2 that significant sparsity can be attained

even for δ/δmin close to 1. With Q, c, and γ determined as described above, problem (2.0.1)

may be solved using the branch-and-bound algorithm to obtain the sparsest equalizer with

an MSE of at most δ. Typically, we set the relaxation parameter Nmin in Algorithm 2 equal

to 20 and do not use successive thinning for subproblems.

In Fig. 4-7, we show the number of non-zero coefficients, averaged over 1600 amplitude

pairs (a1, a2), as a function of the MSE ratio δ/δmin for N1 = 7, N2 = 23, equalizer lengths

N = N2+1, 2N2, 3N2, and SNR0 = 10, 25 dB. In each panel, the left-most point corresponds

to the MMSE equalizer, which generally does not have any zero values. However, for this

idealized example, the MMSE equalizer is close to being exactly sparse. Hence there is

an abrupt decrease in the number of non-zero coefficients as soon as δ/δmin exceeds 1,

followed by a rapid approach toward an asymptote. These curves are consistent, albeit in

an exaggerated fashion, with results in the literature and later in Section 4.2.2. The gain

in sparsity is slightly smaller for the higher SNR value and the behavior is very similar for

all values of N .

Next we examine in Fig. 4-8 the effect of the length N on both the MMSE and the

number of non-zero coefficients in a sparse equalizer. For this experiment, the MSE ratio

δ/δmin is fixed at 1.05, SNR0 = 10 dB, and each data point again represents the average

of 1600 (a1, a2) pairs. The staircase patterns can be explained by reference to the infinite-

length MMSE equalizer (infinite-length causal Wiener filter). For this idealized channel, the

infinite-length equalizer tends to have non-zero values only at integer combinations ofN1 and

N2. The coefficients in these integer combinations do not have to be strictly non-negative

because the channel is not necessarily minimum-phase. Furthermore, the coefficients of

finite-length MMSE equalizers are approximately given by truncated versions of the infinite-

length coefficients. Thus as N increases, significant non-zero values are incorporated in the

finite-length approximations only at certain values of N . As a result, the MMSE decreases

the most at these points. For N1 = 7 and N2 = 23 in Fig. 4-8(a), the largest decreases occur

at N − 1 = 30 = N2 +N1, 39 = 2N2 −N1, and 46 = 2N2, followed by smaller decreases at

other integer combinations of N1 and N2. Similarly, the number of non-zero coefficients in

sparse equalizers increases at these special values of N . The same phenomenon is seen in
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Figure 4-7: Average number of non-zero coefficients as a function of the MSE ratio δ/δmin.
The lower blue curves correspond to SNR0 = 10 dB and the upper red curves to SNR0 = 25
dB.

Fig. 4-8(b) for N1 = 3 and N2 = 23 with the largest changes at N − 1 = 26 = N2 + N1,

43 = 2N2 −N1, and 46 = 2N2.

To reinforce the results in Fig. 4-8, we show in Fig. 4-9 the coefficient values of MMSE

and sparse equalizers for two different values of N and the same two N1 values used in

Fig. 4-8. As before, N2 = 23, the MSE ratio δ/δmin = 1.05 and SNR0 = 10 dB. It is seen

that the large values in the MMSE equalizers occur at integer combinations of N1 and N2,

and that the sparse equalizers tend to retain the largest of these coefficients.
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Figure 4-8: MMSE normalized by σ2x and average number of non-zero coefficients for sparse
equalizers as functions of the equalizer length N . The MSE for the sparse equalizers is 5%
higher than the corresponding MMSE.
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Figure 4-9: Coefficient values of MMSE and sparse equalizers for (a) N = 25, N1 = 7,
N2 = 23, (b) N = 50, N1 = 7, N2 = 23, (c) N = 25, N1 = 3, N2 = 23, (d) N = 50, N1 = 3,
N2 = 23. Zero values are omitted.
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Fig. 4-10 plots the average number of non-zero coefficients against the parameter SNR0

for N = 30, N1 = 7, N2 = 23, and δ/δmin = 1.02. The number of non-zero coefficients

increases monotonically with SNR0. This dependence on SNR0 has also been noted in [41,42]

and can be understood by considering the limits as SNR0 →∞ and SNR0 → 0. In the first

case, the MMSE equalizer converges to the channel inverse, whereas in the second case, it

tends toward a matched filter for the channel response. The former is less sparse than the

latter, which accounts for the trend in Fig. 4-10.
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Figure 4-10: Average number of non-zero coefficients as a function of SNR0 for N = 30,
N1 = 7, N2 = 23, and δ/δmin = 1.02.

In the experiments of this subsection, the combination of the diagonal relaxation and the

methods of Section 3.2 often yields initial lower bounds for the branch-and-bound algorithm

that match or nearly match the initial cost value. Hence the number of iterations is small,

even zero, in a large majority of instances. The tightness of the initial lower bound may

be due to a number of factors present in this idealized example, including the high level

of sparsity, the relative unambiguity regarding which coefficients should be non-zero, and

the diagonally dominant structure of the matrix Q. In addition, we have observed in these

experiments that it is rare for the initial successive thinning solution not to be optimal.

4.2.2 Equalizers for a realistic wireless communication channel

The experiments in Section 4.2.1 are extended to a more realistic wireless channel, specif-

ically a test channel used to evaluate terrestrial broadcast systems for high-definition tele-
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vision. This example was also considered in [37, 38]. To make the design problem more

tractable for the branch-and-bound algorithm, the channel is simplified by halving all of

the multipath delays and by converting complex amplitudes to real values with the same

magnitude. The modified multipath parameters are shown in Table 4.2. The effective

discrete-time channel response is given by

h[n] =
5∑

i=0

aip(n− τi),

where the pulse p(t) is the convolution of the transmit and receive filter responses and

the sampling period has been normalized to unity. Following [37, 38], we assume that

the transmit and receive filters are square-root raised-cosine filters with excess bandwidth

parameter β = 0.115. The resulting DT channel response is plotted in Fig. 4-11. The

remainder of the experimental setup is the same as in Section 4.2.1. The estimation delay

∆ is set to 0.8L+ 0.2N , where L = 54 is the largest delay in the channel (rounded up).

Table 4.2: Multipath parameters for the HDTV broadcast example.

i τi ai
0 0 0.5012

1 4.84 −1
2 5.25 0.1

3 9.68 0.1259

4 20.18 −0.1995
5 53.26 −0.3162
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Figure 4-11: Effective discrete-time channel response for the HDTV broadcast example.
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In Fig. 4-12, we plot the minimum number of non-zero equalizer coefficients against the

MSE ratio δ/δmin for an equalizer length of N = L + 1 = 55 and SNR0 = 10, 25 dB. The

MMSE equalizers achieve MSE values (normalized by the signal power σ2x) of −5.74 and

−7.37 dB respectively for SNR0 = 10, 25 dB. At low MSE ratios, the decrease in the number

of non-zero coefficients is still fairly steep despite the channel response not being exactly

sparse in this example. For SNR0 = 10 dB in particular, the number is nearly halved with

only a 0.1 dB increase in MSE. The curves then level out beyond 1 dB. This behavior has

been observed previously using heuristic algorithms (e.g. in [42]) and is now confirmed by

the branch-and-bound algorithm.
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Figure 4-12: Number of non-zero equalizer coefficients as a function of the MSE ratio δ/δmin

for an equalizer length of N = 55.

Fig. 4-13 shows the coefficient values for the length 55 MMSE equalizer for SNR0 = 10

dB and a sparse equalizer with an MSE that is 0.2 dB higher. The sparse equalizer has about

one third as many non-zero coefficients as the MMSE equalizer. The larger coefficients in the

MMSE equalizer tend to be retained in the sparse equalizer, including a cluster surrounding

the largest coefficient that corresponds to the strongest path in the channel.

Figs. 4-14 and 4-15 depict the same sparsity-MSE trade-off as in Fig. 4-12 for equalizer

lengths of N = 82 and N = 109, which are respectively 1.5 and 2 times the channel length,
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Figure 4-13: Coefficient values for the length 55 MMSE equalizer for SNR0 = 10 dB and a
corresponding sparse equalizer with MSE ratio δ/δmin = 0.2 dB. Zero values are omitted.

and SNR0 = 10, 25 dB. The normalized MMSE values are now −6.29 and −8.28 dB for

N = 82 and SNR0 = 10, 25 dB, and −7.18 and −11.06 dB for N = 109 and the same SNR

values. Similar trade-offs are observed although the relative decreases in the number of non-

zero coefficients are smaller than before, especially for SNR0 = 25 dB. With the significant

increase in dimension, some of the problem instances become quite computationally complex

for the branch-and-bound algorithm despite the efficiency improvements made in this thesis.

To keep the computational load manageable, we have limited the solution time to one hour

per instance. If the algorithm does not converge within one hour, it produces both a feasible

solution and a lower bound on the optimal cost. The lower bound returned is the minimum

of the lower bounds for open subproblems at the time of termination, and is indicated by

an error bar in the figures. Recall that the subproblem selection rule (Step 1 in Section 3.7)

is designed to improve this lower bound as quickly as possible.

Because of early termination, for some instances we cannot conclude that the final

solution is optimal. However, the branch-and-bound algorithm does provide strong upper

and lower bounds on the optimal cost, in contrast to a heuristic algorithm which only gives

an upper bound. Furthermore, in most of the instances for which the branch-and-bound

algorithm does converge, the initial solution provided by the successive thinning algorithm
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Figure 4-14: Number of non-zero equalizer coefficients as a function of the MSE ratio
δ/δmin for an equalizer length of N = 82. Points with error bars represent instances for
which the branch-and-bound algorithm did not converge; the square marks the cost of the
final solution while the error bar represents the final lower bound. Asterisks just above the
upper curve indicate the cost of the initial successive thinning solution when it differs from
the final cost.

turns out to be optimal. The few exceptions are indicated by asterisks in Figs. 4-14 and

4-15 marking the cost of the initial successive thinning solution. Our experience suggests

that for the instances that did not converge, the final solutions are also optimal or very

close to optimal, and further iterations will only cause the lower bound to increase until

convergence.

We note that the instances in Figs. 4-14 and 4-15 that fail to converge tend to have

optimal values near N/2. From a naive estimate of the problem complexity, we would

expect these instances to be the most difficult since the number of ways of selecting K zero-

valued coefficients out of N ,
(N
K

)
, is strongly peaked around K = N/2. An optimal value

around N/2 would necessitate searching through a very large number of combinations.
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Figure 4-15: Number of non-zero equalizer coefficients as a function of the MSE ratio δ/δmin

for an equalizer length of N = 109. As in Fig. 4-14, error bars represent final lower bounds
for instances that did not converge and asterisks indicate the initial cost value when it
differs from the final cost.

4.2.3 MVDR beamformers

The framework developed in Chapters 2 and 3 can also be used to design sparse MVDR

beamformers, specifically as an example of the basic detection problem discussed in Section

2.1.3. As mentioned in that section, in the beamforming context the target signal s corre-

sponds to a propagation direction of interest and R represents the covariance of the array

input due to noise and interference.

In this subsection, we consider non-uniformly spaced beamformers. More specifically,

the positions of the elements are constrained to an underlying uniform grid, but the number

of available positions is larger than the number of active elements so that the array is sparse.

Compared to a uniformly spaced array with the same number of elements, the longer length

improves the rejection of interference close to the desired direction. The increased freedom

in the placement of active elements also improves the SNR overall.

To apply the algorithms developed in the thesis, we focus on a real-valued formulation

of the beamforming problem as opposed to the more conventional complex-valued formu-
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lation. Although the reduction of the sparse detection problem to (2.0.1) in Section 2.1.3

can be generalized to the complex case with minor modifications, some of the subsequent

algorithms assume real values. The complex-valued generalization of these algorithms is

an area for future study. In a real-valued formulation, we assume that narrowband sig-

nals A cos(ω(t− n∆t) + φ) are received by the array sensors, where n is the element index

and ∆t = d cos θ/c is the relative time delay corresponding to an inter-element spacing of

d and a propagation angle of θ measured from the array axis. Assuming that d is equal

to half the wavelength, a straightforward calculation shows that the array input is a lin-

ear combination of cos(nπ cos θ) and sin(nπ cos θ) and these are the only spatially-varying

and angle-dependent quantities. Hence the propagation direction is encoded by two vec-

tors, referred to as the array manifold vectors, with components given by cos(nπ cos θ) and

sin(nπ cos θ), and detecting signals in the direction θ reduces to determining the components

of the input along the array manifold vectors. Furthermore, because of the orthogonality

of cos(nπ cos θ) and sin(nπ cos θ), the sine components can be neglected when targeting a

cosine component. Therefore we restrict attention in the sequel to cosine array manifold

vectors.

In the example that we consider, a desired signal at angle θ0 is to be detected in the

presence of discrete interferers at θ1 and θ2 and isotropic (white) noise η. The array input

is given by

yn = A0 cos(nπ cos θ0) +
2∑

i=1

Ai cos(nπ cos θi) + ηn,

n = −N − 1

2
,−N − 1

2
+ 1, . . . ,

N − 1

2
− 1,

N − 1

2
,

where the element indices n have been chosen symmetrically for convenience. The de-

sired amplitude A0 is regarded as deterministic while the interferer amplitudes A1 and A2

are regarded as zero-mean random variables with variances σ21 and σ22 . For normalization

purposes we set A0 = 1. With si denoting the array manifold vector with components

cos(nπ cos θi), the covariance of the array output is

R = σ2ηI+

2∑

i=1

σ2i sis
T
i , (4.2.1)
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where σ2η is the white noise variance. In this example, the interferer powers are fixed at

10 and 25 dB respectively relative to the white noise power, and the interferer angles are

fixed at cos θ1 = 0.18 and cos θ2 = 0.73 while the target angle is swept from cos θ0 = 0 to

cos θ0 = 1.

In the design experiments, the number of elements M is fixed at 30 and four different

lengths N = 30, 40, 50, 60 are considered. For each N and target angle θ0, the output SNR,

defined as the ratio of the mean of the array output to the standard deviation, is to be

maximized. For N = 30, the SNR is maximized by the non-sparse MVDR solution, i.e.,

b ∝ R−1s0. For N > 30, the branch-and-bound algorithm of Chapter 3 is used to maximize

the SNR given M = 30 active elements. This is done through a search over SNR values, i.e.,

values of ρ in (2.1.13). The search is initialized at the maximum SNR for N = 30, which

is always achievable when N > 30, and proceeds in 0.05 dB increments. For each value

of ρ, the branch-and-bound algorithm is run to determine whether a feasible solution to

problem (2.1.13) exists. The translation of parameters to the canonical formulation (2.0.1)

is as described in Section 2.1.3. The branch-and-bound algorithm can be terminated as

soon as a feasible solution with M or fewer non-zero weights is found, or when all of the

subproblem lower bounds exceed M , implying that no such solution exists. The relaxation

parameter Nmin is set to 20 and successive thinning is applied only to the root problem.

The branch-and-bound algorithm converges quickly (in under a second to a few seconds

on a MacBook Pro with a 2.4 GHz dual-core processor and 4 GB of memory) for nearly

all values of N and θ0. However, for a few angles θ0, the problem instances are much more

difficult to solve. Many of these difficult angles correspond to array manifold vectors s0

that have equal or nearly equal components, e.g. for cos θ0 = 0 or cos θ = 1/2, and are also

nearly orthogonal to the interference vectors s1 and s2. In these cases, it can be shown

that the quadratic form on the left-hand side of (2.1.16) has a similar value for all subsets

Y of a given size. The large number of similar subsets is a potential explanation for the

high complexity that is observed. To avoid excessively long searches, the solution time is

restricted to one hour as in Section 4.2.2. As a consequence, for certain values of θ0 and SNR

we are unable to conclude whether or not a solution with M non-zero coefficients exists.

In the following figures, SNR values plotted with a solid line represent the highest SNR

for which a feasible solution with M non-zero weights was found. For cases in which the

branch-and-bound algorithm did not converge, crosses indicate the highest possible SNR
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consistent with the final lower bound, i.e., the highest value for which the lower bound did

not exceed M .

In Fig. 4-16, we plot the SNR as a function of the target angle θ0 for all four array

lengths. For clarity, crosses indicating non-convergence are suppressed. For each θ0, the

SNR values are normalized so that a value of 0 dB represents the maximum SNR achievable

with N = M = 30 and white noise alone, i.e., in the absence of the interference terms

in (4.2.1). With the addition of interference, it follows that the SNR curve for N = 30

must remain below 0 dB at all angles. The most severe losses occur when the target angle

coincides with an interferer angle, i.e., at cos θ0 = cos θ1 = 0.18 and cos θ0 = cos θ2 = 0.73,

so that it is not possible to distinguish the two. Therefore the SNR curves exhibit notches

at these angles. For N > 30 however, the width of these notches decreases significantly

compared to N = 30. The improvement can be attributed to the greater angular resolution

offered by the longer sparse arrays. In addition, the SNR is also increased by a few dB at

angles far from the interferers. This is due to the much larger number of configurations in

which the M active elements may be placed. As will be seen in Fig. 4-19, it is often better

to choose the non-zero weights to correspond to the largest components in the target array

manifold vector rather than a contiguous arrangement.

In Figs. 4-17 and 4-18, we compare the SNR curves for the sparse beamformers of

length 40 and 60 against the SNR curves for the non-sparse MVDR beamformers of the

same lengths. The sparse beamformers achieve nearly all of the improvement in interference

rejection around cos θ0 = 0.18 and cos θ2 = 0.73 even though they have only three-quarters

or one-half as many active elements. This observation supports the hypothesis that the

increased interference rejection is due mainly to the increase in length. Fig. 4-17 also

shows that the sparse beamformer nearly matches the SNR performance of the non-sparse

beamformer at almost all other angles. The same is true to a lesser extent for the length

60 beamformers. The angles at which there is a significant gap are close to cos θ0 = 0

and cos θ0 = 1/2. As mentioned earlier, the array manifold vectors for these angles have

components of equal or nearly equal magnitude, and hence a beamformer with more active

elements can collect appreciably more energy from the target direction. In contrast, when

the array manifold vector has highly unequal components, minimal loss is incurred by

omitting some elements.
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Figure 4-16: Normalized SNR as a function of the target angle θ0 for beamformers of length
N = 30, 40, 50, 60 (bottom to top) and M = 30 active elements.
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Figure 4-17: Normalized SNR as a function of the target angle θ0 for non-sparse beam-
formers of length 30 (bottom, black), sparse beamformers of length 40 (middle, blue), and
non-sparse beamformers of length 40 (top, red). For the middle curve, crosses indicate
upper bounds on the maximum SNR in cases where the branch-and-bound algorithm did
not converge.
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Figure 4-18: Normalized SNR as a function of the target angle θ0 for non-sparse beam-
formers of length 30 (bottom, black), sparse beamformers of length 60 (middle, blue), and
non-sparse beamformers of length 60 (top, red). For the middle curve, crosses indicate
upper bounds on the maximum SNR in cases where the branch-and-bound algorithm did
not converge.
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Fig. 4-19 compares the beamformer weights of the non-sparse beamformer of length

30, the sparse beamformer of length 50, and the non-sparse beamformer of length 50 at

cos θ0 = 0.195. Most of the larger weights in the non-sparse length-50 beamformer are

located beyond the span of the length-30 beamformer, and these tend to be the positions

where the sparse beamformer has non-zero weights. The improvement in SNR for the sparse

beamformer over the non-sparse length-30 beamformer is 5.35 dB at this angle.
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Figure 4-19: Beamformer weights for the non-sparse beamformer of length 30, the sparse
beamformer of length 50, and the non-sparse beamformer of length 50 at a target angle of
cos θ0 = 0.195. Zero-valued weights are omitted.

We note that the covariance structure in (4.2.1) is favorable to the use of diagonal

relaxations. The matrix R has two large eigenvalues contributed by the interference terms

while the remaining eigenvalues are small and equal. As observed in Section 3.6, the diagonal

relaxation tends to yield a good approximation for this type of eigenvalue distribution. This

hypothesis finds further support in the present context. Specifically, it was observed in the

beamformer experiments that the ratio between the initial lower bound and the final cost

value in the branch-and-bound algorithm typically ranges between 0.9 and 1.
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Chapter 5

Bit-efficient filter design under a

quadratic constraint: Problem

formulations and low-complexity

algorithms

In Chapters 5–7, the development and results of Chapters 2–4 are extended to measures

of complexity involving the number of bits in finite-precision representations of the filter

coefficients. As in the first part of the thesis, three filter design problems are considered

simultaneously: weighted least-squares frequency response approximation, signal estima-

tion, including prediction and channel equalization, and signal detection. By reducing the

performance constraint in each case to the quadratic constraint in (2.1.1), we again obtain

a unified framework for solving these design problems.

Two different measures of complexity are considered in Chapters 5–7. In both cases,

the total number of coefficients N and the maximum number of bits per coefficient P

(i.e., the maximum wordlength) are fixed. The first measure of complexity assumes a

conventional sign-magnitude binary representation. Motivated by the fact that arithmetic

operations involving larger coefficients tend to be more expensive, we measure the cost of

a coefficient by the number of bits excluding leading zeros, i.e., the number of non-leading-

zero (NLZ) bits, denoted as CNLZ(bn). Additional discussion of the NLZ cost measure can

be found in Section 1.1. For the second measure of complexity, a canonic signed digit
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(CSD) representation for the coefficients is assumed. The CSD representation is based

on signed powers-of-two (SPTs) and is commonly used in multiplier-less implementations

in which coefficient multiplications are decomposed into additions, subtractions, and bit

shifts. Each non-zero digit corresponds to an addition (+1) or a subtraction (−1), and

the CSD representation is distinguished by requiring the fewest non-zero digits among all

SPT number representations and by the additional property that no two non-zero digits are

adjacent. Accordingly, we measure the complexity by the total number of non-zero digits

in all coefficients, which we denote as CSPT(b). Further discussion of SPT representations

can also be found in Section 1.1.

The structure of this chapter follows closely that of Chapter 2. In Section 5.1, we

formulate the problems in greater detail, showing in particular how the signal detection

problem can be reduced to multiple instances of a problem involving constraint (2.1.1).

The choice of quantization step size and the issue of overall scaling are also discussed. As in

Chapter 2, we restrict ourselves to low-complexity algorithms in the current chapter. Section

5.2 focuses on special cases in which the matrix Q is diagonal or block-diagonal, which again

permit efficient and exact solution methods. For the general case, a low-complexity heuristic

algorithm is proposed in Section 5.3. An exact branch-and-bound algorithm is developed

later in Chapter 6.

5.1 Problem formulations and reductions

In this section, the filter design problems considered in Chapters 5–7 are formulated in

more detail. The problems of least-squares frequency response approximation, estimation,

prediction, and channel equalization are discussed together in Section 5.1.1 since they are

very similar to those formulated in Sections 2.1.1 and 2.1.2. The main difference is the

possible inclusion of an overall scale factor as an additional degree of freedom in the design.

The problem of designing filters for signal detection is treated separately in Section 5.1.2,

where it is shown to be reducible to multiple instances of a problem with (2.1.1) as the only

constraint.
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5.1.1 Weighted least-squares filter design, estimation, prediction, and

equalization

In Section 2.1.1, we formulated the problem of designing a sparse filter to approximate a

desired frequency response within an error of δ as specified in (2.1.5). In the current chapter,

we impose the same performance constraint (2.1.5) and change only the cost function to

be minimized from the number of non-zero coefficients to either the number of NLZ bits

or the number of SPTs. As shown in Section 2.1.1, constraint (2.1.5) can be rewritten

in the form of (2.1.1). Similarly, for the estimation, prediction, and channel equalization

problems, only the cost function is changed and the constraint on the MSE is reduced to

(2.1.1) as in Section 2.1.2. We will focus therefore on the following two problems:

min
b

CNLZ(b) s.t. (b− c)TQ(b− c) ≤ γ, b ∈ ZN , (5.1.1)

min
b

CSPT(b) s.t. (b− c)TQ(b− c) ≤ γ, b ∈ ZN . (5.1.2)

It is shown later in this subsection that b can be restricted to be integer-valued without

loss of generality.

For the problems discussed in this subsection, the parameter γ represents the amount by

which the error δ exceeds the minimum error achievable with N continuous-valued coeffi-

cients. In the present context, the coefficients must be quantized to a maximum wordlength

of P . Thus the value of γ should depend in part on the value of P , with γ being larger

for smaller P . At a minimum, γ should be large enough to ensure that there is at least

one quantized solution of length N and wordlength P that meets the error constraint. In

many cases it may be desirable to increase γ beyond this minimum threshold to allow for

solutions with lower cost.

The quantization step size for the coefficients is determined by the parameter c, which

represents the continuous-valued minimum-error design, and the parametersQ and γ, which

control the size of the feasible set around c. We assume for the moment that the problem

parameters are fixed and that the step size is restricted to be a power of two, i.e., the

coefficient values are sums of signed powers of two. The smallest power of two, which

corresponds to the step size, is determined based on the maximum absolute coefficient

values that are feasible under constraint (2.1.1). From (3.3.3), the largest feasible value for
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|bn| subject to (2.1.1) is
√
γ
(
Q−1

)
nn

+ |cn|. The largest feasible value for any coefficient,

i.e., the maximum ∞-norm, is given by max ‖b‖∞ = maxn

√
γ
(
Q−1

)
nn

+ |cn|. We choose

powers of two such that max ‖b‖∞ is smaller than the largest number representable in

our chosen system. Given powers p0, p0 + 1, . . . , p0 + P − 1 in a sign-magnitude binary

representation, the largest number in absolute value is obtained by setting all bits equal to

1, yielding
p0+P−1∑

p=p0

2p = 2p0(2P − 1).

It follows that the lowest power p0 should be chosen as

p0 =

⌈
log2

(
max ‖b‖∞
2P − 1

)⌉
.

The situation is slightly different for the CSD representation because of the non-adjacency

of non-zero digits. Given powers p0, p0 + 1, . . . , p0 + P − 1 and P even, the largest number

is given by

2p0+P−1 + 2p0+P−3 + · · ·+ 2p0+1 =
2

3
· 2p0(2P − 1),

whereas for P odd we have

2p0+P−1 + 2p0+P−3 + · · ·+ 2p0 =
2

3
· 2p0

(
2P − 1

2

)
.

Combining the even and odd cases, p0 should be chosen as

p0 =

⌈
log2

(
3max ‖b‖∞

2(2P − (1/2)P mod 2)

)⌉
.

In some situations, there is additional freedom to scale the feasible set by an arbitrary

real number. For example, in frequency response approximation, the relative magnitude of

the response at different frequencies is often more important than the absolute magnitude.

Accordingly, we may consider scaling the desired frequency response D(ejω) by an arbitrary

factor s while also scaling the allowable error δ by s2. It can be seen from (2.1.6) and the

relations c = Q−1f and γ = β + cTQc that this results in c being scaled by s and γ by s2.

Equivalently, (2.1.1) is changed to

(s−1b− c)TQ(s−1b− c) ≤ γ. (5.1.3)
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The scaling can also represent quantization with a step size that is not a power of two. In

either case, we may continue to assume that the components of b are restricted to be sums

of signed powers of two.

The scale factor s can affect the geometry of the problem, specifically by changing the

position of the feasible set corresponding to (5.1.3) relative to the quantization lattice. (It

suffices to consider a single octave of values for s since any positive value s1 is related

to a value s0 in the chosen octave by a power-of-two factor, and hence s0 and s1 are

equivalent in terms of quantization.) This additional degree of freedom has been exploited

by several researchers, notably in [53], to reduce the approximation error in the design of

finite-precision filters. In the present context, different values for s can lead to different

optimal values when the cost functions CNLZ(b) and CSPT(b) are minimized subject to

(5.1.3). Hence s should be included as an additional variable in the optimization problems.

In the remainder of this chapter, we will assume that when scaling is permitted, it is done

in an outer loop in which s is set to different values. We concentrate therefore on solving

the problems for a fixed value of s. A particularly convenient choice is s = 2−p0 , which

allows the coefficients to be integer-valued. This results in the substitutions c ← 2−p0c

and γ ← 2−2p0γ1 and effectively resets p0 to 0. In the sequel we will assume that this

normalization has been done and that bn is integer. Under this assumption, the number of

NLZ bits can be expressed as

CNLZ(b) =

N∑

n=1

⌈log2(1 + |bn|)⌉ , (5.1.4)

i.e., setting bn = 0 has a cost of 0, bn = 1 has a cost of 1, bn = 2, 3 has a cost of 2, and so

on. Thus the cost of a given coefficient value is approximately equal to the base 2 logarithm

of the absolute value.

5.1.2 Signal detection

We now consider the design of filters for signal detection with the property that either the

number of NLZ bits or the number of SPTs is minimized. We assume as in Section 2.1.3

that the output SNR is required to be no smaller than a given threshold ρ. Previously

in Section 2.1.3, it was shown that when the cost measure is the number of non-zero co-

1Equivalently, Q may be rescaled by 22p0 .
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efficients, the problem is exactly equivalent to problem (2.0.1). Our proof of equivalence

relied however on the assumption that the coefficients are continuous-valued, leading to

closed-form solutions to certain optimizations. The previous approach cannot be applied

to the present situation in which the coefficients are discrete-valued. We take instead a

geometrically-inspired approach to transform the detection problem into multiple instances

of the problems (5.1.1) or (5.1.2) formulated in the previous subsection.

We begin by noting that the SNR constraint in (2.1.13) specifies a cone, i.e., a set that

contains the points sb for all s ≥ 0 whenever b belongs to the set. Under certain conditions,

this cone has sections that are (N − 1)-dimensional ellipsoids. Specifically, we make the

mild assumption that there is an index n such that bn is positive everywhere inside the

cone except at b = 0. In other words, there is at least one coefficient that has a positive

value in all designs that satisfy the SNR constraint. As will be shown, it follows from our

assumption that the intersections of the cone with the hyperplanes bn = v for v > 0 are

finite (N − 1)-dimensional ellipsoids. The same result holds if bn is negative inside the cone

except at b = 0 and v < 0. This phenomenon is illustrated in Fig. 5-1 for the case N = 3.

b1

b2

b3

Figure 5-1: A cone of the type corresponding to (2.1.13) for N = 3. The component b3 is
positive at all points in the cone except the origin. The intersections of the cone with the
hyperplanes b3 = v for v > 0 are finite 2-dimensional ellipsoids.
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Our approach is to minimize the cost functions CNLZ(b) and CSPT(b) over the cone by

performing separate minimizations over ellipsoidal sections of the cone. Since the coefficient

bn must be quantized, its possible values form a discrete set. We assume in addition that

this set of values is finite. Hence the problem is reduced to solving one (N − 1)-dimensional

instance of (5.1.1) or (5.1.2) for each quantization level for bn.

To prove that the conic sections in question are ellipsoidal, we assume for concreteness

that the index n = N is such that bN > 0 for every b 6= 0 satisfying the constraint in

(2.1.13). First we derive an inequality describing the conic section obtained by fixing bN

to a positive value. By partitioning the vectors b and s and the matrix R as follows with

F = {1, . . . , N − 1}:

b =


bF

bN


 , s =


sF
sN


 , R =


RFF RFN

RNF RNN


 ,

the constraint in (2.1.13) may be rewritten as

ρ



[
bT
F bN

]

RFF RFN

RNF RNN




bF

bN






1/2

≤ sTFbF + sNbN . (5.1.5)

Since both sides are non-negative, we may square them without changing the inequality.

After rearranging terms, we obtain

bT
F (ρ

2RFF − sFs
T
F )bF − 2bN (sNsF − ρ2RFN )TbF ≤ b2N (s2N − ρ2RNN ), (5.1.6)

which is of the same form as (2.1.3), the alternative form of (2.1.1), when we regard bN

as being fixed. To show that (5.1.6) corresponds to a finite (N − 1)-dimensional ellipsoid,

it suffices to show that the matrix ρ2RFF − sFsTF is positive definite. Equation (5.1.6)

specifies a non-empty set as long as the original cone is non-empty.

To prove that ρ2RFF − sFsTF is positive definite, we return to our assumption that

bN > 0 whenever b = (bF , bN ) satisfies constraint (5.1.5) and b is not equal to 0. The

assumption implies that if bN = 0 and bF 6= 0, (5.1.5) must be violated, i.e.,

ρ
√

bT
FRFFbF > sTFbF . (5.1.7)
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We restrict our attention for the moment to those non-zero vectors bF satisfying sTFbF ≥ 0

so that the right-hand side of (5.1.7) is non-negative. Squaring both sides of (5.1.7) and

rearranging, we have

bT
F (ρ

2RFF − sFsTF )bF > 0 ∀ bF 6= 0 : sTFbF ≥ 0, (5.1.8)

which shows that ρ2RFF − sFsTF is positive definite over the half-space sTFbF ≥ 0. This is

a sufficient condition for ρ2RFF − sFsTF to be positive definite over all of RN−1 since every

vector bF such that sTFbF < 0 is the negative of some vector for which sTFbF > 0, and

(5.1.8) is equally true for −bF as it is for bF . Hence the additional qualification sTFbF ≥ 0

in (5.1.8) can be removed.

We conclude that under the assumption made in this subsection, the conic sections

specified by (5.1.6) are finite (N − 1)-dimensional ellipsoids. The equivalent parameters in

(2.1.3) are given by

Q = ρ2RFF − sFs
T
F , f = bN (sNsF − ρ2RFN ), β = b2N (s2N − ρ2RNN ).

The values of f and β depend linearly and quadratically on bN . The same dependence was

observed in Section 5.1.1 when we considered scaling the desired frequency response D(ejω)

by a factor s (see (2.1.6)). Quantizing bN to different values is thus analogous to varying

the scale factor s.

5.2 Special cases

In Section 5.1, we showed that the problems addressed in this chapter can all be reduced

to problems (5.1.1) and (5.1.2). Generally speaking, (5.1.1) and (5.1.2) are considered to

be even more difficult than the sparsity maximization problem (2.0.1) because the variables

are required to be discrete-valued. As in Section 2.2 however, we can identify some special

cases for which exact algorithms are also efficient. In Sections 5.2.1 and 5.2.2, we discuss

the solution of (5.1.1) and (5.1.2) in the case where the matrix Q is diagonal. We extend

the algorithms to the block-diagonal case in Section 5.2.3 and to separable non-quadratic

constraint functions in Section 5.2.4.
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In analogy with Section 2.2, the methods in the current section solve (5.1.1) or (5.1.2)

by determining for each B = 0, 1, 2, . . . whether a feasible solution requiring B NLZ bits

or B SPTs exists. Such a solution exists only if (2.1.1) is satisfied when the left-hand side

is minimized over all integer-valued b of cost CNLZ(b) = B or CSPT(b) = B, since (2.1.1)

cannot be satisfied for any b with the specified cost if it is not satisfied for the minimizer. We

define ENLZ(B) to be the minimum value of the left-hand side of (2.1.1) under a total cost

constraint of B NLZ bits, and similarly for ESPT(B). We refer to ENLZ(B) and ESPT(B)

as the minimum quantization error since ENLZ(B) = ESPT(B) = 0 in the limit B → ∞,

i.e., with continuous values, and the increase from zero is due to the quantization of b.

In the general case, ENLZ(B) and ESPT(B) are very difficult to compute. In the diagonal

and block-diagonal cases however, efficient algorithms are known. Unlike in Section 2.2, an

efficient method for the case of banded Q has not been found to date.

5.2.1 Diagonal Q, NLZ cost function

We start with the solution of (5.1.1) in the case of diagonal Q. First we present a dynamic

programming algorithm for computing values of ENLZ(B), the minimum quantization error

given a total of B NLZ bits. Later we indicate how the algorithm can be simplified in the

context of solving (5.1.1).

When Q is diagonal, ENLZ(B) takes the following form:

ENLZ(B) = min

N∑

n=1

Qnn(bn − cn)2

s.t.
N∑

n=1

⌈log2(1 + |bn|)⌉ = B,

bn ∈ Z ∀ n,

(5.2.1)

using the expression in (5.1.4) for CNLZ(b). The optimization in (5.2.1) bears some re-

semblance to the one in (2.2.9) and can be solved using a similar dynamic programming

approach. For m = 1, 2, . . . , N , we define Vm(B) to be the minimum quantization error
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given B bits for the first m coefficients, i.e.,

Vm(B) = min

m∑

n=1

Qnn(bn − cn)2

s.t.
m∑

n=1

⌈log2(1 + |bn|)⌉ = B,

bn ∈ Z ∀ n.

(5.2.2)

Hence ENLZ(B) = VN (B). We also define vn(B) for n = 1, . . . , N to be the minimum

quantization error given B bits for the nth coefficient,

vn(B) = min Qnn(bn − cn)2

s.t. ⌈log2(1 + |bn|)⌉ = B,

bn ∈ Z.

(5.2.3)

Comparing (5.2.2) and (5.2.3), we have V1(B) = v1(B). For m higher than 1, we may

compute Vm(B) through the following recursion, in analogy with (2.2.12):

Vm(B) = min
B′=0,1,...,min{B,P}

{
vm(B′) + Vm−1(B −B′)

}
. (5.2.4)

The upper bound of P on B′ reflects the fact that we cannot allocate more than P bits to

a single coefficient.

The minimization in (5.2.3) has a straightforward solution: If |cn| is greater than 2B−1,

the maximum absolute value achievable with B NLZ bits, then the best solution is to set

bn = sgn(cn)(2
B − 1). Otherwise, bn is equal to cn rounded to the nearest integer, denoted

as [cn]. Thus

vn(B) =





Qnn(|cn| − (2B − 1))2, |cn| > 2B − 1,

Qnn(cn − [cn])
2, |cn| ≤ 2B − 1.

(5.2.5)

The minimum quantization error ENLZ(B) can be computed using (5.2.4) and (5.2.5).

It can be seen that to determine ENLZ(B) for a given value of B, it is necessary to perform

most of the intermediate computations for determining ENLZ(B
′) for B′ < B because we

require the values of VN−1(B
′) for B′ < B in (5.2.4). However, in the context of solving

(5.1.1), we often do not need to carry out the full recursion. The optimal value of (5.1.1)
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is equal to the smallest value of B such that ENLZ(B) ≤ γ. Since we are only interested in

determining whether ENLZ(B) exceeds a threshold, we may terminate the recursion as soon

as it is known that ENLZ(B) > γ and proceed to evaluate ENLZ(B + 1). More specifically,

if Vm(B) > γ for some m < N , we may conclude that Vm′(B) > γ for all m′ > m, and in

particular, VN (B) = ENLZ(B) > γ. To see this, first note that the condition Vm(B) > γ

implies that Vm(B′) > γ for all B′ < B since the quantization error cannot decrease with

fewer bits. From (5.2.4), it follows that Vm+1(B) ≥ Vm(B′) for all B′ ≤ B, and hence

Vm+1(B) > γ. Applying induction yields the same result for higher values of m′ > m.

In light of the previous observation, we now describe a simplified method for solving

(5.1.1). We start with B = 0 and evaluate Vm(0) for increasing m using (5.2.4) and (5.2.5)

until either VN (0) = ENLZ(0) ≤ γ, at which point we are done, or Vm(0) > γ for some

m < N . In the latter case, we proceed with evaluating Vm(B) for B = 1. Continuing in

this manner and assuming that at least one feasible solution exists for the given wordlength

P , we eventually terminate with the condition VN (B) = ENLZ(B) ≤ γ for some B and

conclude that B is the optimal value of (5.1.1). It is also possible to further simplify the

minimization in (5.2.4). Since the recursion terminates as soon as Vm(B) > γ, it suffices to

minimize over those values of B′ for which Vm−1(B−B′) ≤ γ. Therefore (5.2.4) is changed
to

Vm(B) = min
B′=0,1,...,min{B,P}
Vm−1(B−B′)≤γ

{
vm(B′) + Vm−1(B −B′)

}
. (5.2.6)

If a solution b that achieves the optimal value of (5.1.1) is also desired, it can be obtained

through a backtracking procedure. The algorithm proceeds as before, except that each time

(5.2.6) is evaluated, the number of bits B′ that minimizes the right-hand side is recorded.

When the algorithm terminates with the condition VN (B) ≤ γ, the minimizer B′ in (5.2.6)

corresponding to VN (B) becomes the number of bits allocated to the Nth coefficient. Then

the minimizer B′′ corresponding to VN−1(B − B′) is the number of bits allocated to the

(N−1)th coefficient. We continue in this way until bits have been allocated to all coefficients.

The values of bn can then be determined from these allocations as discussed in the paragraph

preceding (5.2.5).

A worst-case estimate of the computational complexity is as follows: The recursion

in (5.2.6) may need to be carried out for m = 2, . . . , N and B = 0, 1, . . . , NP , where

NP represents the maximum number of bits available. Each evaluation of (5.2.6) requires
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at most P + 1 additions and comparisons. Therefore the total number of operations is

proportional to (N − 1)(NP +1)(P +1) ∼ O((NP )2), which is only quadratic in NP with

a leading coefficient of unity. In addition, vn(B) may need to be computed for n = 1, . . . , N

and B = 0, . . . , P in the worst case, a total of N(P + 1) evaluations of (5.2.5).

5.2.2 Diagonal Q, SPT cost function

We now continue with the assumption thatQ is diagonal and discuss the solution of problem

(5.1.2). While it is possible to use the same algorithm as in Section 5.2.1, there is an even

more efficient alternative. In [70], Llorens et al. propose a provably optimal greedy algorithm

for determining ESPT(B), the minimum quantization error given B SPTs, in the case Q = I.

For completeness, we review the algorithm of [70], which applies equally well to the general

diagonal case, and we present an alternative, more intuitive explanation for the optimality

of the algorithm.

First we introduce the concept of incremental error decreases that is fundamental to the

algorithm. We define un(B) to be the minimum quantization error given B SPTs for the

nth coefficient, i.e.,

un(B) = min Qnn(bn − cn)2

s.t. CSPT(bn) = B,

bn ∈ Z.

(5.2.7)

The number of SPTs can range from 0 to ⌈P/2⌉, the maximum number given a wordlength

of P and the non-adjacency constraint. The solution to the quantization problem in (5.2.7)

is described in Appendix C.1. The error decrease due to the allocation of the Bth SPT

to the nth coefficient is defined as ∆un(B) = un(B − 1) − un(B). For B > ⌈P/2⌉, we set

∆un(B) = 0 since no further allocations are possible. Llorens et al. prove in [70] that the

incremental error decreases for CSD quantization are monotonic,

∆un(B) ≥ ∆un(B + 1), B = 1, 2, . . . . (5.2.8)

In contrast, this property does not hold for the cost function CNLZ(bn). Consider an example

where Qnn = 1 and cn = 4. From (5.2.5), we have vn(0) = 16, vn(1) = 9, vn(2) = 1, and

vn(3) = 0, yielding ∆vn(1) = 7, ∆vn(2) = 8, and ∆vn(3) = 1.
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We now explain why the monotonicity property in (5.2.8) allows ESPT(B) to be com-

puted using a greedy method. The optimization problem to be solved is

ESPT(B) = min

N∑

n=1

Qnn(bn − cn)2

s.t.

N∑

n=1

CSPT(bn) = B,

bn ∈ Z ∀ n.

(5.2.9)

For B = 0, the only possible value for b is 0 and hence ESPT(0) =
∑

nQnnc
2
n. For B = 1,

the quantization error is guaranteed to be minimized if the SPT corresponding to the

largest error decrease ∆un(B) is added. Because of property (5.2.8), the largest ∆un(B)

can be found among ∆u1(1),∆u2(1), . . . ,∆uN (1). Note that if (5.2.8) does not hold, the

largest ∆un(B) may not occur with B = 1 and consequently the largest error decrease

may not be available at the current stage. Suppose now that ∆u1(1) is the largest. We

allocate the first SPT to the first coefficient and subtract ∆u1(1) from ESPT(0) to obtain

ESPT(1). For B = 2, the quantization error is again minimized if the SPT corresponding

to the second largest ∆un(B) is added. This can be done by selecting the largest among

∆u1(2),∆u2(1),∆u3(1), . . . ,∆uN (1). Thus it is possible at each step to add the SPT that

results in the next largest error decrease, ensuring continued optimality. In general, given a

current allocation of a1, a2, . . . , aN SPTs to the coefficients, the coefficient bm to which the

next SPT should be allocated is determined according to

m = argmax
n

∆un(an + 1). (5.2.10)

We then increment am by 1 and subtract ∆um(am+1) from the current error ESPT(
∑

n an)

to determine the next error ESPT(1 +
∑

n an).

The greedy algorithm above computes ESPT(B) for increasing values of B. The optimal

value of (5.1.2) is equal to the first value of B for which ESPT(B) ≤ γ. Once the optimal

value is determined, the optimal allocation of bits to coefficients is also known. From the

optimal allocation and using the method of Appendix C.1, we can determine values for bn

that achieve the optimal value.

The computational complexity of the greedy algorithm is lower than that of the dynamic
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programming algorithm in Section 5.2.1. There are at most N⌈P/2⌉ values of un(B) to be

computed since n ranges from 1 to N and B from 1 to ⌈P/2⌉. As discussed in Appendix

C.1, each evaluation of un(B) requires O(⌈P/2⌉) operations. In the greedy algorithm itself,

at most N⌈P/2⌉ SPTs can be added, and approximately N comparisons are needed to

determine the coefficient to which each new SPT should be assigned. Hence the total

number of operations is O(N⌈P/2⌉(N + ⌈P/2⌉)) compared to O((NP )2) for the dynamic

programming algorithm.

5.2.3 Block-diagonal Q

In this subsection, we indicate briefly how the dynamic programming algorithm of Section

5.2.1 can be extended to the case of block-diagonal Q. This extension can be equivalently

regarded as a generalization of the algorithm of Section 2.2.2.

We assume that Q has the block-diagonal structure shown in (2.2.8). It follows that the

minimum quantization error ENLZ(B) given a total of B NLZ bits can be expressed as

ENLZ(B) = min

L∑

b=1

(bb − cb)
TQb(bb − cb)

s.t.
L∑

b=1

CNLZ(bb) = B,

bb ∈ ZNb ∀ b,

where the vectors bb and cb correspond to the bth block of b and c. A similar expression

holds for the cost measure CSPT, and the following discussion applies to both metrics. In

analogy with Section 2.2.2, we define Vg(B) to be the minimum quantization error over the

first g blocks,

Vg(B) = min

g∑

b=1

(bb − cb)
TQb(bb − cb)

s.t.

g∑

b=1

CNLZ(bb) = B,

bb ∈ ZNb ∀ b,
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and vb(B) to be the minimum quantization error for the bth block alone,

vb(B) = min (bb − cb)
TQb(bb − cb)

s.t. CNLZ(bb) = B,

bb ∈ ZNb .

(5.2.11)

Then V1(B) = v1(B) and for g = 2, . . . , L, we have the recursion

Vg(B) = min
B′=0,1,...,min{B,NgP}

{
vg(B

′) + Vg−1(B −B′)
}
, (5.2.12)

where NgP is the largest number of bits that can be allocated to the gth block. It is also

possible to incorporate the simplifications discussed in Section 5.2.1 since the property that

Vg′(B) > γ for all g′ > g whenever Vg(B) > γ is satisfied in the present case as well.

Accordingly we may start from B = 0 and compute Vg(B) for increasing values of g until

either VL(B) ≤ γ or Vg(B) > γ for g < L, continuing in the second case with the next value

of B. The first value of B for which VL(B) ≤ γ is the optimal value of (5.1.1). Furthermore,

the minimization in (5.2.12) may be restricted to those B′ for which Vg−1(B −B′) ≤ γ.

The key difference compared to the diagonal case is the increased complexity of the intra-

block minimizations in (5.2.11). Assuming that the submatrices Qb do not have further

structure, (5.2.11) is a lower-dimensional instance of the original problem of computing

ENLZ(B) in the general case of unstructured Q. Therefore the efficiency of the dynamic

programming method is limited by the complexity of solving (5.2.11). In the ideal case, the

block dimensions Nb should all be small integers.

5.2.4 Generalization to separable non-quadratic constraint functions

The methods in Sections 5.2.1 and 5.2.3 can be generalized to separable non-quadratic

constraint functions, similar to the situation in Section 2.2. The dynamic programming

algorithm applies equally well to a constraint function that can be separated into a sum

of univariate functions Fn(bn). The case of diagonal Q corresponds to Fn(bn) = Qnn(bn −
cn)

2. Similarly, the block-diagonal case can be generalized to block-separable constraint

functions.
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5.3 Low-complexity algorithm for the general case

In the remainder of this chapter and in Chapter 6, we focus on the general case in which

Q is not diagonal or block-diagonal. Given the difficulty of solving problems (5.1.1) and

(5.1.2) exactly, we discuss first an algorithm that performs approximate minimization of the

two cost functions and requires relatively little computation. The solutions resulting from

this algorithm can either be used directly or as a starting point toward the determination

of an optimal solution as discussed in Chapter 6.

The algorithm of this section produces a sequence of feasible solutions with gradually

decreasing cost (number of NLZ bits or SPTs), using a simplified procedure described in

Section 5.3.1 to search among cost allocations with a total cost one unit lower than that

of the previous solution. In this respect, the algorithm is similar to the successive thinning

algorithm of Section 2.3. The difference is that in sparse filter design with continuous-

valued coefficients, once the subset of zero-valued coefficients has been fixed, the values of

the non-zero coefficients that minimize the error (i.e., the left-hand side of (2.1.1)) can be

determined analytically. In contrast, when the coefficients are discrete-valued, minimizing

the error is a difficult integer optimization problem even in the analogous situation of a fixed

cost allocation. Hence a simplified algorithm is also required to perform error minimization

for a fixed allocation. We present such an algorithm in Section 5.3.2.

5.3.1 Cost reduction strategy

We focus in this section on problem (5.1.1); the algorithm for (5.1.2) is similar. We begin

by discussing a strategy for iteratively reducing the cost of a feasible solution. Recall from

Section 5.2 that (5.1.1) may be solved by determining the smallest value of B such that

ENLZ(B) ≤ γ, where ENLZ(B) is the minimum value of the left-hand side of (2.1.1), i.e.,

the minimum quantization error, given a total cost of B bits. Evaluating ENLZ(B) exactly

is difficult in part because of the large number of ways in which a total of B bits can

be allocated to N coefficients. To be more precise, the number of allocations is given by(
B +N − 1

B

)
, which grows rapidly as a function of B and N . The method presented in this

subsection restricts the search space dramatically. Given a current allocation (a1, . . . , aN )

of bits to coefficients, to reduce the cost by one bit we search over only those allocations that

differ from the current allocation in one position, e.g. (a1 − 1, a2, . . . , aN ). The allocation
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in this restricted set for which the quantization error is the lowest is chosen for the next

iteration. The problem of minimizing the quantization error for a fixed allocation is treated

in Section 5.3.2. We use ÊNLZ(B) to denote the quantization error corresponding to the

chosen allocation for B bits, which is an approximation to the true minimum ENLZ(B). The

cost reduction procedure terminates when ÊNLZ(B+1) > γ for some B, at which point the

last feasible allocation with B bits is taken to be the final allocation.

The search strategy just described greatly reduces the number of allocations considered

since at most N different allocations are explored in every iteration. The number of it-

erations can be no more than NP (N⌈P/2⌉ for the CSD case), the maximum number of

bits available. One special case in which the simplified search does not result in a loss of

optimality is the case of CSD quantization under diagonal Q that was discussed in Section

5.2.2. As shown in that section, the optimal allocations corresponding to ESPT(B) and

ESPT(B−1) do have the property of differing in only one position, and hence the simplified

search can determine one of the allocations from the other. In other cases however, we do

not expect the search to guarantee optimality.

In more detail, the algorithm begins by obtaining a feasible solution b given a maximal

bit allocation, i.e., (P,P, . . . , P ) or (⌈P/2⌉, . . . , ⌈P/2⌉) depending on the cost measure. We

use Algorithm 4 to be described in Section 5.3.2 to approximately minimize the quantization

error for this initial allocation. Only the actual numbers of bits (a1, . . . , aN ) required by

the initial solution are retained for the next iteration. We set ÊNLZ (
∑

n an) to the initial

error value, which is assumed to be below γ. We also define C to be the list of indices n

that are candidates for further reductions in the number of bits an. Initially, C includes all

n such that an > 0.

In a typical iteration, we start with an existing allocation a0 = (a1, . . . , aN ) and create

for each n ∈ C a trial allocation an that has one fewer bit than a0 in the nth position.

We then approximately minimize the quantization error for each trial allocation using Al-

gorithm 4. The lowest of the errors Ẽn returned by Algorithm 4 becomes the value of

ÊNLZ ((
∑

n an)− 1). If ÊNLZ ((
∑

n an)− 1) > γ, the algorithm terminates and returns a0

as the final allocation. Otherwise, we set a0 equal to the allocation an that minimizes Ẽn

and we update the feasible solution b accordingly.

Before continuing with the next iteration, we remove from C those indices for which the

number of bits an has decreased to zero. In addition, indices for which the quantization error
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Ẽn > γ are also eliminated. This second group of indices is removed because Algorithm 4

was unable to find a feasible solution using fewer than an bits for the nth coefficient. The

removal is analogous to the reassignment of indices from F to U in Section 2.3 to account

for coefficients that can no longer be set to zero and still yield feasible solutions. Note

however that since Ẽn is only an approximation to the true minimum quantization error,

the condition Ẽn > γ does not guarantee that no feasible solutions exist with fewer than an

bits for the nth coefficient, and the elimination of indices based on this condition is intended

only as a further restriction of the search space.

Algorithm 3 summarizes the cost reduction procedure of this subsection.

Algorithm 3 Heuristic cost reduction algorithm

Input: Parameters Q, c, γ, wordlength P .
Output: Feasible solution b to (5.1.1) or (5.1.2) with cost B.

Initialize: Use Algorithm 4 to approximately minimize quantization error given maximal
allocation. Set a0 = (a1, . . . , aN ) where (a1, . . . , aN ) are the numbers of bits required by
the initial solution, B =

∑
n an, ÊNLZ(B) = initial error value, and C = {n : an > 0}.

repeat
if not first iteration then

a0 = am where m = argminn∈C Ẽn.
B ← B − 1.
Remove indices n from C such that an = 0 or Ẽn > γ.

b = solution corresponding to ÊNLZ(B).
for n ∈ C do

Determine trial allocation an from a0.
Use Algorithm 4 to approximately minimize quantization error given allocation an.
Ẽn = error value returned.

ÊNLZ(B − 1) = minn∈C Ẽn.
until ÊNLZ(B − 1) > γ

5.3.2 Approximate error minimization given a fixed cost allocation

Next we turn to the problem of minimizing the quantization error given a fixed allocation

of bits to coefficients. The basic idea of our algorithm is to start from the continuous-valued

minimizer of the left-hand side of (2.1.1), b = c, and quantize the components of b one by

one, each time modifying the remaining unquantized components to partially compensate

for the increase in the error. As discussed in [109], the final quantization error depends on

the order in which the components are quantized, but determining an optimal ordering is

intractable. We address first the more straightforward aspects of the algorithm and propose

later a simple rule for selecting an ordering. Since our goal in this section is to develop a
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low-complexity algorithm, more sophisticated order selection methods are not considered.

We use K to represent the subset of coefficients that have been quantized and F to rep-

resent the remaining coefficients. As the algorithm progresses, the number of free variables

decreases, giving rise to problems of lower dimension that we again refer to as subproblems.

As suggested by Fig. 5-2, a subproblem created by fixing coefficients is of the same form

as the original problem. This is shown more formally in Appendix C.2, where the param-

eters for the subproblem are also derived. The equivalence between the original problem

and arbitrary subproblems can be exploited to simplify the algorithm following the same

approach as in Section 2.3. We begin by selecting the first coefficient to be quantized and

modifying the values of the remaining coefficients to compensate. The subproblem that

results from quantizing the first coefficient to a value bm is characterized by the parameters

in (C.2.7). This subproblem now takes the place of the original problem and we select the

next coefficient to quantize and compensate with the remaining coefficients in the same

way as before. The parameters for the second subproblem can be determined using (C.2.7)

with the parameters for the first subproblem playing the role of Q, c, and γ. It suffices

therefore to describe a single iteration of the algorithm and to specify the recursion relating

the parameters of one subproblem to the next.

In the remainder of this subsection, a superscript i is used to associate quantities with

iteration i, for example the parameters Q(i), c(i) and γ(i), and the current coefficient values

b(i). As in Section 2.3, we also defineR(i) to be the inverse of Q(i). Initially we set K(0) = ∅,
F (0) = {1, . . . , N}, Q(0) = Q, R(0) = Q−1, c(0) = c, γ(0) = γ, and b(0) = c.

In iteration i, a new coefficient corresponding to the index m ∈ F (i) is chosen to be

quantized. The rule for selecting m, which determines the order of quantization, is discussed

at the end of this subsection. The current continuous value for the mth coefficient, b
(i)
m ,

is quantized to am bits as described in Section 5.2.1 (or Appendix C.1 in the CSD case),

yielding an integer b
(i+1)
m . The values of already quantized coefficients remain the same, i.e.,

b
(i+1)
n = b

(i)
n for n ∈ K(i). Next, the index m is removed from F (i) and added to K(i) to form

F (i+1) and K(i+1). To compensate for the quantization of the mth coefficient, the values of

the remaining unquantized coefficients, b
(i)
n for n ∈ F (i+1), are modified so as to minimize

the error. This corresponds to minimizing (C.2.1) with respect to bF . From Appendix C.2,

the result is

b
(i+1)

F(i+1) = c(i+1) = c
(i)

F(i+1) +
b
(i+1)
m − c(i)m

R
(i)
mm

R
(i)

F(i+1)m
, (5.3.1)
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b1

b2

b3

b3 = K

c

Figure 5-2: Geometric representation of a two-dimensional subproblem formed by quantiz-
ing the coefficient b3 to a value K. The arrow depicts the quantization of b3 together with
the compensating changes in b1 and b2 to re-center the solution.

which can be interpreted geometrically as a re-centering as shown in Fig. 5-2. Equation

(5.3.1) also relates the new parameter c(i+1) to the old parameters. The recursions for the

other parameters are given by

Q(i+1) = Q
(i)

F(i+1)F(i+1) , (5.3.2)

R(i+1) = R
(i)

F(i+1)F(i+1) −
1

R
(i)
mm

R
(i)

F(i+1)m
R

(i)

mF(i+1) , (5.3.3)

γ(i+1) = γ(i) −
(
b
(i+1)
m − c(i)m

)2

R
(i)
mm

. (5.3.4)

The algorithm can now continue with iteration i+ 1.

After N iterations, all coefficients have been quantized and the solution b(N) is integer-

valued. The final quantization error corresponds to the decrease in the parameter γ and is

given by ÊNLZ (
∑

n an) = γ(0) − γ(N).

We now present a rule for selecting the coefficient to be quantized in each iteration.

The rule is based on an alternative interpretation of the quadratic form in (2.1.1), which
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we rewrite as

(b− c)TQ(b− c) =
∥∥∥Q1/2b−Q1/2c

∥∥∥
2

2
. (5.3.5)

The right-hand side of (5.3.5) can be regarded as the squared Euclidean distance between

the vector Q1/2b, which is a linear combination of vectors corresponding to the columns of

Q1/2, and a fixed vector Q1/2c. In the beginning when no coefficients have been quantized,

b = c and the distance is zero. Each time a coefficient is quantized, we modify the values of

the remaining unquantized coefficients to minimize the increase in the distance. The quality

of the compensation tends to be better when the angles between pairs of vectors are small,

as suggested in Fig. 5-3. Moreover, as the number of unquantized components decreases,

the ability to compensate for quantization also decreases. Based on these tendencies, we

suggest choosing m so that it corresponds to the largest angle between vectors with as yet

unquantized coefficients. The aim is to eliminate large angles early in the process when

more degrees of freedom are available for compensation, rather than leaving them for later

rounds when there are fewer degrees of freedom. Given that the cosine of the angle between

two vectors is equal to their normalized inner product, and that the inner product between

columns k and n of Q1/2 is equal to Qkn, the two indices m1 and m2 corresponding to the

largest angle can be determined as follows:

(m1,m2) = arg min
k,n∈F(i)

k 6=n

|Qkn|√
QkkQnn

. (5.3.6)

To decide between m1 and m2, we compare the second-largest angles in which columns m1

and m2 of Q1/2 participate, i.e., we compare

min
n∈F(i)

n 6=m2

|Qm1n|√
Qm1m1Qnn

, min
n∈F(i)

n 6=m1

|Qm2n|√
Qm2m2Qnn

. (5.3.7)

If the quantity on the left is smaller than the one on the right, we choose m = m1, otherwise

m = m2.

A summary of the algorithm of this subsection is given in Algorithm 4.
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v1

v1 + v2

b1v1

b1v1 + b2v2

(a)

v3
v3 + v4

b1v3

b1v3 + b4v4

(b)

Figure 5-3: The effect of the angle between two vectors on the quality of compensation. The
scale factor b1 is the same in both (a) and (b). The modified linear combination b1v1+ b2v2

is much closer to the original v1 + v2 in (a) than b1v3 + b4v4 is to v3 + v4 in (b).

Algorithm 4 Approximate error minimization given fixed cost allocation

Input: Parameters Q, c, γ, wordlength P , allocation of bits/SPTs (a1, . . . , aN ).
Output: Quantized solution b, quantization error ÊNLZ (

∑
n an).

Initialize: i = 0, K(0) = ∅, F (0) = {1, . . . , N}, Q(0) = Q, R(0) = Q−1, c(0) = c, γ(0) = γ,
b(0) = c.
for i = 0, . . . , N − 1 do

Determine m from (5.3.6) and (5.3.7).

Quantize b
(i)
m to am bits −→ b

(i+1)
m .

b
(i+1)

K(i) = b
(i)

K(i) .

K(i+1) = K(i) ∪ {m}, F (i+1) = F (i)\m.
Update bF(i+1) , Q, R, c, γ using (5.3.1)–(5.3.4).
i← i+ 1.

Return solution: b = b(N), ÊNLZ (
∑

n an) = γ(0) − γ(N).
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Chapter 6

Bit-efficient filter design under a

quadratic constraint: Optimal

algorithm for the general case

This chapter focuses on optimal algorithms for problems (5.1.1) and (5.1.2). For this pur-

pose, we again make use of the method of branch-and-bound introduced in Section 3.1. As in

Chapter 3, the emphasis is on reducing the complexity of branch-and-bound by developing

strong and efficiently computable lower bounds on the optimal cost.

The organization of this chapter is similar to that of Chapter 3. Section 6.1 discusses at

a high level the application of branch-and-bound to problems (5.1.1) and (5.1.2). A branch-

and-bound algorithm is presented in further detail in Section 6.7. Sections 6.2–6.4 are

devoted to developing lower bounds for use in the branch-and-bound algorithm. In Section

6.2, we give bounds based on the range of possible quantized values for each coefficient

under the quadratic constraint (2.1.1). To obtain stronger lower bounds, in Section 6.3 we

derive relaxations of both the NLZ and SPT minimization problems in which the discrete-

value constraint is relaxed and the cost function is linearized. In Section 6.4, we develop an

alternative relaxation that exploits the solution methods of Section 5.2 for the diagonal case

and we analyze the approximation properties of this relaxation. An efficient algorithm for

obtaining a diagonal relaxation is described in Section 6.5. In Section 6.6, the lower bounds

resulting from the methods of Sections 6.2–6.4 are evaluated and compared numerically over

a range of problem instances.

169



6.1 Branch-and-bound

In this section, we indicate briefly how branch-and-bound can be applied to solve (5.1.1)

and (5.1.2). A detailed description of our branch-and-bound algorithm is provided later in

Section 6.7.

As with the sparsity maximization problem (2.0.1), problems (5.1.1) and (5.1.2) can be

divided into subproblems by making hard decisions on some of the components of b. In

the present case, the decisions involve different quantization levels as opposed to binary

choices between zero and non-zero values. To determine the quantization levels that need

to be considered for a coefficient bn, we refer to (3.3.3), which specifies the minimum and

maximum real values for bn subject to the quadratic constraint (2.1.1). Given the additional

integer constraint on bn, the minimum and maximum values become respectively

Bn =

⌈
cn −

√
γ
(
Q−1

)
nn

⌉
, (6.1.1a)

Bn =

⌊
cn +

√
γ
(
Q−1

)
nn

⌋
. (6.1.1b)

Each of the quantization levels Bn, . . . , Bn for bn has the property that there exist real

values for the other components of b such that (2.1.1) is satisfied. It is generally difficult

however to verify whether a fully integer-valued feasible solution exists given a fixed value

for bn. Since it cannot be easily established that the values Bn, . . . , Bn are either feasible

or infeasible for problems (5.1.1) and (5.1.2), we refer to each as a candidate value and to

the collection of values as the candidate range for bn.

In our branch-and-bound algorithm, subproblems are created by selecting a coefficient

and fixing it to every integer value in its candidate range. This branching process leads

again to a tree of subproblems as depicted in Fig. 6-1. Unlike in Fig. 3-1, the tree is not

restricted to be binary. As discussed in Appendix C.2, every subproblem resulting from the

fixing of coefficients is equivalent to a lower-dimensional instance of the original problem

with parameters given by (C.2.2)–(C.2.6).

Two special cases can be identified. First, if Bn > Bn for any index n, which can happen

if the real-valued range for bn does not contain an integer, the current subproblem is infea-

sible. Second, if Bn = Bn, there is only one candidate value for bn and the dimensionality

of the current subproblem can be reduced by one.
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b1 = 1 b1 = 2 b1 = 3

b2 = 9 b2 = 10 b2 = 11 b3 = −4

2

3 4

5 55 6

∞

root incumbent solution
with cost 6

infeasible

Figure 6-1: Example of a branch-and-bound tree for problem (5.1.2). Each node represents a
subproblem and the branch labels indicate the coefficient that is fixed in going from a parent
to a child. The top left branch leads to an infeasible subproblem, i.e., one with Bn > Bn for
some n, whereas the top right branch leads to a subproblem with B3 = B3 = −4 and hence
a single child. The number labelling each node is a lower bound on the optimal cost of the
corresponding subproblem. Given an incumbent solution with a cost of 6, the subproblems
marked by dashed circles need not be considered any further.

As before, the algorithm computes lower bounds on the optimal values of subproblems.

We devote Sections 6.2–6.4 to the development of efficiently computable lower bounds on

the optimal values of (5.1.1) and (5.1.2). For a general subproblem, one contribution to

the lower bound comes from the cost of coefficients that have been fixed while the other

contribution comes from the application of the methods in Sections 6.2–6.4 to the free

coefficients.

An initial incumbent solution can be obtained using the heuristic algorithm of Section

5.3. Additional feasible solutions are generated whenever the branch-and-bound tree reaches

a depth of N levels, implying that all coefficients have been quantized, or potentially by

using the heuristic algorithm on subproblems. The selection of coefficients for branching

and the ordering of open subproblems are addressed in Section 6.7.
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6.2 Bounds based on candidate ranges

In this section, we provide lower bounds on the optimal values of (5.1.1) and (5.1.2) that

are based on the range of candidate values Bn, . . . , Bn for each coefficient, where Bn and

Bn are given in (6.1.1). The analogous technique in sparse filter design is to identify

coefficients for which a zero value is infeasible, as discussed in Section 3.2. Similar to the

lower bounds in Section 3.2, the bounds derived in the current section require the least

amount of computation and are accordingly the weakest among the bounds presented in

Sections 6.2–6.4.

A lower bound on the optimal value of (5.1.1) may be obtained by minimizing the cost

function CNLZ(bn) independently for each coefficient over its candidate range, and similarly

for (5.1.2). We assume that Bn < Bn for all n since the cases Bn > Bn and Bn = Bn

can be eliminated as discussed in Section 6.1. For both cost functions, if the candidate

range for a coefficient includes the value zero, then the contribution to the lower bound is

equal to zero. If the candidate range does not include zero and the cost is the number of

NLZ bits, the contribution to the lower bound is equal to the cost of the smallest candidate

value in magnitude (Bn if Bn > 0, Bn if Bn < 0) since CNLZ(bn) is monotonic in |bn|. On

the other hand, the cost function CSPT(bn) is not monotonic and an exhaustive search over

the candidate range may be required to determine the contribution to the lower bound.

Summing these contributions gives the following lower bound for (5.1.1):

∑

n:Bn>0

⌈log2(1 +Bn)⌉+
∑

n:Bn<0

⌈
log2(1 +

∣∣Bn

∣∣)
⌉
. (6.2.1)

The corresponding lower bound for (5.1.2) is

∑

n:0/∈Bn,...,Bn

min
bn=Bn,...,Bn

CSPT(bn). (6.2.2)

The minimizations in (6.2.2) can be solved using a lookup table listing integers in CSD

form.

The lower bounds in (6.2.1) and (6.2.2) can be interpreted geometrically. As illustrated

in Fig. 6-2, the candidate ranges Bn, . . . , Bn together specify a coordinate-aligned box,

denoted as BQ, that must contain all feasible integer-valued solutions to (5.1.1) or (5.1.2).
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Minimizing CNLZ(b) and CSPT(b) over BQ yields the lower bounds in (6.2.1) and (6.2.2).

We can gain some insight into the quality of the box approximation by examining the ratio

between the volume of BQ and the volume of the original ellipsoid EQ. The former is

bounded by

(2
√
γ)N

∏

n

(√(
Q−1

)
nn
− 1

)
< vol(BQ) ≤ (2

√
γ)N

√∏

n

(
Q−1

)
nn
,

using (6.1.1) and the properties of the floor and ceiling functions. The volume of EQ is

given by

vol(EQ) =
(πγ)N/2

Γ(N/2 + 1)

√
det (Q−1), (6.2.3)

where Γ(·) denotes the gamma function. The worst-case volume ratio is

(
4

π

)N/2

Γ(N/2 + 1)

√√√√
∏(

Q−1
)
nn

det (Q−1)
, (6.2.4)

which grows very rapidly with N . Therefore the quality of the approximation, and by

extension the strength of the lower bounds (6.2.1)–(6.2.2), degrade significantly as the

number of dimensions increases.

b1

b2

B1 B1

B2

B2

Figure 6-2: Coordinate-aligned box corresponding to candidate ranges. The black dots
represent integer-valued solutions.

Unlike in Section 3.2, it is generally difficult to verify whether there exists a feasible

173



solution that achieves the lower bounds in (6.2.1) and (6.2.2). In particular, if for many

of the components bn the candidate value with minimal cost is not unique, there can be

exponentially many values of b that achieve the lower bound and a combinatorial search is

required to determine whether any of them are feasible. For the same reason, determining

whether a feasible solution exists with a cost one unit higher than the bounds in (6.2.1)

and (6.2.2) is also difficult. In contrast, to verify whether the lower bound of |U| in Section

3.2 is achievable, we need only check whether the solution bF = 0 is feasible, and to do the

same for the next highest value |U|+ 1, it is sufficient to evaluate (3.2.1) for all n ∈ F .

6.3 Linear relaxation

To improve upon the lower bounds of the previous section, we consider the use of more

sophisticated relaxations. In this section, we develop linear relaxations of problems (5.1.1)

and (5.1.2) in which the integer constraint on b is relaxed and the cost functions are lin-

earized. Different approaches are used for the two cost functions CNLZ(b) and CSPT(b) as

described in Sections 6.3.1 and 6.3.3 respectively. In both cases, the lower bound resulting

from linear relaxation is guaranteed by construction to be stronger than the corresponding

bound in Section 6.2. It is also shown in Section 6.3.2 that the optimal value of the lin-

ear relaxation of (5.1.1) is bounded from above in a similar manner as that of the linear

relaxation (3.3.8) of the sparsity maximization problem.

6.3.1 Linear relaxation of the NLZ minimization problem

We begin by deriving a linear relaxation of (5.1.1). As a first step, the integer constraint

on b is relaxed and is replaced with the interval constraints Bn ≤ bn ≤ Bn, where Bn and

Bn are the minimum and maximum candidate values in (6.1.1). The resulting problem is

min
b

N∑

n=1

⌈log2(1 + |bn|)⌉

s.t. (b− c)TQ(b− c) ≤ γ,

Bn ≤ bn ≤ Bn ∀ n,

(6.3.1)

where we have used (5.1.4). Problem (6.3.1) has a non-convex and discontinuous cost func-

tion, making it difficult to solve. To obtain a convex optimization problem, we replace
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each component ⌈log2(1 + |bn|)⌉ of the true cost function by a continuous convex underes-

timator that is as tight as possible. In addition, we wish to ensure that the lower bound

resulting from the minimization of the underestimator of CNLZ(b) is an improvement over

the lower bound in (6.2.1). This can be achieved if for each n the minimum value of the

underestimator of ⌈log2(1 + |bn|)⌉ is greater than the nth term in (6.2.1) (recall that the

terms not appearing in (6.2.1) are equal to zero). Given these requirements, the form of the

underestimator is different for the three cases Bn < 0 < Bn, Bn ≥ 0, and Bn ≤ 0, which

are considered separately below.

For the case Bn < 0 < Bn, the contribution to the lower bound in (6.2.1) is equal to

zero, and hence the underestimator must equal zero at bn = 0. As can be seen in Fig. 6-3,

the requirement that the underestimator be convex and tight implies that it has a piecewise

linear shape with a change in slope at bn = 0. Furthermore, the magnitudes w+
n and w−

n of

the slopes on either side of bn = 0 should be maximized. For bn > 0, the two points that

impose the tightest upper bounds on the slope are
(
Bn,

⌈
log2(1 +Bn)

⌉)
and (2p

+
n − 1, p+n ),

where p+n =
⌊
log2(1 +Bn)

⌋
. The point (2p

+
n − 1, p+n ) corresponds to the filled circle at (7, 3)

in Fig. 6-3. It follows that w+
n should be chosen as

w+
n = min

{⌈
log2(1 +Bn)

⌉

Bn

,
p+n

2p
+
n − 1

}
. (6.3.2)

Similarly, w−
n is given by

w−
n = min

{⌈log2(1 + |Bn|)⌉
|Bn|

,
p−n

2p
−
n − 1

}
, (6.3.3)

where p−n = ⌊log2(1 + |Bn|)⌋ and (2p
−
n − 1, p−n ) corresponds to the filled circle at (−3, 2) in

Fig. 6-3.

For the case Bn ≥ 0, the contribution to (6.2.1) is equal to ⌈log2(1 +Bn)⌉ and conse-

quently the underestimator must take the value ⌈log2(1 +Bn)⌉ at bn = Bn. The tightest

convex underestimator is now linear as seen in Fig. 6-4. If Bn = 2p − 1 for some integer

p as in the left panel of Fig. 6-4, the slope wn is positive and is constrained by the points
(
Bn,

⌈
log2(1 +Bn)

⌉)
and (2p

+
n − 1, p+n ) where p+n is defined as before. Otherwise, wn is
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bn

⌈log2(1 + |bn|)⌉

Bn = −6 Bn = 9−3 −1 0

1

1

2

3

3

4

7

w+
n−w−

n

Figure 6-3: The function ⌈log2(1 + |bn|)⌉ (solid) and the tightest possible convex underes-
timator (dotted) over the interval [Bn, Bn] for the case Bn < 0 < Bn.

forced to be zero as shown in the right panel of Fig. 6-4. Combining these two cases,

wn =





min

{⌈
log2(1 +Bn)

⌉
− ⌈log2(1 +Bn)⌉

Bn −Bn

,
p+n − ⌈log2(1 +Bn)⌉

2p
+
n − 1−Bn

}
, Bn = 2p − 1,

0 otherwise.

(6.3.4)

bn

⌈log2(1 + |bn|)⌉

Bn = 3 Bn = 100

1

1

2

3

4

7

wn

bn

⌈log2(1 + |bn|)⌉

Bn = 2

Bn = 100

1

1

2

3

3

4

7

wn = 0

Figure 6-4: The function ⌈log2(1 + |bn|)⌉ (solid) and the tightest possible convex underes-
timator (dotted) over the interval [Bn, Bn] for the case Bn ≥ 0. In the example on the left,
Bn = 22 − 1 = 3 and the slope wn is positive, whereas on the right, the location of Bn = 2
to the left of a filled circle forces wn to be zero.

The case Bn ≤ 0 is similar to the case Bn ≥ 0. The underestimator is again linear and
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passes through the point
(
Bn,

⌈
log2(1 +

∣∣Bn

∣∣)
⌉)

with a negative slope −wn where

wn =





min

{
⌈log2(1 + |Bn|)⌉ −

⌈
log2(1 +

∣∣Bn

∣∣)
⌉

|Bn| −
∣∣Bn

∣∣ ,
p−n −

⌈
log2(1 +

∣∣Bn

∣∣)
⌉

2p
−
n − 1−

∣∣Bn

∣∣

}
,
∣∣Bn

∣∣ = 2p − 1,

0 otherwise.

(6.3.5)

We have now replaced the cost function in (6.3.1) with a sum of convex univariate

functions of the components bn. The functions corresponding to the case Bn < 0 < Bn are

asymmetrically-weighted absolute value functions while the remaining functions are linear.

Following the approach in Section 3.3 of separating positive and negative parts, the absolute

value functions can be recast as linear functions. We first define the subsets

D = {n : Bn < 0 < Bn}, P = {n : Bn ≥ 0}, N = {n : Bn ≤ 0}.

Using the representation in (3.3.5), we express bD in terms of its positive and negative

parts as bD = b+
D − b−

D with b+
D,b

−
D ≥ 0. Each of the interval constraints for n ∈ D is

transformed into the pair of constraints 0 ≤ b+n ≤ Bn and 0 ≤ b−n ≤ |Bn|. Incorporating

the underestimators derived for the three cases and also rewriting the quadratic constraint

in terms of b+
D and b−

D, the relaxed problem can now be formulated as follows:

∑

n∈P
⌈log2(1 +Bn)⌉+

∑

n∈N

⌈
log2(1 +

∣∣Bn

∣∣)
⌉
+

min
b
+
D,b−

D ,bP ,bN

∑

n∈D

(
w+
n b

+
n +w−

n b
−
n

)
+
∑

n∈P
wn(bn −Bn)−

∑

n∈N
wn(bn −Bn)

s.t.




b+
D − b−

D − cD

bP − cP

bN − cN




T 


QDD QDP QDN

QPD QPP QPN

QND QNP QNN







b+
D − b−

D − cD

bP − cP

bN − cN


 ≤ γ,

0 ≤ b+n ≤ Bn, n ∈ D,

0 ≤ b−n ≤ |Bn| , n ∈ D,

Bn ≤ bn ≤ Bn, n ∈ P,N .

(6.3.6)

Problem (6.3.6) is a convex optimization problem with a linear objective function and

quadratic and interval constraints. The optimal value of (6.3.6) is a lower bound on that
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of (5.1.1) since we have relaxed the integer constraint on b and replaced the cost function

by an underestimator. As with the linear relaxation in (3.3.8), we may take the ceiling of

the optimal value of (6.3.6) and still maintain a lower bound because the optimal value of

(5.1.1) is an integer. We will refer to (6.3.6) as the linear relaxation of (5.1.1).

The two constant terms in the objective function of (6.3.6) are the same as those in

(6.2.1), while the remaining terms in the objective function are all non-negative. It follows

that the optimal value of the linear relaxation is at least as large as the lower bound in

(6.2.1), as desired.

Neglecting the constant terms in the objective, the dual of problem (6.3.6) is given by

max
π,ν

−



γ




πD + ν+
D − ν−

D

πP + νP

πN − νN




T

Q−1




πD + ν+
D − ν−

D

πP + νP

πN − νN







1/2

+




cD

c̃P

c̃N




T 


πD + ν+
D − ν−

D

πP + νP

πN − νN


−




p+
D

p−
D

pP

pN




T 


ν+
D

ν−
D

νP

νN




s.t. −w−
D ≤ πD ≤ w+

D, ν+
D ≥ 0, ν−

D ≥ 0,

πP ≤ wP , νP ≥ 0,

πN ≥ −wN , νN ≥ 0,

(6.3.7)

where the vectors c̃P , c̃N , p+
D, p

−
D, pP , and pN are defined as follows:

c̃n =





cn −Bn, n ∈ P,

cn −Bn, n ∈ N ,
(6.3.8a)

p+n = Bn, p−n = |Bn| , n ∈ D, (6.3.8b)

pn = Bn −Bn, n ∈ P,N . (6.3.8c)

A derivation of the dual is provided in Appendix D.1. The dual is also a convex optimiza-

tion problem with the same optimal value as the primal and only upper and lower bound

constraints. It can be solved more readily than the primal by solvers such as fmincon in

178



MATLAB because of the nature of the constraints.

It is possible to reduce the linear relaxation (6.3.6) of problem (5.1.1) to the linear

relaxation (3.3.8) of the sparsity maximization problem. First, the subsets P and N can be

assumed to be empty for the sparsity maximization problem since coefficients that must be

strictly positive or strictly negative can be eliminated as discussed in Section 3.2. Second,

the constraints b+n ≤ Bn and b−n ≤ |Bn| can be removed as they are a consequence of the

integer constraint on b in (5.1.1), which is not present in (2.0.1). The remaining distinction

between (3.3.8) and (6.3.6) lies in the objective function weights. The weights 1/B+
n and

1/B−
n in (3.3.8) can also be derived using the convex underestimator approach of the current

subsection. The non-convex function to be approximated in that case is the zero-norm

‖bn‖0 over the interval B−
n ≤ bn ≤ B+

n , and hence the underestimator is an asymmetrically-

weighted absolute value function with slopes 1/B+
n and 1/B−

n . The dual (6.3.7) reduces

similarly to the corresponding dual (3.3.9), specifically by eliminating the subsets P and N
and taking Bn and Bn to +∞ and −∞ respectively, the latter being equivalent to removing

the constraints b+n ≤ Bn and b−n ≤ |Bn|. The resulting infinite penalty on ν+
D and ν−

D forces

them to zero and we are left with an instance of (3.3.9) with πD in (6.3.7) corresponding

to ν in (3.3.9).

6.3.2 Absolute upper bound on the linear relaxation (6.3.6)

We now derive an upper bound on the optimal value of the linear relaxation (6.3.6). As

will be explained shortly, the bound is analogous to the upper bound on (3.3.8) discussed

in Section 3.3.3.

Given that problem (6.3.6) is a minimization, the objective value corresponding to any

feasible solution is an upper bound on the optimal value. Assuming that Bn < Bn for all n,

the solution b = c is feasible since it satisfies both the quadratic and interval constraints. In

terms of the variables used in (6.3.6), the solution b = c can be realized by setting b+n = cn

and b−n = 0 for n ∈ D and cn ≥ 0, b−n = |cn| and b+n = 0 for n ∈ D and cn < 0, bP = cP ,

and bN = cN . The resulting objective value is

∑

n∈D
cn>0

w+
n cn +

∑

n∈D
cn<0

w−
n |cn|+

∑

n∈P
wn(cn −Bn) +

∑

n∈N
wn(Bn − cn), (6.3.9)

neglecting the constant terms for the moment.
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To gain further insight, we derive an upper bound on (6.3.9), working with each sum-

mation separately. Using (6.3.2), each term in the first summation can be bounded from

above as follows:

w+
n cn ≤

cn

Bn

⌈
log2(1 +Bn)

⌉
.

We proceed to show that the ratio cn/Bn is less than 1/2 for n ∈ D and cn > 0. The fact

that n ∈ D implies

−1 ≥ Bn =

⌈
cn −

√(
Q−1

)
nn

⌉
≥ cn −

√(
Q−1

)
nn
.

Rearranging and adding cn to both sides,

2cn ≤ cn +
√(

Q−1
)
nn
− 1 <

⌊
cn +

√(
Q−1

)
nn

⌋
= Bn,

and hence cn/Bn < 1/2. Similarly, we use (6.3.3) to bound each term in the second

summation in (6.3.9):

w−
n |cn| ≤

|cn|
|Bn|

⌈log2(1 + |Bn|)⌉ <
1

2
⌈log2(1 + |Bn|)⌉ ,

where the inequality |cn| / |Bn| < 1/2 parallels cn/Bn < 1/2 in the first case.

For terms in the third summation in (6.3.9), we use (6.3.4) to obtain

wn(cn −Bn) ≤
cn −Bn

Bn −Bn

(⌈
log2(1 +Bn)

⌉
− ⌈log2(1 +Bn)⌉

)
.

The fraction
cn−Bn

Bn−Bn

can be bounded as follows:

Bn −Bn =

⌊
cn +

√(
Q−1

)
nn

⌋
−Bn

> cn +
√(

Q−1
)
nn
− 1−Bn

≥ 2(cn −Bn)− 1,

where the last inequality follows from cn −Bn ≤
√(

Q−1
)
nn
. A rearrangement yields

cn −Bn

Bn −Bn

<
1

2

(
1 +

1

Bn −Bn

)
.
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Similarly for terms in the fourth summation in (6.3.9), we can show that

wn(Bn − cn) <
1

2

(
1 +

1

Bn −Bn

)(
⌈log2(1 + |Bn|)⌉ −

⌈
log2(1 +

∣∣Bn

∣∣)
⌉)
.

Combining the results of the previous two paragraphs with (6.3.9), we arrive at the

following upper bound on the optimal value of (6.3.6):

1

2

(
1− 1

Bn −Bn

)[∑

n∈P
⌈log2(1 +Bn)⌉+

∑

n∈N

⌈
log2(1 +

∣∣Bn

∣∣)
⌉
]

+
1

2



∑

n∈D
cn>0

⌈
log2(1 +Bn)

⌉
+
∑

n∈D
cn<0

⌈log2(1 + |Bn|)⌉




+
1

2

(
1 +

1

Bn −Bn

)[∑

n∈P

⌈
log2(1 +Bn)

⌉
+
∑

n∈N
⌈log2(1 + |Bn|)⌉

]
,

(6.3.10)

where we have also restored the constant terms in (6.3.6). The quantity in the first pair of

square brackets in (6.3.10) is the lower bound in (6.2.1) based on candidate ranges. The sum

of the second and third bracketed quantities is the corresponding upper bound based on

candidate ranges, i.e., the result of independently maximizing CNLZ(bn) for each coefficient

over its candidate range. To see this more explicitly, observe that for n ∈ D and cn > 0 and

for n ∈ P, the largest candidate value is bn = Bn and this value also has the highest cost,
⌈
log2(1 +Bn)

⌉
. Similarly for n ∈ D, cn < 0 and for n ∈ N , Bn is the costliest value. In the

limit Bn−Bn ≫ 1, (6.3.10) approaches the midpoint between the lower and upper bounds

based on candidate ranges. This result is analogous to the upper bound of N/2 on (3.3.8)

that was derived in Section 3.3.3. Since it was assumed throughout Chapters 2 and 3 that

(2.3.3) is satisfied for all n, the candidate range for each coefficient (same as its feasible

range) includes the value zero and the lower bound on (2.0.1) based solely on candidate

ranges is equal to zero. The corresponding upper bound based on candidate ranges is N

and the midpoint between the two is N/2.

As in Section 3.3.3, the upper bound in (6.3.10) can be strengthened by scaling the

solution b = c so that it lies on the boundary of the feasible set. The scale factor θ is

limited by three classes of constraints in (6.3.6): the quadratic constraint, the constraints

bn ≥ Bn for n ∈ P, and the constraints bn ≤ Bn for n ∈ N . It follows that θ can be chosen
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as

θ = max

{
1−

√
γ

cTQc
,

{
Bn

cn
: n ∈ P

}
,

{
Bn

cn
: n ∈ N

}}

and the upper bound in (6.3.10) can be reduced by the factor θ.

In Section 3.3.3, the upper bound of N/2 (scaled by θ) was interpreted as a limitation

on the approximation capability of the linear relaxation. By analogy, it would seem that

the bound in (6.3.10) (also scaled by θ) also represents a shortcoming of the current linear

relaxation (6.3.6). It will be seen in Section 6.6 however that the bound does not appear to

prevent the linear relaxation from providing good approximations in the present case.

6.3.3 Linear relaxation of the SPT minimization problem

In this subsection, we develop a linear relaxation of the SPT minimization problem (5.1.2).

While it is possible to use the same convex underestimator technique as in Section 6.3.1,

the non-monotonicity of the cost function CSPT(bn) leads to smaller values for the slopes

of the piecewise linear underestimators. Therefore the resulting relaxation is not as strong

as the linear relaxation (6.3.6) of problem (5.1.1). We use instead an approach due to [64]

in which each digit in the CSD representation of the coefficients is associated with a pair

of binary-valued variables and the binary constraints are then relaxed. This alternative

approach also yields a convex relaxation with a linear cost function.

Following [64], we represent each coefficient bn as

bn =
P−1∑

p=0

(
s+np − s−np

)
2p, (6.3.11)

where s+np and s−np are binary-valued variables. Thus each digit snp = s+np− s−np can take on

values of 0, +1, and −1. Using this representation, problem (5.1.2) can be reformulated as

min
{s+np},{s−np}

N∑

n=1

P−1∑

p=0

(
s+np + s−np

)

s.t. (b− c)TQ(b− c) ≤ γ,

bn =

P−1∑

p=0

(
s+np − s−np

)
2p, n = 1, . . . , N,

s+np, s
−
np ∈ {0, 1}, n = 1, . . . , N, p = 0, . . . , P − 1.

(6.3.12)
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The form of the cost function implies that the configuration s+np = s−np = 1 will never occur

at an optimal solution because the equivalent configuration s+np = s−np = 0 has a lower cost.

It follows that for every pair of indices n and p, at least one of s+np, s
−
np is zero and hence

the cost function counts the number of non-zero digits just as in (5.1.2). The non-adjacency

property of the CSD representation can also be imposed by adding the constraints

s+np + s−np + s+n,p+1 + s−n,p+1 ≤ 1, n = 1, . . . , N, p = 0, . . . , P − 2. (6.3.13)

As discussed in [64], the values of some of the variables s+np and s−np in (6.3.12) can be

fixed given knowledge of the candidate range Bn, . . . , Bn for each coefficient. Toward this

end, we determine the CSD representation of every candidate value. If the digit snp ≥ 0

for all candidate values, then s−np can be fixed to zero in (6.3.12), and likewise for s+np if

snp ≤ 0. In addition, if snp = 1 for all candidate values, then s+np can be fixed to 1,

which is equivalent to subtracting the corresponding power of two from cn, i.e., cn becomes

c̃n = cn − 2p. Similarly if snp = −1 for all values, s−np is fixed to 1 and cn becomes

c̃n = cn + 2p. We define the following subsets for later reference: for each n, Z+
n and Z−

n

are the subsets of powers p for which s+np and s−np respectively have been fixed to 0, U±
n is

the subset of powers for which s±np has been fixed to 1, and F±
n is the subset corresponding

to the remaining s±np with no fixed value.

A linear relaxation of (6.3.12) results from relaxing the binary constraints on s+np and

s−np and replacing them with the interval constraints 0 ≤ s+np ≤ 1, 0 ≤ s−np ≤ 1. To ensure

that the lower bound provided by the linear relaxation is at least as large as the lower bound

in (6.2.2) based on candidate ranges, we introduce an additional set of constraints to the

formulation of [64] presented thus far. Specifically, we require that for each n, the sum of

s+np and s−np over p be no smaller than the nth term in (6.2.2), i.e.,

∣∣U+
n

∣∣+
∣∣U−

n

∣∣+
∑

p∈F+
n

s+np +
∑

p∈F−
n

s−np ≥ min
bn=Bn,...,Bn

CSPT(bn) ∀ n : 0 /∈ Bn, . . . , Bn, (6.3.14)

taking into account those variables s±np with fixed values. Only the indices n for which zero

is not a candidate value are included in (6.3.14). If zero is a candidate value, the right-hand

side of (6.3.14) is zero, but the left-hand side is already guaranteed to be non-negative.

By incorporating constraints (6.3.13) and (6.3.14) and the values of variables that have
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been fixed, we obtain the following relaxation:

N∑

n=1

(∣∣U+
n

∣∣+
∣∣U−

n

∣∣)+

min
{s+np},{s−np}

N∑

n=1


∑

p∈F+
n

s+np +
∑

p∈F−
n

s−np




s.t. (b− c̃)TQ(b− c̃) ≤ γ,

bn =
∑

p∈F+
n

s+np2
p −

∑

p∈F−
n

s−np2
p, n = 1, . . . , N,

s+np + s−np + s+n,p+1 + s−n,p+1 ≤ 1, n = 1, . . . , N, p = 0, . . . , P − 2,

∣∣U+
n

∣∣+
∣∣U−

n

∣∣+
∑

p∈F+
n

s+np +
∑

p∈F−
n

s−np ≥ min
bn=Bn,...,Bn

CSPT(bn) ∀ n : 0 /∈ Bn, . . . , Bn,

0 ≤ s±np ≤ 1, n = 1, . . . , N, p ∈ F±
n ,

s±np = 0, n = 1, . . . , N, p ∈ Z±
n ,

s±np = 1, n = 1, . . . , N, p ∈ U±
n ,

(6.3.15)

where the vector c̃ is defined by

c̃n = cn −
∑

p∈U+
n

2p +
∑

p∈U−
n

2p

based on the modifications to c described earlier. Similar to (6.3.6), problem (6.3.15)

is a convex optimization problem with a linear cost function and quadratic and linear

constraints. The ceiling of the optimal value of (6.3.15) is a lower bound on the optimal

value of (6.3.12) (equivalently (5.1.2)). The lower bound property follows from the fact

that the addition of constraints (6.3.13) and (6.3.14) to (6.3.12) does not change its optimal

value (recall that the CSD representation is minimal in terms of the number of SPTs so

(6.3.13) does not effectively impose any new restrictions), whereas the relaxation of the

binary constraints decreases the optimal value. Henceforth we will refer to (6.3.15) as the

linear relaxation of (5.1.2).

Given that the variables s±np are permitted to take fractional values in the linear relax-

ation (6.3.15), an optimal solution to (6.3.15) tends to have the following property: for each
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n, s±np is non-zero for one or two large values of p and is zero for the remaining values of p.

This behavior is a consequence of the equal weighting given to all s±np in the cost function,

combined with the unequal weighting by powers of two in forming the coefficients bn. It

is less costly therefore to realize a given value for bn using higher-order digits than with

lower-order digits. With a large number of zero-valued digits, the optimal value of the linear

relaxation tends to be significantly lower than that of the original problem (5.1.2), where

s±np must be binary-valued. Constraints (6.3.13) and (6.3.14) are intended to partially com-

pensate for the looseness of the relaxation, in the first case by limiting the use of adjacent

digits and in the second by ensuring that the optimal value of the relaxation is at least as

large as the lower bound in (6.2.2).

As in Section 6.3.1, the dual of the linear relaxation (6.3.15) tends to be easier to solve

because it has only linear constraints. To derive and formulate the dual more compactly,

we introduce the following notation. First we form the vector s by concatenating N vectors

sn of the form

sn =
[
s+n0 . . . s+n,P−1 s−n0 . . . s−n,P−1

]T
, (6.3.16)

so that each subvector sn corresponds to one of the coefficients. We include in (6.3.16) only

the powers p in F+
n and F−

n since the other powers correspond to fixed variables. Next we

define a block-diagonal matrix P = Diag(P1, . . . ,PN ), where the nth block Pn is a row

vector consisting of the powers of two that make up the nth coefficient. More specifically,

Pn =
[
20 21 . . . 2P−1 −20 −21 . . . −2P−1

]
, (6.3.17)

including as in (6.3.16) only the powers p in F+
n and F−

n . It can be seen from (6.3.11),

(6.3.16), and (6.3.17) that the coefficient vector b is equal to Ps. We also define a block-

diagonal matrix J = Diag(J1, . . . ,Jn) to represent constraint (6.3.13), where each block

is associated with a particular index n. The submatrix Jn is formed by starting with the

(P − 1)× P matrix

P−1








1 1

1 1

. . .
. . .

1 1




︸ ︷︷ ︸
P

,
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associating the columns with the powers p = 0, . . . , P − 1, extracting the columns corre-

sponding to F+
n , extracting the columns corresponding to F−

n , and horizontally concatenat-

ing the two sets of extracted columns to yield a (P − 1)× (|F+
n |+ |F−

n |) matrix compatible

with sn. We may also remove from Jn any rows containing all zeros or a single 1 since

these rows represent the redundant constraints 0 ≤ 1 and s±np ≤ 1. Similarly for constraint

(6.3.14), we define a block-diagonal matrix F = Diag
({

Fn, n : 0 /∈ Bn, . . . , Bn

})
where

each submatrix Fn is a row vector composed of |F+
n |+ |F−

n | ones. To represent the constant

terms in constraint (6.3.14), we use the column vector ℓ with components

ℓn = min
bn=Bn,...,Bn

CSPT(bn)−
∣∣U+

n

∣∣−
∣∣U−

n

∣∣ ∀ n : 0 /∈ Bn, . . . , Bn.

Given the definitions above and neglecting the constant term in the cost function of

(6.3.15), it is shown in Appendix D.2 that the dual problem can be formulated as follows:

max
µ,ν,π±,ρ

c̃Tρ−
√

ρTQ−1ρ− eTµ+ ℓTν − eTπ+

s.t. e+ JTµ− FTν + π+ − π− −PTρ = 0,

µ ≥ 0, ν ≥ 0, π± ≥ 0.

(6.3.18)

The dimensions of the dual variables µ, ν, π±, and ρ can be inferred from the dimensions

of P, J, and F. The dual problem is a convex optimization problem with the same optimal

value as (6.3.15) and only linear constraints.

6.4 Diagonal relaxation

In this section, we revisit the strategy of Section 3.4 in which the matrix Q is replaced by

a diagonal matrix to yield a relaxation of the original problem. As we saw in Sections 5.2.1

and 5.2.2, problems (5.1.1) and (5.1.2) can be solved efficiently in the diagonal case. Thus

diagonal relaxations are computationally tractable for bit-efficient design as well. Unlike in

Section 3.4 however, it is difficult to determine a diagonal relaxation that is maximally tight

in terms of the cost functions CNLZ(b) and CSPT(b). We use instead a substitute criterion

based on the volume ratio, which we elaborate upon further in Section 6.4.1.

To ensure that the lower bound resulting from diagonal relaxation is at least as strong

as the bounds in (6.2.1) and (6.2.2) based on candidate ranges, we incorporate the interval
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constraints Bn ≤ bn ≤ Bn in the relaxed problem. The additional constraints can be

accommodated by making minor modifications to the algorithms of Sections 5.2.1 and 5.2.2.

These modifications are described in Section 6.4.2.

In the remainder of the section, we analyze the approximation properties of the diagonal

relaxation and develop results that parallel those of Section 3.4. The key difference is that

the results in this section are stated in terms of the volume ratio and not the true cost

function (CNLZ(b) or CSPT(b)). In Section 6.4.3, we show that the optimal volume ratio is

invariant under diagonal scaling of the original ellipsoid EQ. In Section 6.4.4, the optimal

volume ratio is bounded in terms of the eigenvalues of Q and this bound is shown to be

tight. In Sections 6.4.5 and 6.4.6, we obtain bounds on the volume ratio in the diagonally

dominant and nearly coordinate-aligned cases. Together these results help identify problem

instances for which diagonal relaxation is expected to yield a good approximation.

6.4.1 Minimum volume criterion

A diagonal relaxation can be obtained in the same way as in Section 3.4.1. We replace the

quadratic constraint (2.1.1) by a similar constraint involving a positive definite diagonal

matrix D such that D � Q. The last condition ensures that the original ellipsoid EQ is

contained within the coordinate-aligned ellipsoid ED so that minimizing over ED results in

a lower bound on the original optimal cost. Different values for D correspond to different

diagonal relaxations as depicted in Fig. 3-4. Ideally, D should be chosen such that the

minimum value of the cost function CNLZ(b) or CSPT(b) over ED is largest among all valid

choices of D. The determination of an optimal D was tractable in Section 3.4.1 because

the minimum zero-norm over ED depends on an explicit and relatively simple function of

D, namely ΣK

(
{Dnnc

2
n}
)
, the sum of the K smallest Dnnc

2
n. By solving problem (3.4.3)

for several values of K, the tightest possible diagonal relaxation could be determined. In

contrast, the solutions to problems (5.1.1) and (5.1.2) are algorithmic even in the diagonal

case as seen in Sections 5.2.1 and 5.2.2, and the dependence of the optimal values on D is

unclear. Therefore it is difficult in the present context to determine the diagonal relaxation

that yields the best possible lower bound.

Given the difficulty of obtaining an optimal diagonal relaxation, in the remainder of this

section we use the volume of the ellipsoid ED as a substitute measure of the strength of the

relaxation. The volume of ED is a reasonable criterion since it is approximately proportional
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to the number of integer solutions within ED, each of which occupies one unit of volume.

The smaller the volume, the fewer the number of solutions, and the higher the minimum

cost over ED tends to be. Since the volume of ED is proportional to
√

det
(
D−1

)
as seen in

(6.2.3), the enclosing ellipsoid of minimal volume can be determined by solving

max
D

det(D)

s.t. 0 � D � Q,

D diagonal,

(6.4.1)

where we have used the property det
(
D−1

)
= 1/det(D). Problem (6.4.1) is a determinant

maximization problem, which is closely related to semidefinite optimization. The solution of

(6.4.1) is discussed in Section 6.5. In the sequel, we will assume that D has been determined

from (6.4.1).

As with linear relaxations in Section 6.3, it is desirable for the lower bounds resulting

from diagonal relaxations to be stronger than the lower bounds in (6.2.1) and (6.2.2) based

on candidate ranges. This can be guaranteed by including the interval constraints Bn ≤
bn ≤ Bn in the relaxed problem. Thus we define

min
b

N∑

n=1

CNLZ(bn)

s.t.

N∑

n=1

Dnn(bn − cn)2 ≤ γ,

Bn ≤ bn ≤ Bn, n = 1, . . . , N,

bn ∈ Z, n = 1, . . . , N

(6.4.2)

as the diagonal relaxation of problem (5.1.1), and similarly

min
b

N∑

n=1

CSPT(bn)

s.t.

N∑

n=1

Dnn(bn − cn)2 ≤ γ,

Bn ≤ bn ≤ Bn, n = 1, . . . , N,

bn ∈ Z, n = 1, . . . , N

(6.4.3)
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for (5.1.2). In Fig. 6-5, we interpret the feasible set for the diagonal relaxations as the

set of integer points in the intersection of ED and the box BQ created by the candidate

ranges Bn, . . . , Bn. Note that the box constraint can exclude integer points that would

otherwise be included in ED, and vice versa. It follows that the bound obtained by solving

(6.4.2) is at least as large as the bound in (6.2.1) obtained by minimizing over all of BQ,
and likewise for (6.2.2) and (6.4.3). The addition of the interval constraints requires some

modifications to the algorithms developed in Sections 5.2.1 and 5.2.2 for the diagonal case.

These modifications are described in the next subsection.

b1

b2

B1 B1

B2

B2

EQ
ED

Figure 6-5: The feasible set for the diagonal relaxations (6.4.2) and (6.4.3) is the set of
integer points in the intersection of the coordinate-aligned ellipsoid ED and the box BQ. As
the number of dimensions increases, the tightness of the enclosing ellipsoid tends to increase
relative to that of the box.

6.4.2 Algorithms for solving diagonal relaxations

We start with the solution to problem (6.4.3) as it is simpler and similar to that discussed in

Section 5.2.2. As before, we define ESPT(B) to be the minimum quantization error subject

to a total cost of B SPTs, but now also subject to the interval constraints, i.e.,

ESPT(B) = min

N∑

n=1

Dnn(bn − cn)2 (6.4.4)
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s.t.

N∑

n=1

CSPT(bn) = B,

Bn ≤ bn ≤ Bn ∀ n,

bn ∈ Z ∀ n.

Problem (6.4.3) is solved by determining the smallest value of B such that ESPT(B) ≤ γ.

Compared to (5.2.9), the presence of the interval constraints in (6.4.4) may necessitate a

non-zero initial allocation of SPTs to ensure feasibility. The initial allocation a1, . . . , aN is

determined according to

an = min
bn=Bn,...,Bn

CSPT(bn), n = 1, . . . , N. (6.4.5)

Given a1, . . . , aN , we determine the initial coefficient values bn and the scalar quantization

errors un(an) from (5.2.7). Then we set ESPT(B) =
∑

n un(an), where B =
∑

n an. If

ESPT(B) ≤ γ, we are done. Otherwise, the algorithm proceeds exactly as in Section 5.2.2

since the key monotonicity condition (5.2.8) is still satisfied. In each iteration, the coeffi-

cient bm for which the number of SPTs should increase is determined from (5.2.10), am is

incremented by 1, and ESPT(B + 1) = ESPT(B) −∆um(am + 1). The interval constraints

in (6.4.4) are no longer a concern because the value of bn can only approach cn, the ap-

proximate midpoint of the candidate range, as more SPTs are allocated. We summarize

the algorithm in Algorithm 5.

Algorithm 5 Solution to the diagonal relaxation (6.4.3) of problem (5.1.2).

Input: Parameters c, γ from (5.1.2), D from (6.4.1), Bn, Bn from (6.1.1).
Output: Optimal solution b to (6.4.3), optimal cost B.

Determine initial allocation a1, . . . , aN from (6.4.5).
for n = 1 . . . , N do

Determine bn and un(an) from (5.2.7) with B = an.
B =

∑
n an, ESPT(B) =

∑
n un(an).

while ESPT(B) > γ do
Determine m from (5.2.10) and (5.2.7).
am ← am + 1, update bm accordingly.
ESPT(B + 1) = ESPT(B)−∆um(am + 1).
B ← B + 1.

Next we discuss the solution of (6.4.2), which is similar to the dynamic programming

solution of Section 5.2.1. The difference lies again in the minimum allowable allocation of
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bits to coefficients. We add the interval constraints Bn ≤ bn ≤ Bn to each of the definitions

for ENLZ(B), Vm(B), and vn(B) in (5.2.1), (5.2.2), and (5.2.3) respectively (substituting D

for Q where necessary). With the additional constraint, (5.2.3) becomes infeasible unless

B is equal to or greater than

an,min =





⌈log2(1 +Bn)⌉ , Bn > 0,

⌈
log2(1 +

∣∣Bn

∣∣)
⌉
, Bn < 0,

0 otherwise.

(6.4.6)

If B < an,min, we may take vn(B) =∞. Hence (5.2.5) is modified as follows:

vn(B) =





∞, B < an,min,

Dnn(|cn| − (2B − 1))2, an,min ≤ B < ⌈log2(1 + |cn|)⌉ ,

Dnn(cn − [cn])
2, B ≥ ⌈log2(1 + |cn|)⌉ .

(6.4.7)

The recursion (5.2.6) is modified accordingly:

Vm(B) = min
B′=am,min,...,min{B,P}

Vm−1(B−B′)≤γ

{
vm(B′) + Vm−1(B −B′)

}
(6.4.8)

since vm(B′) = ∞ for B′ < am,min. It can also be seen that Vm(B) = ∞ for B <
∑m

n=1 an,min, the minimum allowable allocation for the first m coefficients.

With the new definitions in (6.4.7) and (6.4.8), the dynamic programming algorithm

can proceed much as before. We start with the minimum allocation, set B =
∑N

n=1 an,min,

and evaluate the sequence V1(a1,min), V2(a1,min+ a2,min), . . . , VN

(∑N
n=1 an,min

)
= ENLZ(B)

until either ENLZ(B) ≤ γ or Vm (
∑m

n=1 an,min) > γ for m < N . In the second case,

we increment B by 1 and continue with the sequence V1(a1,min + 1), V2(a1,min + a2,min +

1), . . . , VN

((∑N
n=1 an,min

)
+ 1
)
= ENLZ(B). The first value of B such that ENLZ(B) ≤ γ is

the optimal value of (6.4.2). A solution b that achieves the optimal value can be obtained

through the same backtracking procedure discussed in Section 5.2.1. We summarize the

dynamic programming algorithm under Algorithm 6. As with problem (6.4.3), the interval

constraints are used only to determine the minimum allocation a1,min, . . . , aN,min. They do

not play a role thereafter because the value of bn can only move further inside the candidate
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range as the number of bits increases.

Algorithm 6 Solution to the diagonal relaxation (6.4.2) of problem (5.1.1).

Input: Parameters c, γ from (5.1.1), D from (6.4.1), Bn, Bn from (6.1.1).
Output: Optimal solution b to (6.4.2), optimal cost B.

Initialize: Determine minimal allocation a1,min, . . . , aN,min from (6.4.6). Initialize
Vm(B) =∞ for all m, B.
repeat

if first iteration then
B0 = 0.

else
B0 ← B0 + 1.

m← 1.
B = B0 + am,min.
Evaluate Vm(B) = vm(B) using (6.4.7).
âm(B) = B (for backtracking).
while Vm(B) ≤ γ and m < N do
m← m+ 1.
B ← B + am,min.
Evaluate Vm(B) using (6.4.8).
âm(B) = minimizing value of B′ corresponding to Vm(B) (for backtracking).

end while
until VN (B) ≤ γ
Backtrack to determine b: Initialize B′′ = B.
for m = N,N − 1, . . . , 1 do

Allocate âm(B′′) bits to coefficient bm and determine bm as discussed in paragraph
preceding (5.2.5).
B′′ ← B′′ − âm(B′′).

6.4.3 Invariance of the optimal volume ratio under diagonal scaling

In Sections 6.4.4–6.4.6, we derive bounds on the ratio between the volume of the optimal

enclosing ellipsoid ED and the volume of the original ellipsoid EQ. The bounds on the

optimal volume ratio characterize indirectly the strength of the diagonal relaxation. For

simplicity, we neglect the effect of the interval constraints in (6.4.2) and (6.4.3) on the

volume of the feasible set, although these constraints can sometimes have a significant

impact. We show in this subsection that the volume ratio is invariant under diagonal

scaling transformations of the ellipsoid EQ. As in Section 3.4, this invariance property is

used to strengthen some of the bounds in Sections 6.4.4–6.4.6.

We consider as in Section 3.4.3 the scaled ellipsoid S(EQ) for an arbitrary invertible

diagonal matrix S. The matrix Q is replaced by S−1QS−1 and the volume of S(EQ) is
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inversely proportional to
√

det
(
S−1QS−1

)
= det

(
S−1

)√
det(Q). Referring to (6.4.1), the

minimum-volume enclosing ellipsoid for S(EQ) is determined by solving

max
D

det(D)

s.t. 0 � D � S−1QS−1,

D diagonal.

(6.4.9)

Since S is invertible, problem (6.4.9) is equivalent to

max
D

det(D)

s.t. 0 � SDS � Q,

D diagonal,

which in turn is equivalent to

det
(
S−1

)2
max
D

det(D)

s.t. 0 � D � Q,

D diagonal

(6.4.10)

under a change of variables. The factors of det
(
S−1

)
cancel in the volume ratio after taking

the square root of the optimal value of (6.4.10). Thus the volume ratio between S(EQ) and

its enclosing ellipsoid is the same as the corresponding ratio for EQ.

6.4.4 Eigenvalue bound on the optimal volume ratio

We now relate the optimal volume ratio to the eigenvalues of the matrix Q. The results

that we obtain are analogous to the results in Section 3.4.4 for the sparsity maximization

problem. According to the geometric intuition discussed in Section 3.4.4, the volume ratio

is expected to be small when the condition number κ(Q) is low, i.e., when the ellipsoid EQ
is nearly spherical. In addition, we argued more informally and observed in the numerical

experiments in Section 3.6 that eigenvalue distributions in which most of the eigenvalues

are comparable to the smallest eigenvalue are preferred. The following bound on the vol-

ume ratio confirms this preference for certain eigenvalue distributions. Furthermore, the
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condition under which the bound is tight, namely that the eigenvector v1 corresponding to

λmin(Q) has equal-magnitude components, is the same as the one used to construct worst-

case instances for diagonal relaxation in Section 3.4.2. This agrees with the intuition that

the orientation of EQ is most strongly affected by the eigenvector v1.

Theorem 5. The ratio between the volume of the ellipsoid EQ and that of the minimum-

volume coordinate-aligned enclosing ellipsoid ED is bounded as follows:

vol(ED)

vol(EQ)
≤

√√√√
N∏

n=2

λn(Q)

λmin(Q)
,

where λn(Q) is the nth smallest eigenvalue of Q. Equality holds if the eigenvector v1

corresponding to the smallest eigenvalue λmin(Q) has components of equal magnitude.

Proof. To establish the bound, we note that D = λmin(Q)I is a feasible solution to problem

(6.4.1), and hence the maximum determinant is bounded from below by λNmin(Q). The

bound in the theorem follows from the inverse proportionality between the volume and the

square root of the determinant, and by expressing the determinant of Q as the product of

its eigenvalues.

To show that the bound is tight, we refer to the inequality in (3.4.5), which holds for all

D satisfying 0 � D � Q under the assumption that v1 has equal-magnitude components.

By the arithmetic mean-geometric mean inequality, we obtain

det(D)1/N =

(
N∏

n=1

Dnn

)1/N

≤ 1

N

N∑

n=1

Dnn ≤ λmin(Q) ∀ D : 0 � D � Q,

where equality holds if D = λmin(Q)I. This shows that under the assumption on v1, the

solution D = λmin(Q)I maximizes the determinant in (6.4.1) and minimizes vol(ED), and

therefore the bound in the theorem is met with equality.

The bound in Theorem 5 depends on the ratio of each eigenvalue of Q to the smallest

eigenvalue. Hence it exhibits a preference for eigenvalue distributions that are weighted

toward smaller values, as claimed. Theorem 5 can also be interpreted as a bound on the

equivalent dilation factor χ, i.e., the factor by which EQ should be dilated to match ED in
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volume. Taking the Nth root of both sides, we have

χ ≤

√√√√
(

N∏

n=2

λn(Q)

λmin(Q)

)1/N

.

The right-hand side is the square root of the geometric mean of eigenvalue ratios.

As a corollary to Theorem 5, if the eigenvector v1 has equal-magnitude components and

the condition λmin(Q) ‖c‖22 ≤ γ is satisfied, then the minimum values of the cost functions

CNLZ(b) and CSPT(b) over the enclosing ellipsoid ED are equal to zero. It was shown in

the proof of Theorem 2 that the optimal D in this case is D = λmin(Q)I. By substituting

into (3.4.1), we see that the solution b = 0, which has zero cost, belongs to ED. Note that

the presence of the interval constraints in what we have defined as the diagonal relaxations,

namely (6.4.2) and (6.4.3), ensures that the resulting lower bounds are no worse than those

in (6.2.1) and (6.2.2). In this worst-case example, the inclusion of the quadratic constraint

in (6.4.2) and (6.4.3) offers no improvement.

A second corollary follows from the invariance of the optimal volume ratio to diagonal

scaling, which was shown in Section 6.4.3. Although the volume ratio does not change,

the right-hand side of the bound in Theorem 5 may vary as Q is replaced by S−1QS−1 for

different choices of S. Hence Theorem 5 can be generalized in the same way as Theorem 2.

Corollary 2. For any invertible diagonal matrix S, the optimal volume ratio is bounded as

follows:

vol(ED)

vol(EQ)
≤

√√√√
N∏

n=2

λn
(
S−1QS−1

)

λmin

(
S−1QS−1

) .

As with Corollary 1, S can be chosen to minimize the right-hand side.

6.4.5 The diagonally dominant case

Next we analyze the case of diagonally dominant Q. We use the same definition of diagonal

dominance as in Section 3.4.5 and follow a similar line of reasoning to relate the optimal

volume ratio to the chosen measure of diagonal dominance. First we establish the following

result, which is analogous to Lemma 3.

Lemma 5. Fix a positive definite diagonal matrix D0, and let D = αD0. Then the optimal
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value of (6.4.1) is bounded from below by

λNmin

(
D

−1/2
0 QD

−1/2
0

) N∏

n=1

(D0)nn.

Proof. With D = αD0, (6.4.1) reduces to

max
α

αN
N∏

n=1

(D0)nn

s.t. 0 � αD0 � Q.

The rest of the proof is similar to that of Lemma 3.

As in Section 3.4.5, we set D0 = Diag(Q) in the diagonally dominant case, where

Diag(Q) is the diagonal matrix formed from the diagonal of Q. Using Lemma 5, the

optimal volume ratio can be bounded as follows:

vol(ED)

vol(EQ)
≤
(
λmin

(
Diag(Q)−1/2QDiag(Q)−1/2

))−N/2
√

det(Q)
∏N

n=1Qnn

.

By Hadamard’s inequality [92] and the positive definiteness of Q, the quantity under the

radical sign is no greater than unity. Hence

vol(ED)

vol(EQ)
≤
(
λmin

(
Diag(Q)−1/2QDiag(Q)−1/2

))−N/2
.

Combining this with (3.4.14) yields the following result:

Theorem 6. Assume that Q is diagonally dominant in the sense that

max
m

∑

n 6=m

|Qmn|√
QmmQnn

< 1.

Then the ratio between the volume of the ellipsoid EQ and that of the minimum-volume

coordinate-aligned enclosing ellipsoid ED is bounded as follows:

vol(ED)

vol(EQ)
≤


1−max

m

∑

n 6=m

|Qmn|√
QmmQnn




−N/2

.
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The equivalent bound on the dilation factor χ is

χ ≤


1−max

m

∑

n 6=m

|Qmn|√
QmmQnn




−1/2

.

As the degree of diagonal dominance increases, the quantity in parentheses approaches 1

from below and the bounds decrease. Similar to Theorem 3, replacing Q by S−1QS−1 has

no effect on the measure of diagonal dominance or the bound on the optimal volume ratio.

6.4.6 The nearly coordinate-aligned case

We now turn to the case in which the eigenvectors of Q (equivalently the axes of the ellipsoid

EQ) are nearly aligned with the coordinate directions. We assume as in Section 3.4.6 that Q

has a diagonalization Q = VΛVT where the eigenvector matrix V is such that the spectral

radius of ∆ = V − I is small. To bound the optimal volume ratio in terms of ∆, we let

D0 = Λ in Lemma 5, which corresponds to restricting ED to be of the same shape as EQ.
This results in the bound

vol(ED)

vol(EQ)
≤
(
λmin

(
Λ−1/2QΛ−1/2

))−N/2
√

det(Q)
∏N

n=1 λn(Q)
=
(
λmin

(
Λ−1/2QΛ−1/2

))−N/2
,

since the determinant of Q is equal to the product of its eigenvalues. Combining this with

Lemma 4 yields a bound with the desired dependence.

Theorem 7. Assume that Q has a diagonalization Q = VΛVT such that ∆ = V − I is

small in the sense that κ(Q)ρ(∆) < 1. Then the ratio between the volume of the ellipsoid

EQ and that of the minimum-volume coordinate-aligned enclosing ellipsoid ED is bounded

as follows:

vol(ED)

vol(EQ)
≤ (1− κ(Q)ρ(∆))−N/2.

In terms of the equivalent dilation factor, we have

χ ≤ (1− κ(Q)ρ(∆))−1/2.

If the ellipsoid EQ is nearly coordinate-aligned and if the condition number κ(Q) is small,

then the volume ratio and dilation factor are guaranteed to be low. As with Theorem 4, the
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bound can be strengthened by choosing a diagonal matrix S that minimizes the quantity

corresponding to κ(Q)ρ(∆).

6.5 Determination of minimum-volume coordinate-aligned en-

closing ellipsoids

This section discusses the solution of the determinant maximization problem in (6.4.1). The

optimal solution to (6.4.1) determines the minimum-volume coordinate-aligned enclosing

ellipsoid for EQ. We use the primal-dual long-step algorithm of [4] to solve (6.4.1). Our

purpose in this section is to summarize the algorithm as it applies to the problem of interest

and to provide formulas that are used in the algorithm. The reader is referred to [4] for a

general discussion of determinant maximization.

The algorithm of [4] assumes a reformulation of problem (6.4.1) that can be obtained

as follows. First, the determinant is replaced by the log-determinant since the latter is a

concave function whereas the former is not. The optimal solution is unchanged because

the logarithm function is monotonic. Second, the constraint D � Q is removed and is

enforced indirectly by adding the barrier function ln det(Q−D) to the objective function.

The constraint D � 0 can also be removed because the original objective function ln det(D)

already acts as a barrier. The optimization problem that results from these modifications

is

min
D

ϕ(D; t) ≡ −t ln det(D)− ln det(Q−D) = −t
N∑

n=1

ln(Dnn)− ln det(Q−D)

s.t. D diagonal,

(6.5.1)

where we have also switched from maximization to minimization. The parameter t controls

the strength of the original objective function relative to the barrier term. We denote by

D∗(t) the optimal solution to (6.5.1) for a given value of t. As t increases to ∞, the barrier

term decreases in importance while still enforcing the constraint D � Q, and consequently

D∗(t) converges to the optimal solution of (6.4.1).

The algorithm of [4] solves (6.4.1) by following the locus of optimal solutions to (6.5.1)

as illustrated in Fig. 6-6, starting from t = 1 and ending when t exceeds a pre-specified

threshold tmax. The value of tmax can be chosen based on the fact that ln det(D∗(t)) for t ≥
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tmax is guaranteed to differ by no more thanN/tmax from the true maximum log-determinant

in (6.4.1). We typically choose tmax = 1000 so that the final log-determinant value is within

10−3N of the optimal value, where the factor of N accounts for the approximately linear

scaling of the log-determinant with N .

D∗(t)

D∗(t1)

D∗(t2)

D∗(t3)1

1

1

2

2

Figure 6-6: Locus of optimal solutions D∗(t) of (6.5.1). The dashed arrows show the
movements associated with the two phases of the algorithm.

The algorithm has two phases: determining D∗(t) for a fixed value of t, and increasing

t while simultaneously predicting D∗(t) for the new value of t. These phases are described

further in Sections 6.5.1 and 6.5.2.

6.5.1 First phase of algorithm

The minimization of ϕ(D; t) with respect to D is done using Newton’s method, a standard

algorithm that uses both first and second derivatives to enable faster convergence [98]. The

specific variant proposed in [4] is summarized in Algorithm 7.

In Algorithm 7, the gradient ∇ϕ(D; t) is an N -dimensional vector consisting of the partial

derivatives with respect to the diagonal entries Dnn. The Hessian ∇2ϕ(D; t) is an N ×N
matrix composed of all second derivatives. The gradient and Hessian are computed as
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Algorithm 7 Newton’s method for solving (6.5.1) with t fixed.

Input: Parameter Q, fixed value of t, initial solution D.
Output: Optimal solution to (6.5.1) for fixed t.

repeat
Compute Newton direction ∆D = −

(
∇2ϕ(D; t)

)−1∇ϕ(D; t).

if
∣∣∆DT∇2ϕ(D; t)∆D

∣∣1/2 > 1/2 then
Compute step size p̂ = argminp ϕ(D+ p∆D; t).

else
p̂ = 1.

Update D← D+ p̂∆D.

until
∣∣∆DT∇2ϕ(D; t)∆D

∣∣1/2 < δ

follows:

∇ϕ(D; t) = −t diag
(
D−1

)
+ diag

(
(Q−D)−1

)
,

∇2ϕ(D; t) = tD−2 + (Q−D)−1 ◦ (Q−D)−1,

where ◦ denotes the entry-wise product between matrices. We use δ = 10−3 as the stopping

criterion as suggested in [4]. For this value of δ, the output of Algorithm 7 is a very good

approximation to the optimal solution D∗(t), and we will refer to the output as being

optimal for simplicity.

The first time that Algorithm 7 is executed, i.e., for t = 1, the initial solution D is

set equal to 0.99λmin

(
Diag(Q)−1/2QDiag(Q)−1/2

)
Diag(Q), where Diag(Q) is as defined in

Section 6.4.5 and the somewhat arbitrary factor of 0.99 ensures that D ≺ Q strictly. For

subsequent executions, the initial solution is provided by the second phase of the algorithm

to be discussed in Section 6.5.1.

The minimization of ϕ(D + p∆D; t) along the line D + p∆D parallel to the Newton

direction is known as a line search. It can be solved using a one-dimensional version of

Newton’s method. The change in the objective function, ∆ϕ(p) = ϕ(D+p∆D; t)−ϕ(D; t),

can be expressed as

∆ϕ(p) = −t
N∑

n=1

ln

(
1 + p

∆Dnn

Dnn

)
−

N∑

n=1

ln
(
1− pλn

(
(Q−D)−1∆D

))
,

where λn
(
(Q−D)−1∆D

)
refers to an eigenvalue of the matrix (Q−D)−1∆D. We perform
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the recursion

p← p− ∆ϕ′(p)
∆ϕ′′(p)

, (6.5.2)

starting from p = 0 and stopping when the quantity
(
∆ϕ′(p)

)2
/∆ϕ′′(p) becomes small. The

first and second derivatives of ∆ϕ(p) are given by

∆ϕ′(p) = −t
N∑

n=1

∆Dnn/Dnn

1 + p∆Dnn/Dnn
+

N∑

n=1

λn
(
(Q−D)−1∆D

)

1− pλn
(
(Q−D)−1∆D

) ,

∆ϕ′′(p) = t
N∑

n=1

(
∆Dnn/Dnn

1 + p∆Dnn/Dnn

)2

+
N∑

n=1

(
λn
(
(Q −D)−1∆D

)

1− pλn
(
(Q−D)−1∆D

)
)2

.

It may be necessary to occasionally modify the recursion in (6.5.2) to ensure that the

arguments of the ln functions are strictly positive. More specifically, p must satisfy the

bounds

p < min

{
− Dnn

∆Dnn
: ∆Dnn < 0,

1

λn
(
(Q−D)−1∆D

) : λn
(
(Q−D)−1∆D

)
> 0

}
,

p > max

{
− Dnn

∆Dnn
: ∆Dnn > 0,

1

λn
(
(Q−D)−1∆D

) : λn
(
(Q−D)−1∆D

)
< 0

}
,

and the size of the update to p in (6.5.2) should be reduced as p approaches these bounds.

6.5.2 Second phase of algorithm

In the second phase of the algorithm, two steps are performed in an alternating fashion.

First, the value of t is increased from a starting value of t0. As t increases, the solution

D = D∗(t0) from Newton’s method, which is optimal for t = t0, deviates more and more

from D∗(t) for the new value of t. As is described more fully below, the size of the increase

in t is determined by placing a limit on the deviation of D from optimality. After t is fixed

to a new value, the second step is to update D so as to reduce the optimality gap. The

update is restricted to be of the form

D = D∗(t0) + p
∂D∗

∂t
(t0), p ≥ 0, (6.5.3)

where
∂D∗

∂t
(t0) =

(
∇2ϕ (D∗(t0); t0)

)−1
diag

(
(D∗(t0))

−1
)
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is the tangent at t = t0 to the locus of optimal solutions of (6.5.1), as depicted in Fig. 6-6.

The update to D allows t to be increased further, after which D can be adjusted again.

By repeating these two steps several times, t can often be increased substantially, thus

enhancing the overall convergence, while D is simultaneously kept close to the optimal

solution of (6.5.1), leading to faster convergence of Newton’s method (Algorithm 7).

To describe the two steps in more detail, we introduce an N ×N matrix Z defined by

Z = Z∗(t0) + q
∂Z∗

∂t
(t0), q ≥ 0, (6.5.4)

where

Z∗(t0) =
1

t0
(Q−D∗(t0))

−1 ,

∂Z∗

∂t
(t0) = −

1

t0
Z∗(t0) + t0Z

∗(t0)Diag

(
∂D∗

11

∂t
(t0), . . . ,

∂D∗
NN

∂t
(t0)

)
Z∗(t0).

It is shown in [4] that Z∗(t0) is the optimal solution to the dual of problem (6.5.1) for t = t0

and that (∂Z∗/∂t)(t0) is the tangent to the locus of dual optimal solutions.

In the first step, D and Z are kept constant while t is increased until the deviation of

ϕ(D; t) from the minimum value in (6.5.1) reaches a threshold. To estimate the deviation

from optimality, [4] uses the following function:

ψ(D,Z, t) = −t
N∑

n=1

ln(Dnn)−ln det(Q−D)+tQ•Z−t
N∑

n=1

ln(Znn)−ln det(Z)−N(1+ln t+t),

(6.5.5)

which is an upper bound on the optimality gap for arbitrary Z. The function ψ(D,Z, t) is

equal to zero at the beginning of the second phase when t = t0, D = D∗(t0), and Z = Z∗(t0).

With D and Z fixed, t is increased until ψ(D,Z, t) attains a pre-specified value ψmax. We

have found that setting ψmax ≃ 80 results in a good trade-off between increasing t as much

as possible and allowing Algorithm 7 to converge quickly. The new value of t is obtained

by solving ψ(D,Z, t) = ψmax for t. This is a nonlinear equation of the form

at−N ln t− b = 0, (6.5.6)

with coefficients a and b that can be read from (6.5.5). We may again use Newton’s method,
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this time the root-finding version, to solve (6.5.6). An initial solution of t = b
a + N

a ln N
a is

often a good starting point.

In the second step, t is kept constant whileD and Z are updated, specifically by choosing

values for p and q in (6.5.3) and (6.5.4) that minimize ψ(D,Z, t). It is straightforward to

show from (6.5.3)–(6.5.5) that the change in ψ(D,Z, t) as a function of p and q is given by

∆ψ(p, q) ≡ ψ(D+ p∆D,Z+ q∆Z, t)− ψ(D,Z, t)

= −t
N∑

n=1

ln

(
1 + p

∆Dnn

Dnn

)
−

N∑

n=1

ln
(
1− pλn

(
(Q −D)−1∆D

))

+ qtQ • Z− t
N∑

n=1

ln

(
1 + q

∆Znn

Znn

)
−

N∑

n=1

ln
(
1 + qλn

(
Z−1∆Z

))
,

where we have set D = D∗(t0), ∆D = (∂D∗/∂t)(t0), Z = Z∗(t0), and ∆Z = (∂Z∗/∂t)(t0)

to simplify notation. The minimization of ∆ψ(p, q) with respect to p and q decouples into

two one-dimensional minimizations. The first minimization over p is identical to the line

search discussed in Section 6.5.1 while the second minimization over q is similar. After this

step is complete, ψ(D,Z, t) < ψmax once again and the first step may be repeated.

In Algorithm 8, we summarize the steps of the second phase. In our experience, most

of the potential increase in t is realized after I = 3 repetitions. The final values for t and

D become the inputs to the first phase (Algorithm 7).

Algorithm 8 Second phase of the determinant maximization algorithm of [4].

Input: Parameter Q, initial value t = t0, corresponding optimal solution D∗(t0) to (6.5.1).
Output: Final value t > t0, solution D such that the difference between ϕ(D; t) and the

minimum value in (6.5.1) is no greater than ψmax.
Initialize p = q = 0.
Compute D and Z using (6.5.3) and (6.5.4).
for i = 1, . . . , I do

Solve (6.5.5) for t with D, Z fixed.
Line searches: p̂, q̂ = argminp,q ∆ψ(p, q).
Update D and Z by substituting p = p̂ in (6.5.3) and q = q̂ in (6.5.4).

6.6 Numerical comparison of lower bounds

In Sections 6.2–6.4, we developed three classes of lower bounds on the optimal values of

problems (5.1.1) and (5.1.2). The first of these bounds uses knowledge of the candidate
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ranges of the coefficients and is relatively simple to compute, while the other two improve

upon the first bound through the solution of linear and diagonal relaxations. To evaluate

the strength of the bounds and compare them to each other, numerical experiments similar

to those in Section 3.6 were performed in which instances of (5.1.1) and (5.1.2) are created

by randomly choosing values for Q and c. Unlike in Section 3.6, it will be seen that the

linear relaxation is competitive with and can sometimes outperform the diagonal relaxation,

especially for the NLZ cost function.

As before, several problem parameters are varied to characterize the quality of the

bounds under different conditions. The effects of the condition number and eigenvalue

distribution of Q will be familiar from Section 3.6 and the analysis in Section 6.4.4. The

experiments also reveal a dependence on the wordlength P . In addition, it will be shown

that the bounds based on candidate ranges have a significant effect on the bounds due to

linear and diagonal relaxations, which are built upon the former.

In the first set of experiments in this section, the matrix Q is created according to the

first three methods in Section 3.6. The eigenvalues of Q are sampled from one of three

distributions with the condition number κ(Q) equal to
√
N , N , 10N , or 100N , while the

eigenvectors are drawn uniformly from the unit sphere as an orthonormal set. The number

of dimensions N is varied between 10 and 100.

The ellipsoid center c is chosen differently from before because it can no longer be

assumed that the value zero is included in the candidate range for each coefficient. Once

Q−1 is determined, cn is drawn with equal probability either from a uniform distribution

over [
−
√(

Q−1
)
nn
,
√(

Q−1
)
nn

]

as in Section 3.6, or from a power-law distribution proportional to 1/ |cn| over the intervals

[
−1000

√(
Q−1

)
nn
,−
√(

Q−1
)
nn

]
and

[√(
Q−1

)
nn
, 1000

√(
Q−1

)
nn

]
.

With γ initially equal to 1, the candidate range defined by (6.1.1) includes zero in the first

case but not in the second. We subsequently scale c and γ by powers of two as discussed in

Section 5.1.1 to allow the filter coefficients to be integer-valued. Three different wordlengths

P = 8, 12, 16 are used in the experiments.

It is often necessary to further modify the value of γ to ensure that the quadratic
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constraint (2.1.1) admits at least one integer-valued solution. To do this, we use Algorithm

4 to approximately minimize the left-hand side of (2.1.1) over integer-valued b with Q and

c determined as above. We then set γ equal to 10/9 times the error value returned by

Algorithm 4. This guarantees that the problem instance has at least one feasible solution

with quantization error equal to 0.9γ. Note that the new value of γ also affects the candidate

ranges through (6.1.1).

For each combination of N , P , κ(Q), and eigenvalue distribution, 1000 instances are

created. For each instance, we compute the lower bounds in (6.2.1) and (6.2.2) as well as

the bounds resulting from linear and diagonal relaxations for both cost measures. Linear

relaxations are solved via the dual formulations in (6.3.7) and (6.3.18) using the MATLAB

solver fmincon. Diagonal relaxations are solved by determining the diagonal matrix D that

minimizes the volume of ED as discussed in Section 6.5 and then applying either Algorithm

5 or 6. We also obtain a feasible solution using the heuristic algorithm of Section 5.3.

As in Section 3.6, the ratio between each of the lower bounds and the cost of the feasible

solution is used to measure the quality of approximation, with Rℓ and Rd denoting the

ratios corresponding to linear and diagonal relaxations. The ratios corresponding to the

bounds in (6.2.1) and (6.2.2) are denoted by Rb. As noted before, the ratios Rb, Rℓ, and

Rd are lower bounds on the true approximation ratios.

In Fig. 6-7, we plot the ratios Rb, Rℓ, and Rd, averaged over 1000 instances, for the first

eigenvalue distribution f1(λ) ∝ 1/λ. The plots reveal a number of different effects; we focus

first on the role of the condition number κ(Q). The ratio Rb increases as κ(Q) decreases,

an expected result given the box interpretation discussed in Section 6.2. The set of integer

points within a nearly spherical ellipsoid can be contained in a smaller coordinate-aligned

box on average compared to an oblong ellipsoid. Since the bounds arising from the box

approximation are incorporated as a baseline in linear and diagonal relaxations, the ratios

Rℓ and Rd inherit the same dependence on κ(Q), a feature seen throughout this section. The

variation with condition number is even more pronounced in the case of diagonal relaxations

as can be predicted from Theorem 5 and related discussion in Section 6.4.4. Comparing

Rℓ and Rd, it is seen that linear relaxations sometimes outperform diagonal relaxations at

higher values of κ(Q), especially for the NLZ cost function. Diagonal relaxations tend to

be stronger than linear relaxations for the SPT cost function. All three ratios however are

significantly lower for the SPT cost than for the NLZ cost.
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Figure 6-7: Average values of Rb, Rℓ, and Rd for a 1/λ eigenvalue distribution. Within
each set of curves, κ(Q) =

√
N,N, 10N, 100N from top to bottom.
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Next we discuss the dependence on the number of dimensions N . The downward trend of

the curves in Fig. 6-7 can be attributed to the deteriorating quality of the box approximation

as N increases. This in turn can be explained by the super-exponential growth of the box-

to-ellipsoid volume ratio in (6.2.4). To show that the dependence of Rℓ and Rd on N is

largely due to that of Rb, we compute modified ratios R̃ℓ and R̃d by subtracting the bound

in either (6.2.1) or (6.2.2) from both the numerator and denominator in Rℓ and Rd. Hence

the numerators in R̃ℓ and R̃d represent the improvement over (6.2.1) or (6.2.2) due to linear

and diagonal relaxations, while the denominators represent the cost of a feasible solution in

excess of (6.2.1) or (6.2.2). Fig. 6-8 plots the curves for R̃ℓ and R̃d corresponding to Fig. 6-7.

The dependence on N is now much weaker with R̃d even tending to increase slightly as N

increases. It is also apparent that the improvement in lower bounds due to relaxations is

modest in most cases as measured by these ratios.

It can also be observed that the ratios in Fig. 6-7 improve as the wordlength P increases.

The dependence on P can be explained by the associated change in the size of the ellipsoid

EQ relative to the size of c. Specifically, a smaller wordlength implies that EQ must be

larger to ensure that a quantized feasible solution exists, ignoring for the moment the

normalization to an integer quantization grid. Fig. 6-9 illustrates using a simplified one-

dimensional example how an increase in the size of the feasible set can lead to a worse

approximation ratio. We consider the cost function CNLZ(bn) and approximate it by the

smooth function log2(1 + |bn|). In panel (a), the original interval is small relative to the

magnitude of the midpoint cn and an enclosing interval yields a good approximation to the

true minimum cost. In panel (b), both the original and enclosing intervals are expanded

about cn by a factor of 3, resulting in a significantly worse approximation even though

the length ratio is preserved. The degradation is due to the more rapid decrease of the

logarithm function near zero. The same intuition extends to higher dimensions and to

different enclosing shapes, namely boxes and ellipsoids. This accounts for the significant

improvement in the approximation ratios going down the left-hand column of Fig. 6-7. For

the cost function CSPT(b), the intuition is complicated by the non-monotonicity of the cost

function. Nevertheless it is still true that lower values of CSPT(bn) occur more frequently

when bn is small, and it is the minimum value within a given region that contributes to the

approximation ratio.
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Figure 6-8: Average values of R̃ℓ and R̃d for a 1/λ eigenvalue distribution. Within each set
of curves, κ(Q) =

√
N,N, 10N, 100N from top to bottom.

208



bn
cn

cost

(a)

bn
cn

cost

(b)

Figure 6-9: Effect of the size of the feasible set on the approximation ratio. The original
(red) and enclosing (blue) intervals in (b) are 3 times larger than those in (a), leading to a
worse approximation of the minimum cost.
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Figure 6-10: Histograms of the optimal values of linear relaxations (1), the optimal values
of diagonal relaxations (2), and the objective values of feasible solutions (3) for a 1/λ
eigenvalue distribution, N = κ(Q) = 100, and P = 12.
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To visualize the spread around the mean values plotted in Fig. 6-7, in Fig. 6-10 we show

histograms of the optimal values of linear and diagonal relaxations and the objective values

of feasible solutions obtained by the heuristic algorithm for a 1/λ eigenvalue distribution,

N = κ(Q) = 100, and P = 12. For the NLZ cost function, the histograms for linear

and diagonal relaxations overlap almost completely and also overlap substantially with the

histogram for feasible solutions. This agrees with the average values of Rℓ and Rd at

N = 100 in panel (c) of Fig. 6-7. In contrast, the histograms for the SPT cost function

are more distinct, in agreement with panel (d) of Fig. 6-7. The spread in the histograms is

similar for other values of N , κ(Q), and P .

Fig. 6-11 shows the average values of Rb, Rℓ, and Rd under a uniform eigenvalue dis-

tribution. As predicted by Theorem 5, the approximation quality for diagonal relaxations

is significantly worse than for a 1/λ eigenvalue distribution. At higher values of κ(Q), the

curves for Rd are nearly indistinguishable from those for Rb, indicating a lack of improve-

ment over the box approximation. As in Fig. 6-7, diagonal relaxations tend to be better for

the SPT cost function than for the NLZ cost function. The ratio Rb is also affected by the

change in eigenvalue distribution, although to a lesser degree. This is to be expected since

the ellipsoid EQ now tends to have more short axes and is therefore smaller compared to

the box BQ. The dependence on the parameters N , κ(Q), and P is similar to before.

Fig. 6-12 plots the average values of Rb, Rℓ, and Rd under the eigenvalue distribution

f2(λ) ∝ 1/λ2. This time all of the ratios increase relative to their values in Fig. 6-7, most

strikingly in the case of Rd. With some exceptions at small values of N , diagonal relaxations

are now preferred over linear relaxations for all values of N , κ(Q) and P . Moreover, the

curves for Rd no longer decrease as a function of N . The improvements in Rd and Rb are

again consistent with Theorem 5 and the box interpretation in Section 6.2.
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Figure 6-11: Average values of Rb, Rℓ, and Rd for a uniform eigenvalue distribution. Within
each set of curves, κ(Q) =

√
N,N, 10N, 100N from top to bottom.
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Figure 6-12: Average values of Rb, Rℓ, and Rd for a 1/λ2 eigenvalue distribution. Within
each set of curves, κ(Q) =

√
N,N, 10N, 100N from top to bottom.
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In Fig. 6-13, we examine the relationship between the approximation ratio Rd and the

dilation factor χ, defined in Section 6.4.4 as the Nth root of the volume ratio between

the ellipsoids EQ and ED. There is a clear negative correlation between the two ratios,

thus justifying our focus on the volume ratio in Section 6.4 as a substitute for the true

approximation ratio. However, points corresponding to different eigenvalue distributions

appear to trace out different curves, suggesting that there are additional factors affecting

the ratio Rd. We also see another illustration of the phenomenon depicted in Fig. 6-9. The

dilation factor does not depend on the wordlength P as seen going down the columns of

Fig. 6-13, but the ratio Rd does because of the change in size of the ellipsoid EQ.
In a fourth experiment, Q is chosen to represent an exponentially decaying autocorre-

lation function as was done in Section 3.6. The decay factor ρ in (3.6.1) is varied between

0.1 and 0.99. Recall that it is sufficient to consider only positive ρ and that Q is diagonally

dominant in the sense assumed in Theorem 6 for ρ ≤ 1/3. Once Q is determined, the

parameters c and γ are generated as in the earlier experiments. Fig. 6-14 shows the ratios

Rb, Rℓ, and Rd for selected values of ρ. The parameter ρ is seen to have a similar effect on

the approximation ratios as the condition number κ(Q), with small values of ρ preferred.

As in Fig. 3-12, the bounds provided by diagonal relaxations are surprisingly strong even

for ρ close to 1.

To summarize this section, it was shown that linear relaxations can provide better

lower bounds for the bit-based cost measures than for the coefficient sparsity measure.

For the NLZ cost function in particular, linear and diagonal relaxations perform about

equally well. The observed dependence on the condition number, eigenvalue distribution,

and diagonal dominance of Q confirms the analysis in Sections 6.4.4 and 6.4.5 and the

associated geometric intuition. The dependence on dimension N is attributed to the box-

to-ellipsoid volume ratio in (6.2.4), while the dependence on wordlength P is due to the

change in size of the feasible set as illustrated in Fig. 6-9.
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Figure 6-13: Average values of Rd and the dilation factor χ for different eigenvalue distri-
butions and N = 100. For each type of plotting symbol, κ(Q) =

√
N,N, 10N, 100N from

left to right.
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Figure 6-14: Average values of Rb, Rℓ, andRd forQ corresponding to exponentially decaying
autocorrelation functions. Within each set of curves, ρ = 0.1, 0.5, 0.9, 0.99 from top to
bottom.
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6.7 Description of branch-and-bound algorithm

We now complete our description of a branch-and-bound algorithm for solving problems

(5.1.1) and (5.1.2) to optimality. The algorithm is similar to Algorithm 2, the branch-and-

bound algorithm for the sparsity maximization problem (2.0.1). Beginning with the root

problem, subproblems are removed one at a time from a list and are processed to improve

lower bounds and possibly generate feasible solutions. Subproblems are added to the list by

branching and can also be removed by pruning. The algorithm terminates when the list is

empty. We summarize the algorithm in Algorithm 9 and explain each of the numbered steps

in more detail, focusing on differences with respect to the corresponding steps in Algorithm

2. The notation C(b) below can refer either to the number of NLZ bits or the number of

SPTs.

1. Select subproblem from list: As in Algorithm 2, we choose the subproblem with the

smallest lower bound inherited from its parent, for the same reasons as before. Each

subproblem is specified by the subsets F and K corresponding to free and fixed co-

efficients respectively, the values of the fixed coefficients bK, and the inherited lower

bound LB.

2. Subproblem parameters: Every subproblem is equivalent to an |F|-dimensional in-

stance of the root problem, (5.1.1) or (5.1.2), with parameters given by (C.2.2)–

(C.2.6).

3. Identify infeasibility or coefficients that can be fixed: We first determine the candidate

range for each coefficient using (6.1.1). As discussed in Section 6.1, if Bn > Bn for

any n ∈ F , the subproblem is infeasible and we move on to the next subproblem.

If Bn = Bn, the coefficient bn can be fixed. The subsets F and K are updated

accordingly and the cost of the fixed coefficients, C(bK), is increased, which may

result in an increase in the lower bound LB as well if the previous value is less than

C(bK). We then prune the subproblem if the pruning condition LB ≥ C(bI) is

satisfied. Since the fixing of coefficients yields a different subproblem, the parameters

Qeff , ceff , γeff and the candidate ranges must be recomputed. The current step is then

repeated until no more coefficients can be fixed.

4. Solve zero- or one-dimensional instances: If no free coefficients remain after Step 3,
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Algorithm 9 Branch-and-bound for problems (5.1.1) and (5.1.2)

Input: Parameters Q, c, γ, wordlength P .
Output: Optimal solution bI to (5.1.1) or (5.1.2).

Initialize: Place root problem in list with LB = 0. Incumbent solution bI = c with cost
C(bI) =∞.
while list not empty do

1) Select subproblem with smallest LB and remove from list.
2) Compute subproblem parameters Qeff , ceff , γeff using (C.2.2)–(C.2.6).
3) Determine candidate ranges Bn, . . . , Bn from (6.1.1) for n ∈ F .
if Bn > Bn for any n ∈ F then

Subproblem infeasible, go to step 1.
while Bn = Bn for any n ∈ F and |F| > 0 do

Fix bn for n such that Bn = Bn. Update F , K, C(bK), LB = max {C(bK), LB}.
if LB ≥ C(bI) then

Go to step 1.
2) Update parameters Qeff , ceff , γeff .
3) Determine candidate ranges Bn, . . . , Bn for n ∈ F .
if Bn > Bn for any n ∈ F then

Go to step 1.
if |F| ≤ 1 then

4) Subproblem already solved or solve 1-D subproblem −→ (bK,bF ).
if C(bK) + C(bF ) < C(bI) then

Update bI and prune list. Go to step 1.
5) (Optional for subproblems) Generate feasible solution bF using heuristic algorithm
of Section 5.3.
if C(bK) + C(bF ) < C(bI) then

Update bI and prune list (possibly including current subproblem).
if |F| ≥ Nmin then

6) Solve linear or diagonal relaxation and update LB.
if LB ≥ C(bI) then

Go to step 1.
Determine m from (6.7.1).
for bm = Bm, . . . , Bm do

7) Create new subproblem with bm fixed to current value and add to list.
Go to step 1.
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we have a solution bK to the subproblem. If there is only one free coefficient, the

subproblem can be solved easily. In the one-dimensional case, all of the candidate

values BF , . . . , BF are known to be feasible. We determine the lowest possible cost

for the single free coefficient bF , either based on the smallest magnitude for the cost

function CNLZ or using a lookup table for CSPT, and determine the value of bF by

quantizing cF using the minimum cost. If the solution resulting from this step has

a lower cost than the incumbent solution, the incumbent solution is replaced and

subproblems are pruned as appropriate.

5. Generate a feasible solution: In the first iteration of the algorithm in which the root

problem is processed, we use the heuristic algorithm of Section 5.3 to obtain a feasible

solution, which automatically becomes the incumbent solution since the initial solu-

tion bI = c has infinite cost. This step is optional for subsequent subproblems and

we consider two variants in Section 7.1, one in which the heuristic algorithm is used

only for the root problem, and the other in which it is used for all subproblems. This

choice involves the same trade-off as in Algorithm 2 between more rapid improvement

of the incumbent solution and increased computation per iteration. The current sit-

uation is different however because it is difficult to obtain a feasible solution without

a substantial algorithm. This is to be contrasted with Algorithm 2 where we were

ensured of a solution with at most |F|−1 non-zero components even without running

an algorithm. In addition, the heuristic algorithm of Section 5.3 is significantly more

complex than the successive thinning algorithm used in Algorithm 2.

6. Solve relaxation: As in Algorithm 2, if the dimension of the current subproblem

exceeds a threshold Nmin, we solve a relaxation in an attempt to improve upon the

current value of LB and prune the current subproblem. For linear relaxations, the

MATLAB function fmincon is used to solve the dual, either (6.3.7) or (6.3.18). For

diagonal relaxations, we determine the matrix D that minimizes the volume of the

enclosing ellipsoid as discussed in Section 6.5 and then apply one of the algorithms

in Section 6.4.2. Since the minimum-volume enclosing ellipsoid depends only on the

parameter Qeff , which in turn depends only on the subset F , the optimal D is the

same for subproblems with the same subset F . By saving some of the values of D

from previous iterations, for example in a cache, we can avoid repeating the associated
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computations. In Section 7.1, we compare both types of relaxations under different

values of Nmin.

7. Create new subproblems: We wish to create as few subproblems as possible by choosing

a coefficient bm for which the number of candidate values is the fewest. Since the

number of candidate values is equal to Bn −Bn + 1, m is determined by

m = argmin
n∈F

Bn −Bn. (6.7.1)

We fix bm to each candidate value in turn and create a new subproblem with the

subsets F and K and the vector of fixed coefficients bK updated accordingly. We

also set the initial lower bound for each child subproblem equal to max{C(bK), LB},
where C(bK) is the updated cost of the fixed coefficients in the child subproblem and

LB is the final lower bound for the parent subproblem.
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Chapter 7

Bit-efficient filter design under a

quadratic constraint: Numerical

experiments and design examples

In this chapter, the heuristic algorithms of Section 5.3 and the branch-and-bound algorithm

of Chapter 6 are applied to a variety of examples. The experiments and design examples

are similar to those in Chapter 4. In Section 7.1, we again use randomly generated problem

instances to validate properties of the design algorithms. In particular, it is verified that

the relaxations discussed in Chapter 6 can reduce the complexity of the branch-and-bound

algorithm. The experimental results also confirm some of the dependences seen in Section

6.6.

In Section 7.2, the algorithms are used to design bit-efficient equalizers for multipath

channels. The examples considered are the same as those in Sections 4.2.1–4.2.2, and we

observe a similar trade-off between the MSE and the filter complexity, now measured in

terms of the number of NLZ bits or the number of SPTs. The behavior with respect to

other parameters such as the input SNR is also similar to before.

7.1 Numerical experiments

The algorithms for bit-efficient design are evaluated using synthetic examples generated

randomly as described in Section 6.6. Briefly, the matrix Q is generated by drawing its

221



eigenvalues from one of three distributions and its eigenvectors from a uniform distribution

over the unit sphere. In the present experiments, the number of dimensions N is fixed to

either 30 or 20 and the condition number κ(Q) is chosen equal to N or 100N . The values of

N are significantly lower than in the parallel set of experiments in Section 4.1 because bit-

efficient design is much more difficult than sparse design. The components of the ellipsoid

center c are drawn from an equally weighted mixture of a uniform distribution over small

values and a power-law distribution over large values. We use maximum wordlengths of

either 8 or 16 and perform scaling as described in Section 5.1.1 to convert all quantization

levels to integers. The parameter γ is chosen to ensure that each problem instance has at

least one feasible solution. Further details of the instance generation procedure are given

in Section 6.6.

As in Section 4.1, we consider the effect of different choices in the branch-and-bound

algorithm (Algorithm 9), specifically the choice between linear and diagonal relaxations and

the value of the parameter Nmin that determines the minimum subproblem dimension for

which relaxations are solved. As discussed earlier, varying Nmin allows for an exploration

of the trade-off inherent in solving relaxations: When Nmin is small, more relaxations are

solved, lower bounds are better, and more subproblems are pruned, but the average compu-

tational load per subproblem is higher. The relative efficiency of different algorithm variants

is measured by the average solution time for a MATLAB implementation as in Section 4.1.

The experimental results show that in most cases, solving relaxations decreases the overall

complexity and the lowest average solution time occurs at a small to intermediate value of

Nmin. In the remaining cases, the lowest complexity results when the number of relaxations

is minimized, i.e., for Nmin = N .

The values of N have been chosen low enough so that the experiments can be repeated

many times and each instance can be solved repeatedly using different algorithm settings.

Nevertheless, the random generation procedure can occasionally generate instances that are

very difficult to solve. For practical reasons, the solution time is limited to one hour for each

combination of parameters, which results in a small fraction of instances not being solved

to optimality within that time. To estimate the true solution time, we assume that the

optimality gap, i.e., the difference between the upper and lower bounds on the optimal cost,

decreases linearly with time. The solution time can then be extrapolated from the initial

and final optimality gaps and the time of termination. In our experience, this method is
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likely to yield an underestimate of the true solution time because the optimality gap usually

does not decrease at a constant rate, instead decreasing more quickly near the beginning

and more slowly thereafter.

In Fig. 7-1, we show the solution times, averaged over 45 trials, as a function of Nmin

for instances of problem (5.1.1) and wordlength P = 8. The different panels correspond to

different eigenvalue distributions and condition numbers while the two line types indicate

the use of either linear or diagonal relaxations. The number of dimensions N is equal

to 20 in panels (a) and (e) and 30 elsewhere. In all cases, the minimum solution time is

attained when Nmin is below its maximum value, implying that solving relaxations decreases

complexity. Linear relaxations are seen to be slightly better than diagonal relaxations

except for the 1/λ2 distribution. This differs from the situation in Section 4.1 with sparse

design where linear relaxations do not reduce complexity at all and diagonal relaxations

do not either at high condition numbers or under a uniform eigenvalue distribution. Also

in contrast to Section 4.1, the dependence on the eigenvalue distribution and condition

number is less clear here. The location of the minimum solution time does tend to shift

from right to left as the eigenvalue distribution becomes more heavily weighted toward

small values, implying that the relaxations are becoming more powerful. This agrees with

the effect of the eigenvalue distribution on the approximation ratios seen in Section 6.6.

On the other hand, it is somewhat surprising that the relaxations provide as much if not

more gain when κ(Q) = 100N compared to κ(Q) = N . The κ(Q) = 100N instances are

more difficult as evidenced by the need to reduce N from 30 to 20 and by the increase in

solution times overall. An examination of solution times for individual trials suggests that

the relaxations are most helpful for the most difficult instances, including ones for which

the branch-and-bound algorithm does not converge within an hour unless Nmin is small.

It appears therefore that the relaxations can limit the complexity of branch-and-bound in

particularly unfavorable cases.
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Figure 7-1: Average solution time as a function of the relaxation parameterNmin for problem
(5.1.1) with P = 8.
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Figure 7-2: Average solution time as a function of the relaxation parameterNmin for problem
(5.1.1) with P = 16.
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Fig. 7-2 shows the average solution times for problem (5.1.1) and P = 16. As with P = 8,

relaxations are beneficial for all eigenvalue distributions and condition numbers tested, and

the location of the minimum solution time moves leftward as the eigenvalue distribution

becomes more non-uniform. Diagonal relaxations are now seen to be slightly stronger than

linear relaxations. Although the number of quantization levels for each coefficient has

increased significantly, the increase in solution time is more modest. One explanation for

this can be found in Section 6.6 where we observed that all of the lower bounds improve as

the wordlength increases.

In Figs. 7-3 and 7-4, we plot the average solution times for problem (5.1.2) and wordlengths

P = 8 and P = 16 respectively. It is seen that diagonal relaxations are generally preferable

to linear relaxations in the SPT case as observed earlier in Section 6.6. For P = 8, solving

relaxations is beneficial when κ(Q) = 100N and we see a similar relationship between the

shape of the solution time curve and the eigenvalue distribution. However, for κ(Q) = N ,

the lowest solution time occurs at Nmin = N = 30. It can be inferred from this that the

κ(Q) = N instances are relatively easy and do not require the use of relaxations, whereas

the κ(Q) = 100N instances are more difficult and benefit more from the increased pruning

afforded by solving relaxations. In contrast for P = 16, solving relaxations reduces com-

plexity for all condition numbers and eigenvalue distributions considered. The increase in

complexity relative to P = 8 is also milder than what we would naively predict based on

the increase in quantization levels. The dependence on the eigenvalue distribution is in

accordance with the previous plots.
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Figure 7-3: Average solution time as a function of the relaxation parameterNmin for problem
(5.1.2) with P = 8.
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Figure 7-4: Average solution time as a function of the relaxation parameterNmin for problem
(5.1.2) with P = 16.
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A preliminary study of the growth of the solution time with dimension N is shown in

Fig. 7-5. For this experiment, instances were generated using a 1/λ eigenvalue distribution

and a condition number of κ(Q) = N . Three algorithm variants were tested: linear relax-

ations with Nmin = 26, diagonal relaxations with Nmin = 26 for the NLZ cost function and

Nmin = 14 for the SPT cost, and no relaxations at all except for the root problem. The

number of trials averaged is 50, which appears to be insufficient since the plotted solution

times do not increase monotonically as expected. The results confirm that the use of re-

laxations can reduce complexity over a range of problem dimensions. Unfortunately, the

limitation of the solution time to one hour and our conservative method of extrapolating

solution times appear to distort the growth rates when the solution times exceed 103 s, typ-

ically above N = 35. This distortion is most apparent in panel (c) where the dotted black

and dashed red curves seem to undergo a change in slope. A more extensive experiment

could be conducted in future work.

We also consider the behavior of the branch-and-bound algorithm acting on individual

instances. Fig. 7-6 plots upper and lower bounds on the optimal cost as functions of the

number of iterations. As in Fig. 4-6, the lower bounds improve more quickly near the

beginning, justifying the claim that our extrapolation of solution times underestimates the

true values. For the instance of (5.1.1) in (a) with P = 8, solving linear relaxations leads

to the greatest efficiency both in terms of number of iterations and total time, which is

consistent with Fig. 7-1. For the instance in (b), diagonal relaxations result in the fewest

iterations but the fastest time is achieved with no relaxations.
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Figure 7-5: Growth of the average solution time with the number of dimensions N for
problems (5.1.1) and (5.1.2), a 1/λ eigenvalue distribution, and κ(Q) = N .
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Figure 7-6: Lower and upper bounds on the optimal cost as functions of the number of
subproblems processed for specific instances of problems (5.1.1) and (5.1.2) generated using
a 1/λ eigenvalue distribution. Dashed red line: linear relaxations, Nmin = 18; solid blue
line: diagonal relaxations, Nmin = 18; dotted black line: no relaxations except for root
problem. The filled circles indicate algorithm termination.
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To evaluate the performance of the heuristic algorithms of Section 5.3, we show in Table

7.1 the average ratios between the cost of the initial heuristic solution and the final cost. The

averages include only those trials in which the branch-and-bound algorithm converged to an

optimal solution. The approximation ratios are better for the NLZ cost than for the SPT

cost, better for P = 16 than for P = 8, and better for κ(Q) = N than for κ(Q) = 100N .

In particular, there is significant room for improvement in the SPT case at high condition

number. These preferences were also observed in Section 6.6 for lower bounds. The effect

of the eigenvalue distribution is less clear.

Table 7.1: Average approximation ratios for the heuristic algorithms of Section 5.3.

NLZ cost, P = 8

κ(Q) = 100N κ(Q) = N
λ(Q) ∼ 1/λ 1.070 1.015
λ(Q) ∼ uniform 1.029 1.008
λ(Q) ∼ 1/λ2 1.065 1.014

SPT cost, P = 8

κ(Q) = 100N κ(Q) = N
λ(Q) ∼ 1/λ 1.153 1.032
λ(Q) ∼ uniform 1.143 1.020
λ(Q) ∼ 1/λ2 1.246 1.029

NLZ cost, P = 16

κ(Q) = 100N κ(Q) = N
λ(Q) ∼ 1/λ 1.011 1.002
λ(Q) ∼ uniform 1.012 1.001
λ(Q) ∼ 1/λ2 1.006 1.002

SPT cost, P = 16

κ(Q) = 100N κ(Q) = N
λ(Q) ∼ 1/λ 1.085 1.024
λ(Q) ∼ uniform 1.069 1.015
λ(Q) ∼ 1/λ2 1.076 1.016

The overall conclusion from these experiments is that solving relaxations can signifi-

cantly reduce the complexity of branch-and-bound for bit-efficient filter design, just as it

does for sparse design. Moreover, complexity reductions are observed under a broader range

of circumstances than with sparse design. Whereas previously only diagonal relaxations

were beneficial and then only for low to moderate condition numbers and non-uniform eigen-

value distributions, now linear relaxations can also yield efficiency gains and can slightly

outperform diagonal relaxations in the case of the NLZ cost function and P = 8. In addi-

tion, substantial improvements are seen at both high and low condition numbers. It should

be noted however that the gains reported are relative and bit-efficient design remains much

more computationally intensive than sparse design.
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7.2 Design examples

In this section, we present examples in which the heuristic and branch-and-bound algorithms

are used to design bit-efficient equalizers for multipath communication channels. In Section

7.2.1, we consider the idealized channel of Section 4.2.1, while in Section 7.2.2, the more

realistic example of Section 4.2.2 is considered.

In general, the problem instances encountered in this section are very complex computa-

tionally, even more so than the synthetic examples in Section 7.1. The reason for this is that

the MSE constraints are loose enough relative to the minimum MSE to permit hundreds

or even thousands of potential quantization levels for each coefficient. Thus we do not aim

to solve instances to optimality, instead terminating the branch-and-bound algorithm after

a specified period of time. For the idealized example in Section 7.2.1, it will be seen that

fairly tight lower bounds on the true optimal cost can be established relatively quickly. For

the example in Section 7.2.2 however, the final lower bounds are not as strong even after

a significantly longer time period. Nevertheless, the results clearly illustrate the nature of

the trade-off between filter complexity and MSE.

7.2.1 Equalizers for an idealized multipath communication channel

In the first example, the channel model is the same as in Section 4.2.1, and the parameters

Q, f , and β in constraint (2.1.3) are determined from the channel parameters as detailed

in Section 2.1.2. We examine as before the trade-off between the MSE and the equalizer

complexity, now measured in terms of the bit-based metrics. To conform with the assump-

tion that the coefficient vector b is integer-valued, the parameters Q and c are rescaled

as described in Section 5.1.1. The value of γ used to calculate the scale factor is given by

δmax−δmin, where δmax is the largest MSE tolerance to be considered and δmin is the MMSE

corresponding to b = c. We consider two values for the maximum wordlength P , 8 and 16.

At one end of the trade-off, the MMSE equalizer corresponding to b = c has infinite

cost in general because the components of c can have arbitrary real values. To obtain a

baseline design with finite cost, we use Algorithm 4 to determine a quantized solution b

that approximately minimizes the left-hand side of (2.1.1). Recall from the discussion at

the beginning of Section 5.2 that the value of this quadratic form can be viewed as the error

due to quantizing c, the MMSE solution. The allocation of bits in this initial quantization
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step is the maximal one, i.e., (P, . . . , P ) for the NLZ cost and (⌈P/2⌉, . . . , ⌈P/2⌉) for the

SPT cost. We denote by δ̂min the MSE corresponding to the baseline solution.

To design equalizers with reduced cost, the MSE tolerance δ is chosen to be slightly

larger than the baseline value δ̂min. The parameter γ is then given by δ − δmin, where δmin

is still the continuous-valued MMSE. We will use the ratio δ/δmin as before to measure the

performance degradation of the reduced-cost filters. With Q, c, γ, and P determined as

discussed above, the branch-and-bound algorithm of Section 6.7 is used to obtain a solution

with reduced cost subject to the specified MSE tolerance. The branch-and-bound algorithm

includes the heuristic algorithm of Section 5.3 as a first step and uses diagonal relaxations

with the relaxation parameter Nmin equal to 15 for the NLZ cost function and 20 for the

SPT cost.

Fig. 7-7 plots the number of NLZ bits, averaged over 100 amplitude pairs (a1, a2), as

a function of the MSE ratio δ/δmin for multipath delays N1 = 7 and N2 = 23, equalizer

lengths N = N2 +1 and N = 2N2, wordlengths P = 8 and P = 16, and SNR0 = 10, 25 dB.

Solid and dashed lines represent respectively average upper and lower bounds on the true

optimal cost as determined by the branch-and-bound algorithm. The solution time was

limited to only one minute in these experiments to permit a large number of repetitions.

Similar to Fig. 4-7, there is a steep decrease in the equalizer cost as soon as the MSE ratio

exceeds 0 dB, followed by a much more gradual asymptote. The number of NLZ bits is

slightly higher for the larger SNR value and the shape of the trade-off curve is very similar

for different lengths and wordlengths.

Fig. 7-8 shows the trade-off between the average number of SPTs and the MSE under

the same conditions as in Fig. 7-7. Similar behavior is observed. The main difference is

that the number of SPTs required for P = 16 is no greater than for P = 8, except for

the leftmost points corresponding to the baseline solutions. This is because any feasible

solution for P = 8 is also feasible for P = 16 with the same cost, assuming that the highest

power of two is the same (before integer rescaling) so that the powers of two available in the

P = 16 case are a superset of those in the P = 8 case. In light of this fact, we have used the

final solution for P = 8 to initialize the branch-and-bound algorithm for the corresponding

P = 16 instance, resulting in solutions with the same or lower cost.
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Figure 7-7: Average number of NLZ bits as a function of the MSE ratio δ/δmin. The lower
blue curves correspond to SNR0 = 10 dB and the upper red curves to SNR0 = 25 dB. Solid
and dashed lines represent upper and lower bounds on the true optimal cost.
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Figure 7-8: Average number of SPTs as a function of the MSE ratio δ/δmin. The lower blue
curves correspond to SNR0 = 10 dB and the upper red curves to SNR0 = 25 dB. Solid and
dashed lines represent upper and lower bounds on the true optimal cost. In panel (b), the
largest (leftmost) values are 52.7 and 54.5 (beyond upper limit of plot) for SNR0 = 10, 25
dB respectively, while in panel (d), the largest values are 98.5 and 103.6.
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In Fig. 7-9, we plot the MMSE normalized by the signal power σ2x, the number of

NLZ bits, and the number of SPTs as a function of the equalizer length N for P = 8,

δ/δmin = 1.05, and SNR0 = 10 dB. Circles and crosses represent upper and lower bounds on

the optimal cost, obtained again by running the branch-and-bound algorithm for one minute

and averaging over 100 (a1, a2) pairs. As in Fig. 4-8, all three quantities display a staircase

dependence on N with transitions at integer combinations of N1 and N2, e.g. 30 = N2+N1,

39 = 2N2 − N1 and 46 = 2N2 for N1 = 7 and N2 = 23. This effect is again due to the

presence of large values at these locations in the MMSE equalizer as explained in Section

4.2.1.
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Figure 7-9: MMSE normalized by σ2x, average number of NLZ bits, and average number
of SPTs as functions of the equalizer length N with P = 8. Circles and crosses represent
upper and lower bounds on the true optimal cost. The MSE for the bit-efficient equalizers
is 5% higher than the corresponding MMSE.

Fig. 7-10 compares the MMSE, sparse, and bit-efficient equalizers obtained for two

specific channel realizations with N1 = 7, N2 = 23 and N1 = 3, N2 = 23. The equalizer

length is N = 47 and all other parameters are the same as in Fig. 7-9. The MMSE equalizer
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plots confirm that significant non-zero values occur only at integer combinations of N1 and

N2. As seen before in Fig. 4-9, these are the only non-zero values retained in the sparse

equalizers. Furthermore, the bit-efficient equalizers are equally as sparse, with the exception

of the SPT-efficient equalizer in panel (b) that has two additional non-zero coefficients. It

appears therefore that setting small coefficients to zero is an efficient choice in terms of

the bit-based metrics as well. The remaining non-zero coefficients are also quantized in a

cost-efficient way, for example by using only one or two SPTs.
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Figure 7-10: Coefficient values of MMSE, sparse, NLZ-efficient, and SPT-efficient equalizers
for N = 47 and (a) N1 = 7, N2 = 23, (b) N1 = 3, N2 = 23. Zero values are omitted.

In Fig. 7-11, we examine the dependence of the number of NLZ bits and the number of
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SPTs on the input signal-to-noise ratio SNR0. As in previous plots, we show upper and lower

bounds on the optimal cost obtained after running the branch-and-bound algorithm for one

minute and averaging 100 (a1, a2) pairs. The equalizer cost increases nearly monotonically

before saturating around SNR0 = 15 or 20 dB. This behavior is similar to that in Fig. 4-10

and can also be explained as an interpolation between the limits SNR0 →∞, in which case

the MMSE equalizer converges to the channel inverse, and SNR0 → 0, in which case it

converges to a matched filter for the channel response.
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Figure 7-11: Average number of NLZ bits and number of SPTs as functions of SNR0 for
N = 30, N1 = 7, N2 = 23, and δ/δmin = 1.02.

The closeness of the upper and lower bounds in Figs. 7-7–7-9 and 7-11, especially given

the limited solution time, indicates that diagonal relaxations provide good approximations

to the class of instances corresponding to idealized multipath channels. The quality of the

bounds is due in part to the diagonal dominance of the matrix Q in this setting. Although
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the lower bounds likely do not coincide with the true optimal cost, they do suggest that

the solutions provided by the heuristic algorithms of Section 5.3 (essentially represented

by the upper bound curves) are not far from optimal. Despite the tightness of the bounds

however, actually solving the instances to optimality is very computationally intensive in

our experience because of the large number of quantization levels to be considered for each

coefficient, i.e., the degree of branching in the branch-and-bound tree is high.

7.2.2 Equalizers for a realistic wireless communication channel

We now consider the HDTV broadcast channel used in Section 4.2.2. The reader is referred

to Section 4.2.2 for the details of the channel model. The experimental setup, including

the rescaling of parameters and the determination of baseline quantized solutions, is the

same as in Section 7.2.1. Only the smallest equalizer length from Section 4.2.2, N = 55, is

considered along with wordlengths of P = 8 and P = 16.

In Fig. 7-12, we plot the number of NLZ bits and the number of SPTs against the

MSE ratio δ/δmin for P = 8, 16 and SNR0 = 10, 25 dB. The MMSE values (normalized

by σ2x) are −5.74 and −7.37 dB respectively for SNR0 = 10, 25 dB as reported in Section

4.2.2. For this example, the upper and lower bounds shown are the result of running the

branch-and-bound algorithm for four hours. While the curves are not as steep as for the

idealized channel, the trade-off between equalizer cost and MSE is still quite favorable. In

particular, for any MSE tolerance above the minimum value, the number of SPTs required

for P = 16 is no greater than that for P = 8, as noted in Section 7.2.1. We also see that the

lower bounds are not as tight as in Figs. 7-7 and 7-8 despite the much longer solution time.

This is not unexpected given the greater richness of the current example. Furthermore, the

progress of the lower bounds is very slow due to the large number of branches created in the

branch-and-bound tree. Even doubling the solution time is unlikely to significantly improve

the bounds.

Fig. 7-13 compares the MMSE, sparse, and bit-efficient equalizers for P = 8 and

SNR0 = 10 dB, with δ/δmin = 0.2 dB for the non-MMSE equalizers. As seen earlier in

Fig. 7-10, minimizing the number of NLZ bits or the number of SPTs also tends to result in

sparse designs. In this example, the bit-efficient equalizers are slightly less sparse than the

maximally sparse equalizer. In sparse design, the only way to reduce the filter cost is to set

coefficients to zero, but there are additional, finer-grained ways of doing so in bit-efficient

240



0 0.5 1 1.5 2
0

50

100

150

MSE relative to minimum [dB]

nu
m

be
r 

of
 N

LZ
 b

its

P = 8

 

 
SNR

0
 = 10 dB, upper

SNR
0
 = 10 dB, lower

SNR
0
 = 25 dB, upper

SNR
0
 = 25 dB, lower

(a)

0 0.5 1 1.5 2
0

100

200

300

400

500

600

MSE relative to minimum [dB]

nu
m

be
r 

of
 N

LZ
 b

its

P = 16

 

 
SNR

0
 = 10 dB, upper

SNR
0
 = 10 dB, lower

SNR
0
 = 25 dB, upper

SNR
0
 = 25 dB, lower

(b)

0 0.5 1 1.5 2
0

20

40

60

80

100

MSE relative to minimum [dB]

nu
m

be
r 

of
 S

P
T

s

P = 8

 

 
SNR

0
 = 10 dB, upper

SNR
0
 = 10 dB, lower

SNR
0
 = 25 dB, upper

SNR
0
 = 25 dB, lower

(c)

0 0.5 1 1.5 2
0

20

40

60

80

100

MSE relative to minimum [dB]

nu
m

be
r 

of
 S

P
T

s

P = 16

 

 
SNR

0
 = 10 dB, upper

SNR
0
 = 10 dB, lower

SNR
0
 = 25 dB, upper

SNR
0
 = 25 dB, lower

(d)

Figure 7-12: Number of NLZ bits and SPTs as functions of the MSE ratio δ/δmin for an
equalizer length of N = 55. In panel (d), the largest (leftmost) values are 223 and 253
(beyond upper limit of plot) for SNR0 = 10, 25 dB respectively.

design. Specifically, the number of NLZ bits can be decreased by shrinking non-zero coef-

ficient values, and the number of SPTs can be decreased by coarsely quantizing to values

composed of only one or two SPTs.
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Figure 7-13: Coefficient values for the length 55 MMSE equalizer for SNR0 = 10 dB and
corresponding sparse and bit-efficient equalizers with MSE ratio δ/δmin = 0.2 dB and P = 8.
Zero values are omitted.

242



Chapter 8

Sparse filter design under a

Chebyshev constraint

In this chapter, we address the design of sparse filters under a Chebyshev constraint on

the frequency response. Several of the techniques in Chapters 2–3 for the quadratically

constrained problem can be extended to the Chebyshev case, including the methods of

successive thinning, branch-and-bound, and linear relaxation. On the other hand, we have

not been able to identify special cases that admit efficient and exact solutions. The diagonal

relaxation also does not appear to generalize in a tractable manner. Even for the techniques

that do generalize, the computational complexity is now significantly higher than in the

quadratic case. For this reason, we do not attempt to develop a complete optimal algorithm

in this chapter. Optimal algorithms may be considered in future work.

In Section 8.1, the design problem considered in this chapter is formulated in greater

detail and is also contrasted with the sparse linear inverse problem discussed in Section

2.1. In Section 8.2, we extend the successive thinning algorithm of Section 2.3 to the

Chebyshev error criterion. An alternative thinning rule and other efficiency enhancements

are proposed to combat the increased computational complexity. Section 8.3 develops an

alternative approximate algorithm based on the minimization of the family of functions

known as the p-norms for 0 < p ≤ 1. Sections 8.4–8.6 extend the techniques of Sections

3.1–3.3, namely branch-and-bound, identification of coefficients for which a zero value is

infeasible, and linear relaxation. In Section 8.7, we discuss why a generalization of the

diagonal relaxation does not seem to be tractable. The performance of the approximate
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algorithms in Sections 8.2–8.3 and the quality of the lower bounds in Sections 8.5–8.6 are

evaluated by means of several design examples in Section 8.8. Both frequency-selective

filters and beamformers as well as a frequency response equalizer are considered.

8.1 Problem formulation

We restrict our attention in this chapter to the design of linear-phase filters, in which case

the problem reduces to real-valued approximation of a desired amplitude response. To

further simplify the presentation, the formulation in this section focuses on causal, Type I

linear-phase filters, i.e., filters with causal impulse responses that are even-symmetric about

an integer index. The formulation can be generalized to other types of linear-phase filters

through minor modifications.

As in earlier chapters, the non-zero impulse response values are represented by an N -

dimensional vector b. Taking into account the linear-phase constraint, b is now defined in

terms of the impulse response values h[n] as follows:

b0 = h[N − 1],

bn = 2h[N − 1− n] = 2h[N − 1 + n], n = 1, 2, . . . , N − 1.
(8.1.1)

The frequency response corresponding to (8.1.1) takes the form H(ejω) = A(ejω)e−jω(N−1),

where

A(ejω) =

N−1∑

n=0

bn cos(nω) (8.1.2)

is the real-valued amplitude response used to approximate a desired response D(ejω). With

A(ejω) defined in terms of bn in (8.1.2), the problem of sparse filter design under a Chebyshev

constraint on the frequency response can be formulated as

min
b

‖b‖0

s.t. W (ω)
∣∣A(ejω)−D(ejω)

∣∣ ≤ δd ∀ ω ∈ W,

(8.1.3)

where W (ω) is a strictly positive weighting function and W is a closed subset of [0, π]. The

constraints in (8.1.3) ensure that the maximum weighted frequency response error over W
is no greater than a desired tolerance δd. As before, the parameter N should be chosen large

enough for solutions satisfying the frequency response specifications to exist. The length
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N corresponds to the maximum allowable number of delay elements, 2N − 2 to be precise,

although fewer delays may be required in the final design if coefficients at the ends of the

impulse response are zero.

Problem (8.1.3) has an infinite number of constraints, one for each frequency in W. In

the sequel, we will often approximate these constraints by a finite subset corresponding

to frequencies ω1, ω2, . . . , ωK . Following common practice, a good approximation can be

achieved using K ∼ 10N frequencies distributed uniformly over W and including the end-

points of all intervals [1,25,110]. To represent the resulting constraints more compactly, we

introduce the matrix A and the vector d with components given by

Akn =W (ωk) cos(nωk), k = 1, . . . ,K, n = 0, . . . , N − 1, (8.1.4a)

dk =W (ωk)D(ejωk), k = 1, . . . ,K. (8.1.4b)

Then the approximation to (8.1.3) can be written as

min
b

‖b‖0

s.t. − δde ≤ Ab− d ≤ δde,
(8.1.5)

where e is a K-dimensional vector of ones and each constraint on the absolute error has

been rewritten as two linear constraints. Since problem (8.1.5) has a finite number of linear

constraints, the set of feasible solutions is a polytope, and as will be shown in Section 8.5,

this polytope is also bounded provided that A has full rank. We will make use of these

properties of the feasible set at several points in this chapter.

In Chapter 2, it was argued that sparse filter design under a quadratic constraint,

i.e. problem (2.0.1), differs significantly from the problem of obtaining sparse solutions to

an underdetermined system of linear equations, i.e. (2.1.2). The same is true for the linearly

constrained problem in (8.1.5). The most notable difference between (8.1.5) and (2.1.2) is

due to the different shapes of the matrices A and Φ. Given that the system of equations

Φx = y in (2.1.2) is underdetermined, Φ has many fewer rows than columns and the set of

feasible x is unbounded. In contrast, the number of rows in A, K, must be much larger than

the number of columns, N , in order for (8.1.5) to be a close approximation to (8.1.3), and

consequently the set of feasible b is bounded. In addition, in (2.1.2), the residual y−Φx is

bounded in terms of its 2-norm, whereas in (8.1.5), it is the weighted ∞-norm of the error
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that is constrained.

Problem (8.1.5) is computationally difficult because of the combinatorial nature of min-

imizing the zero-norm. Furthermore, unlike in Chapters 2 or 5, there do not appear to be

special cases of (8.1.5) in which optimal solutions can be determined efficiently. Thus we

are faced with two basic approaches: restricting attention to low-complexity algorithms and

sacrificing a guarantee on optimality, or pursuing optimal solutions at significantly higher

complexity. In Sections 8.2 and 8.3, we present two low-complexity algorithms based on

different approximations to (8.1.5). A branch-and-bound framework for obtaining optimal

solutions is outlined in Section 8.4.

8.2 Successive thinning

In this section, we apply the method of successive thinning described in Section 2.3 to the

linearly constrained problem in (8.1.3). A previous version of the content of this section can

be found in [111]. The overall strategy remains the same as before: in the Kth iteration,

we search for a feasible solution with K zero-valued coefficients, restricting the search to

those subsets of zero-valued coefficients that contain the subset of size (K − 1) chosen in

the previous iteration. As discussed in Section 2.3, this search strategy is a substantial

simplification of the combinatorial search required to ensure optimality. The algorithm

terminates when the simplified search fails to yield a solution with one additional zero-

valued coefficient.

An important difference between the present problem (8.1.3) and the quadratically con-

strained problem (2.0.1) in Chapter 2 is that it is more difficult computationally to determine

whether a given subset of zero-valued coefficients is feasible. In the case of (2.0.1), feasi-

bility could be verified through a closed-form expression (e.g. (2.2.3)), whereas for (8.1.3),

an iterative method is required to solve the associated optimization problem. Motivated by

the increased complexity, two different rules are proposed in this section for selecting the

new coefficient to be constrained to zero in each iteration. The first rule is the same as

the one used in Section 2.3. The new zero-valued coefficient is chosen to minimize the in-

crease in the weighted Chebyshev error, and we will accordingly refer to the first rule as the

minimum-increase rule. The second rule simplifies the search even further, constraining to

zero the smallest coefficient in absolute value of the filter obtained in the current iteration.
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We will refer to the second rule as the smallest-coefficient rule.

The successive thinning algorithm under the minimum increase rule requires in the Kth

iteration the solution of at most N − K + 1 linear optimization problems, one for each

of the coefficients that are candidates for being constrained to zero. The total number of

linear optimization problems is quadratic in N . Under the smallest coefficient rule, only

one linear optimization is solved in each iteration for a total of at most N . Both rules

result in dramatically lower complexity compared to an exact algorithm. Unlike in Section

2.3, we have not been able to identify special cases in which either of the thinning rules is

guaranteed to yield an optimal solution. Notwithstanding the lack of guarantees, it will be

demonstrated in Section 8.8 that successive thinning according to either of the rules can

often produce filters with significantly fewer non-zero coefficients than conventional designs.

To describe the algorithm in more detail, we use Z as in Section 2.3 to denote the

subset of coefficients constrained to a zero value, and Y to denote the complement of Z.
The iteration number is represented by a superscriptK. We will assume in this section that

the initial subset Z(0) = ∅ is empty, but this is not always the case as certain coefficients may

be fixed to zero a priori, for example in systems with broken multipliers or array elements,

or when successive thinning is used as a follow-on optimization as discussed in Section 8.3.

In each iteration, an index m is removed from Y(K) and added to Z(K), resulting in new

subsets Y(K+1) and Z(K+1) respectively. We defer discussion of rules for selecting the index

m until Section 8.2.1.

Each iteration involves the solution of one or more instances of the following minimax

optimization problem:

P : min
δ,bY

δ

s.t. δe+AYbY ≥ d,

δe−AYbY ≥ −d,

(8.2.1)

where AY is the submatrix of A formed from the columns indexed by Y. The presence of

AY and bY in (8.2.1) in place of A and b reflects the requirement that bn = 0 for n ∈ Z. If
Y = {0, . . . , N − 1}, i.e., no coefficients have been constrained to zero, (8.2.1) can be solved

using the Parks-McClellan algorithm. Otherwise (8.2.1) can be solved by a general-purpose

linear program solver.
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The linear programming dual of problem (8.2.1) is given by

D : max
p+,p−

dT (p+ − p−)

s.t. eT (p+ + p−) = 1,

AT
Y(p

+ − p−) = 0,

p+ ≥ 0, p− ≥ 0,

(8.2.2)

and has the same optimal value as the primal problem. The dual problem may be more

efficient to solve than the primal depending on the linear program solver used. If the dual

problem is solved, the optimal coefficient values bn for n ∈ Y are available as the Lagrange

multipliers corresponding to the constraint AT
Y(p

+ − p−) = 0 in (8.2.2); the coefficients bn

for n ∈ Z are zero by design.

Define δ(K) to be the optimal value of (8.2.1) with Y = Y(K), i.e., the minimum error

under the constraints bn = 0 for n ∈ Z(K), and b
(K)
n to be the coefficient values corresponding

to δ(K). As alluded to in Section 8.1, we assume that N is large enough so that the initial

error δ(0) is strictly less than the allowable tolerance δd. Since problem (8.2.1) has one fewer

variable when Y = Y(K+1) than with Y = Y(K), δ(K+1) ≥ δ(K) and the sequence {δ(K)}
is non-decreasing. Equivalently, the dual has one fewer constraint with Y = Y(K+1) than

with Y = Y(K) and hence its optimal value cannot decrease. The algorithm terminates

when δ(K+1) first exceeds δd for some K, at which point the last feasible solution b(K) is

taken to be the final design. Note that this last solution cannot have zero values for any

n ∈ Y(K), as otherwise we would have a feasible solution with more than K zero coefficients

and the algorithm could continue. Furthermore, the final solution almost always satisfies

the frequency response constraints with non-zero margin, i.e., the final error δ(K) is strictly

less than δd. Thus the final design usually satisfies the constraints at all frequencies and

not only the finite set of constraints in (8.1.5).

Given the framework established above, we discuss next the two variants of the algorithm

under the minimum-increase and smallest-coefficient rules. Other coefficient selection rules

are also possible.
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8.2.1 Selection rules

Under the minimum-increase rule, the index m is chosen to minimize the increase in the

error δ(K+1) relative to δ(K). As in Section 2.3, the subset Y(K) is divided into two subsets:

the subset F (K) consisting of candidates for addition to the subset Z(K) of zero-valued

coefficients, and the subset U (K) corresponding to coefficients for which a zero value is

no longer feasible. Initially, F (0) is equal to Y(0) and U (0) is empty. In iteration K, we

determine for every p ∈ F (K) the minimum error δ(K)(p) that results from removing p from

Y(K), specifically by solving (8.2.1) with Y = Y(K)\p. The lowest error value becomes

δ(K+1) and m is chosen as the minimizing index, i.e.,

δ(K+1) = min
p∈F(K)

δ(K)(p), (8.2.3a)

m = arg min
p∈F(K)

δ(K)(p). (8.2.3b)

Then m is added to Z(K) and removed from F (K). In addition, we also move from F (K)

to U (K) those indices p for which δ(K)(p) > δd, i.e., those coefficients that no longer yield

feasible solutions when set to zero. The subsets resulting from these modifications become

the new subsets Z(K+1), F (K+1), and U (K+1).

One difference compared to the quadratically constrained problem in Section 2.3 is that

while it is possible to identify coefficients for which a zero value is no longer feasible, it

is not possible to eliminate them from the problem. In particular, the coefficients bn for

n ∈ U are still included in the optimization problem (8.2.1) since U is a subset of Y. In

the quadratic case and specifically in Appendix A.3, the subvector bU could be eliminated

because we had a closed-form expression for the value that maximizes the margin in the

constraint and thus makes the set of feasible bF as large as possible. A closed-form solution

is not available in the present case and the optimization of bU is instead incorporated in

(8.2.1).

In the case of the smallest-coefficient rule, the index m in the Kth iteration is chosen

to correspond to the smallest of the optimal coefficients b
(K)
n for n ∈ Y(K), i.e.,

m = arg min
n∈Y(K)

∣∣∣b(K)
n

∣∣∣ . (8.2.4)

The smallest-coefficient rule can yield results different from those of the minimum-increase
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rule because it does not take into full account the sensitivity of the error to each coefficient,

which may be large even when the coefficient value is small. However, the smallest-coefficient

rule can be regarded as a simplification of the minimum-increase rule in the following

sense: Recall that the coefficients b
(K)
n , n ∈ Y(K), can be interpreted as the Lagrange

multipliers associated with the optimal solution to the dual problem (8.2.2). According to

this interpretation, if the right-hand side of the constraint AT
n (p

+ − p−) = 0 in (8.2.2) is

changed from zero to a small value y, the optimal value of (8.2.2) is changed by an amount

b
(K)
n y. Hence, if coefficient bn is constrained to be zero, or equivalently, if the constraint

AT
n (p

+ − p−) = 0 in (8.2.2) is relaxed, the marginal rate of increase of the optimal error is

given by
∣∣∣b(K)

n

∣∣∣. Choosing m to correspond to the smallest
∣∣∣b(K)

n

∣∣∣ thus yields the smallest

marginal rate of increase and the smallest-coefficient rule is therefore an approximation

to the minimum-increase rule in a marginal or local sense. In Section 8.8, it will be seen

that the smallest-coefficient rule often yields a level of sparsity comparable to that of the

minimum-increase rule.

We summarize below the steps in the successive thinning algorithm under both selection

rules.

Algorithm 10 Successive thinning under minimum-increase rule

Input: Parameters A, d, δd.
Output: Sparse solution b to (8.1.5)

Initialize: K = 0, Y(0) = F (0) = {0, . . . , N − 1}, b(0) = feasible solution to (8.1.5),
δ(0) = error associated with b(0).
while δ(K) ≤ δd do

for p ∈ F (K) do
Compute δ(K)(p) by solving (8.2.1) with Y = Y(K)\p.

Determine m and δ(K+1) from (8.2.3).
b(K+1) = optimal coefficient values corresponding to δ(K+1).
Y(K+1) = Y(K)\m.
F (K+1) = F (K)\

{
m ∪

{
p : δ(K)(p) > δd

}}
.

K ← K + 1.
Return solution: b = b(K−1).
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Algorithm 11 Successive thinning under smallest-coefficient rule

Input: Parameters A, d, δd.
Output: Sparse solution b to (8.1.5)

Initialize: K = 0, Y(0) = {0, . . . , N − 1}, b(0) = feasible solution to (8.1.5), δ(0) = error
associated with b(0).
while δ(K) ≤ δd do

Determine m from (8.2.4).
Y(K+1) = Y(K)\m.
Compute δ(K+1) and b(K+1) by solving (8.2.1) for Y = Y(K+1).
K ← K + 1.

Return solution: b = b(K−1).

8.2.2 Efficiency enhancements

In carrying out the successive thinning algorithm under either of the selection rules of

Section 8.2.1, we are presented with linear optimization problems that differ by only one

variable or one constraint. For example, with the minimum-increase rule, we start each it-

eration with the solution to (8.2.1) for Y = Y(K) and then re-solve (8.2.1) with Y = Y(K)\p
for all p ∈ F (K). Similarly under the smallest-coefficient rule, the number of variables in

(8.2.1) decreases by one in going from Y = Y(K) to Y = Y(K+1). In this subsection, we dis-

cuss methods for solving the linear optimization problems more efficiently given an optimal

solution to a closely related problem, thereby improving the efficiency of the overall suc-

cessive thinning algorithm. These methods are adapted from standard linear programming

techniques [96].

In the remainder of the section, we denote by Y1 a generic subset of coefficients allowed

to be non-zero, and by Y2 a subset that is identical to Y1 except for the absence of the index
m. We assume that an optimal solution to either the primal (8.2.1) or the dual (8.2.2) has

been obtained for Y = Y1 and an optimal solution for Y = Y2 is desired. In the case of the

dual, the matrix AY2 has one fewer column than AY1 , and therefore (8.2.2) with Y = Y2
has one fewer constraint than with Y = Y1. As a consequence, the existing solution for Y1
is also feasible for Y2 and can be used directly as an initial solution. The reader is referred

to [96] for the details of this procedure.

The corresponding situation with the primal problem is not as straightforward. Since

the coefficient bm is not constrained to zero in (8.2.1) when Y = Y1, an optimal solution

(δ∗,b∗
Y1
) for Y = Y1 is usually infeasible for Y = Y2 and cannot be used directly as an
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initialization. To address this, we propose solving a modified problem that is identical to

(8.2.1) except for an additional penalty in the objective function on the absolute value of

bm. To formulate the modified problem, we use (3.3.5) to express bm in terms of its positive

and negative parts and then decompose the product AY1bY1 as

AY1bY1 = AY2bY2 +Ambm = AY2bY2 +Am(b+m − b−m), b+m ≥ 0, b−m ≥ 0.

Then the modified problem can be formulated as

P̂ : min
δ,bY2

,b+m,b−m

δ + C
(
b+m + b−m

)

s.t. δe+AY2bY2 +Am

(
b+m − b−m

)
≥ d,

δe−AY2bY2 −Am

(
b+m − b−m

)
≥ −d,

b+m ≥ 0, b−m ≥ 0,

(8.2.5)

where C is a penalty constant.

An optimal solution to (8.2.1) for Y = Y1 can be used to initialize the solution of

(8.2.5). When C is sufficiently large, it is expected that the final solution to (8.2.5) will

have b+m = b−m = 0, and consequently solving (8.2.5) becomes equivalent to solving (8.2.1)

with Y = Y2. The following theorem specifies values of C sufficient for this equivalence to

be exact.

Theorem 8. If

C > max
k=1,...,K

W (ωk), (8.2.6)

then
(
δ̂, b̂Y2 , b̂

+
m, b̂

−
m

)
is an optimal solution to problem (8.2.5) if and only if b̂+m = b̂−m = 0

and
(
δ̂, b̂Y2

)
is an optimal solution to problem (8.2.1) for Y = Y2.

The proof of Theorem 8 can be found in Appendix E.1.

In MATLAB implementations using the solver linprog, the techniques presented in

this subsection can increase the speed of successive thinning algorithms by about 2–3 times

compared to an implementation in which all linear programming problems are solved inde-

pendently. Similar gains are expected for more specialized linear program solvers.
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8.3 Sequential p-norm minimization

In this section, an alternative approximate algorithm for sparse filter design is developed

based on a different approximation to problem (8.1.5). We consider the family of functions

defined by

‖b‖p =
(

N−1∑

n=0

|bn|p
)1/p

. (8.3.1)

for 0 < p ≤ 1. For convenience, we refer to ‖b‖p as a p-norm for all p even though (8.3.1)

defines a valid norm only for p ≥ 1. The p-norm has the desirable property of providing an

arbitrarily close approximation to the zero-norm as p approaches zero. More precisely,

lim
p→0
‖b‖pp = ‖b‖0 . (8.3.2)

We are thus led to consider optimization problems of the form

min
b

‖b‖pp

s.t. − δde ≤ Ab− d ≤ δde
(8.3.3)

for small values of p. We refer to an optimal solution of (8.3.3) as a minimum p-norm

solution, noting that the minimizer is not affected by replacing ‖b‖pp with ‖b‖p.

Problem (8.3.3) has also been considered in the context of sparse beamformer design,

specifically in [29], and several of the results reviewed in this section have been presented

in [29]. The current algorithm differs from that of [29] in its use of multiple values of p in

succession, leading to a sequence of instances of (8.3.3). Each instance is initialized using

the solution for the previous value of p in an effort to enhance the sparsity of the final

solution. In terms of theoretical content, this section also includes a characterization of

optimality for problem (8.3.3) that is more precise than the one in [29]. An earlier version

of the content in this section has appeared in [112].

To further motivate the approximation of the 0-norm by the p-norm, we discuss the

two-dimensional example shown in Fig. 8-1. The feasible region for (8.3.3) is polyhedral

as noted in Section 8.1 and remains the same for all values of p. Consider first the case

p = 1 in (8.3.3). An optimal solution can be determined graphically by constructing the

smallest ℓ1 ball, which has a diamond shape, that intersects the feasible region. In this
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example, the minimum 1-norm solution occurs at a vertex that does not correspond to a

sparse solution. Next consider the same minimization for p < 1. As p decreases from 1, the

boundaries of the ℓp ball curve inward and extend farther along the coordinate axes than

they do elsewhere. Consequently, the minimum p-norm solutions tend toward the axes, and

for p sufficiently small, the solution converges to the true sparsest solution.

ℓ1 ℓp
ℓq
ball

ballball

1-norm p-norm q-norm
p < 1 q < p

feasiblefeasiblefeasible
regionregionregion

Figure 8-1: Graphical minimization of different p-norms. The optimal solutions are indi-
cated by green circles.

The behavior seen in the preceding example can be formalized. It can be shown that

an optimal solution to (8.3.3) is also an optimal solution to (8.1.5) for p sufficiently small

but finite [29, Thm. 4]. The convergence of optimal solutions is essentially due to the

convergence of the p-norms in (8.3.2). The sufficiency of finite values of p for convergence

is due to the existence of optimal solutions of (8.3.3) at vertices of the polyhedral feasible

set, which will be justified shortly, and the finiteness of the number of vertices. The upper

bound on sufficient values for p given in [29, Thm. 4] is impractical to compute however.

The authors in [29] give little guidance regarding the choice of p beyond reporting that

reasonable values (say on the order of 0.1) can generate sparse solutions in practice.

A more significant issue with the p-norm approach is the non-convexity of the objective

function in (8.3.3) for p < 1. As a consequence, (8.3.3) is difficult to solve when p < 1.

To mitigate the lack of convexity, we propose solving a sequence of p-norm minimization

problems as opposed to a single minimization, beginning with p = 1 and decreasing p

gradually thereafter toward zero. For p = 1, (8.3.3) is a convex problem and can be solved

efficiently using linear programming to yield a global minimum. For p slightly less than
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1, one might expect that a minimum p-norm solution should be close in some sense to the

minimum 1-norm solution already determined, and therefore the latter could be a promising

initial solution toward obtaining the former. Generalizing this idea, for q slightly less than

p, a minimum p-norm solution can be used to initialize the minimization of the q-norm.

It is conjectured that if the sequence of p values decreases slowly enough, the sequence

of solutions resulting from this initialization strategy will remain globally optimal for p

significantly below 1.

The above initialization strategy can be partially justified by examining the deviation

from the optimal value when a minimum p-norm solution is evaluated in terms of the q-

norm for q < p. Suppose that a minimum p-norm solution bp has been determined, and let

bq denote a minimum q-norm solution that is desired. Then the following inequalities hold:

‖bp‖p ≤ ‖bq‖p ≤ ‖bq‖q ≤ ‖bp‖q . (8.3.4)

The outer inequalities are due to the optimality of bp and bq under their respective norms,

while the middle inequality results from the property that ‖b‖p is non-decreasing as p

decreases for fixed b. By raising all quantities in (8.3.4) to the power q, we obtain

‖bp‖qp ≤ ‖bq‖qq ≤ ‖bp‖qq ,

which implies that if bp is used to initialize the minimization of ‖b‖qq, the initial optimality

gap is no greater than ‖bp‖qq − ‖bp‖qp. Hence the optimality gap is small if q is close to

p. It should be emphasized however that closeness in objective value does not necessarily

imply closeness of the solutions bp and bq, and it is possible to construct two-dimensional

examples in which bp and bq can be arbitrarily far apart. Furthermore, the bound in (8.3.4)

relies on the global optimality of bp in terms of the p-norm, which is difficult to ensure in

practice if p < 1.

In the remainder of this section, the proposed algorithm based on sequential p-norm

minimization is developed further. In Section 8.3.1, the problem of p-norm minimization

for fixed p is analyzed and a necessary condition of optimality is derived for the case p < 1.

Based on the optimality condition, an algorithm for p-norm minimization is developed In

Section 8.3.2 along with further details of the overall sequential procedure.
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8.3.1 Analysis of p-norm minimization

We now focus on problem (8.3.3) for a fixed value of p ∈ (0, 1], which is a recurring sub-

problem in the proposed method. Problem (8.3.3) is recast into an equivalent form by using

(3.3.5) to express each coefficient bn in terms of its positive and negative parts b+n and b−n .

Under the condition that at most one of b+n , b
−
n is non-zero, i.e., b+n b

−
n = 0, we also have

|bn| = b+n + b−n (8.3.5)

for all n. Using (3.3.5), (8.3.5), and (8.3.1), problem (8.3.3) can be transformed into

min
b+,b−

F (b+,b−)

s.t. − δde ≤ A(b+ − b−)− d ≤ δde,

b+ ≥ 0, b− ≥ 0,

(8.3.6)

where the objective function F (b+,b−) is defined as

F (b+,b−) =
N−1∑

n=0

(
b+n + b−n

)p
. (8.3.7)

Problems (8.3.6) and (8.3.3) are equivalent in the sense of having the same optimal value

and a one-to-one correspondence between optimal solutions. The nonlinear constraints

b+n b
−
n = 0, n = 0, . . . , N − 1, do not have to be included in (8.3.6) because they are

automatically satisfied by all optimal solutions. The justification for this property is similar

to the one given in Section 3.3 in the paragraph following (3.3.6). As a consequence, the

feasible set for (8.3.6) is also a polytope, which we will denote as P for convenience.

When p = 1, (8.3.6) is a linear programming problem and can be solved using standard

techniques [96]. We focus therefore on the case p < 1. It can be verified that for p < 1,

the functions (b+n + b−n )
p
are concave. We may observe for instance that the Hessian of

(b+n + b−n )
p
is negative semidefinite except at b+n = b−n = 0 where it does not exist but the

function is still continuous. It follows that F (b+,b−) is a concave function and can be

shown to attain a minimum at a vertex of P [98, Prop. B.20] [29]. The location of optimal

solutions at vertices forms the basis for a simplex-like algorithm for solving (8.3.6) in the

case p < 1. This algorithm is described in Section 8.3.2.
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In the remainder of the current subsection, the vertex condition of optimality for (8.3.6)

is refined and the result is interpreted geometrically in the context of Fig. 8-1. To state

the result, we introduce some additional definitions. Given a local minimum (b+∗,b−∗) of

(8.3.6), define Y and Z to be the sets of indices n such that b+∗
n +b−∗

n > 0 and b+∗
n = b−∗

n = 0

respectively, i.e., the index sets corresponding to non-zero and zero coefficients as before.

Also define PY to be the restriction of P to the hyperplane defined by b+n = b−n = 0 for

n ∈ Z, i.e.,
PY =

{
(b+

Y ,b
−
Y ) : (b

+,b−) ∈ P; b+n = b−n = 0, n ∈ Z
}
.

The following is a further characterization of optimality for (8.3.6):

Theorem 9. If (b+∗,b−∗) is a local minimum of problem (8.3.6) with 0 < p < 1, then

∇F
(
b+∗
Y ,b−∗

Y
)T

b

+
Y − b+∗

Y

b−
Y − b−∗

Y


 > 0 ∀ (b+

Y ,b
−
Y ) ∈ PY , (b+

Y ,b
−
Y ) 6= (b+∗

Y ,b−∗
Y ), (8.3.8)

which implies that (b+∗
Y ,b−∗

Y ) is a vertex of PY .

The proof of Theorem 9 is given in Appendix E.2. The result can be regarded as a gener-

alization of the usual condition of optimality (see e.g. [98]),

∇F
(
b+∗,b−∗)T


b

+ − b+∗

b− − b−∗


 ≥ 0 ∀ (b+,b−) ∈ P. (8.3.9)

Condition (8.3.9) may not apply at a local minimum of (8.3.6) because the gradient∇F (b+,b−)

is not defined at points where b+n = b−n = 0 for some n. Theorem 9 shows that a strict version

of (8.3.9) does hold over the space of non-zero coefficients.

Theorem 9 may be interpreted geometrically using the two-dimensional example of

Fig. 8-1. According to the theorem, if an optimal solution b∗ has no zero-valued com-

ponents, i.e., Y = {0, . . . , N − 1}, then it must occur at a vertex of the polytope P. This

property can be seen in the left and centre panels of Fig. 8-1. If some of the components of

b∗ are zero, the vector formed from the non-zero components must be a vertex of a restric-

tion of P. This property is illustrated in the right panel of Fig. 8-1, in which the restriction

of the polyhedron is its intersection with the vertical axis and the optimal solution occurs

at one extremity of the restriction.
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8.3.2 Algorithm for sequential p-norm minimization

The overall algorithm combines the sequential procedure outlined at the beginning of Section

8.3 with an algorithm for p-norm minimization based on the vertex optimality condition

given in Section 8.3.1. For concreteness, we assume that p decreases according to

p(i+1) = αp(i), p(0) = 1,

where i is an index for the subproblems and α is slightly less than 1. The first instance

of (8.3.6) with p = p(0) = 1 is a linear programming problem and can be solved using any

standard solver.1 Each subsequent subproblem is initialized with the final solution to the

previous subproblem. The process terminates when p has decreased to an acceptably small

value pmin or when the solution is deemed to have converged.

To solve (8.3.6) when p < 1, we propose a local search algorithm in which the search

is restricted to the vertices of the feasible polyhedron P. In each iteration, we begin at a

vertex solution and search all adjacent vertices for lower values of the objective function

F (x). If none of the adjacent vertices have lower objective values, the algorithm terminates.

Otherwise the algorithm moves to the vertex with the lowest value and the search continues.

The local search algorithm is similar to the simplex method for linear programming

in that it searches for lower function values by moving from one vertex to another along

edges of the polyhedron. As a consequence, the algebraic characterization of vertices and

the procedure for moving between them are the same as in the simplex method. For

completeness, a summary is given of the computations involved in moving between adjacent

vertices. The reader is referred to linear programming texts (e.g. [96]) for a more complete

treatment.

For convenience and in keeping with convention, the constraints in (8.3.6) are converted

1To facilitate the initialization of the next subproblem, the linear program solver should return a vertex
solution, which is guaranteed to exist.
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to standard form, yielding

min
b+,b−,r,s

F (b+,b−)

s.t.


 A −A I 0

−A A 0 I




︸ ︷︷ ︸
C




b+

b−

r

s




︸ ︷︷ ︸
z

=


δde+ d

δde− d




︸ ︷︷ ︸
y

,

z ≥ 0,

(8.3.10)

where r and s are non-negative slack variables. In standard form, each vertex is associated

with a set B of 2K basic indices B(1), . . . ,B(2K), with the property that the square matrix

CB, composed of the columns of C indexed by B, is invertible. Denoting the corresponding

vector of basic variables
(
zB(1), . . . , zB(2K)

)
by zB, we have zB = C−1

B y and zn = 0 for all

non-basic indices n, i.e., those not in B.

A move from a given vertex z to an adjacent vertex is accomplished by increasing the

value of a non-basic variable, say with index m, and adjusting the values of the basic

variables to preserve the equality constraints in (8.3.10). The neighboring vertex is reached

when one of the basic variables becomes zero. The new vertex z′ is given by

z′B = zB − θ∆z, zm = θ, zn = 0 ∀ n /∈ B, n 6= m,

where ∆z = C−1
B Cm and

θ = min
k:∆zk>0

zB(k)
∆zk

.

The objective function F (b+,b−) may be evaluated at the new vertex by substituting those

components of z′ corresponding to the vectors b+ and b− into (8.3.7). If the new vertex

has a lower objective value and is chosen as the next iterate, the set of basic indices must

also be updated. The basic variable that has been reduced to zero leaves the basis and is

replaced by the previously non-basic variable with index m. The index of the exiting basic

variable is

l = arg min
k:∆zk>0

zB(k)
∆zk

and thus the new basis B′ is given by B′(l) = m and B′(k) = B(k) for k 6= l.
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Not every non-basic variable corresponds to an adjacent vertex. In particular, if zn is

basic and zn+N is non-basic for n ∈ {0, 1, . . . , N − 1} (i.e., a (b+n , b
−
n ) pair), then applying

the foregoing procedure with m = n+N yields a direction in which both zn and zn+N are

increased by the same amount and all other variables are unchanged. This direction does

not lead to another vertex and also results in an unbounded increase in F (b+,b−), and

therefore does not need to be considered. The case where zn+N is basic and zn is non-basic

is similar. In addition, a change of basis may not always result in a change of vertex because

of degeneracy, which we do not discuss here.

The local search algorithm may be made more efficient and numerically stable by ex-

ploiting the structure of the matrix C when inverting the matrix CB. Since N ≪ K, most

of the columns of CB are columns of a 2K × 2K identity matrix. It can be shown that he

rows of CB can be reordered to form the matrix

C̃B =


C11 0

C21 I


 ,

where C11 is square and invertible. The original system of equations corresponding to CB

may now be solved by first solving the system corresponding to C11 and then substituting

the result into the equations specified by the second row of C̃B. Since the dimension of C11

is never greater than N ×N , this alternative procedure is considerably more efficient than

the direct solution of a 2K × 2K system of equations.

In terms of overall complexity, the sequential p-norm algorithm is less complex than the

minimum-increase successive thinning algorithm discussed in Section 8.2, and can be less

complex than the smallest-coefficient successive thinning algorithm as well depending on

the value of N . The complexity of the p-norm algorithm is equivalent to a fixed number

of linear programs. More precisely, the equivalent number of linear programs depends on

the number of values of p used, but does not depend on the dimension N . In contrast, the

number of linear programs solved in the smallest-coefficient successive thinning algorithm

is linear in N .

In our experience with the algorithm, the number of non-zero coefficients decreases more

rapidly when p is near 1 and less rapidly as p decreases. Around p = 0.1, the algorithm

often converges to a solution that appears to be locally minimal for all smaller values of p

since further local searches do not generate new iterates. To determine whether additional
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coefficients can be set to zero after convergence, the successive thinning algorithm of Section

8.2 (e..g. using the smallest-coefficient rule for simplicity) can be run starting from the final

subset of non-zero coefficients resulting from p-norm minimization. This re-optimization

is occasionally able to generate one or two additional zero-valued coefficients after the p-

norm algorithm converges. In addition, the re-optimized design almost always satisfies the

frequency response constraints with non-zero margin, a benefit of the successive thinning

algorithm discussed in Section 8.2.

8.4 Branch-and-bound

In Sections 8.4–8.7, we explore at a preliminary level a branch-and-bound approach to

solving problem (8.1.5) exactly. Several of the techniques of Chapter 3 can be extended

to the Chebyshev error criterion considered in the current chapter. The computational

complexity however is significantly higher than before, albeit still polynomial except for the

diagonal relaxation as discussed in Section 8.7. Overcoming the increased complexity and

developing a full branch-and-bound algorithm for problem (8.1.5) is a potential subject for

future work.

We begin in this section by reformulating (8.1.5) to facilitate the application of branch-

and-bound. As in Section 3.1, binary variables in are used to indicate whether or not the

corresponding coefficient bn is non-zero. Thus (8.1.5) becomes

min
b,i

N−1∑

n=0

in

s.t. − δde ≤ Ab− d ≤ δde,

|bn| ≤ Bnin ∀ n,

in ∈ {0, 1} ∀ n,

(8.4.1)

in exact analogy with (3.1.1). The constants Bn must be chosen to be sufficiently large as

before; specific values are given in Section 8.6.

The mixed-integer optimization problem in (8.4.1) is solved by subdividing it into a

tree of subproblems as depicted in Fig. 3-1. In keeping with previous notation, we denote

by Z and U the sets of indices such that in = 0 and in = 1 respectively; F denotes

the set corresponding to the indicator variables that remain free. One difference from the
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quadratically constrained case in Chapter 3 is that it is no longer possible to eliminate the

coefficients in U from the subproblems. The same issue was encountered in Section 8.2.1

and appears again in Section 8.5.

Recalling the discussion in Section 3.1, the efficiency of the branch-and-bound procedure

is highly dependent on the quality of initial feasible solutions to (8.1.5) as well as the quality

of lower bounds on the optimal values of the subproblems. As seen in Section 8.8, both the

successive thinning and p-norm minimization algorithms are capable of producing sparse

solutions, which are optimal at least in some cases, and hence either algorithm is well-suited

to providing initial solutions for a branch-and-bound algorithm.

As for lower bounds, most of the techniques in Chapter 3 can be extended to yield

bounds for problem (8.1.5). In Section 8.5, we extend the methods of Section 3.2, while

the same is done in Section 8.6 for the method of linear relaxation. It will be seen that

the bounds in Section 8.5 require the solution of O(N) linear programs as opposed to the

evaluation of closed-form expressions such as (2.3.3) in Chapter 3. The determination of

a maximally tight linear relaxation in Section 8.6 also can no longer be done in closed

form and requires O(N) linear programs as well. Furthermore, while the complexity of

evaluating the bounds in Sections 8.5 and 8.6 remains polynomial in N , this is not true

for the extension of the diagonal relaxation discussed in Section 8.7. Due to the significant

increases in complexity, a complete branch-and-bound algorithm for (8.1.5) is not developed

in this thesis. Possible steps in this direction are outlined in Chapter 9.

8.5 Low-complexity lower bounds

In this section, the bounding methods of Section 3.2 are applied to problem (8.1.5) and its

subproblems. The first method involves identifying coefficients in the subset F for which a

zero value is no longer feasible. As before, the indicator variables for these coefficients can

be set to 1, i.e., the corresponding indices are moved from F to U . The cardinality of U ,
which is always a lower bound on the optimal value, increases as a result.

One way to determine whether individual coefficients can be feasibly set to zero is to

solve problem (8.2.1) for each Y of the form Y = U ∪ F\n, n ∈ F . If the optimal value

of (8.2.1) for Y = U ∪ F\n is greater than the tolerance δd, then bn = 0 is not a feasible

value since the minimal error with bn = 0 exceeds the tolerance. Checking every coefficient
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in F requires the solution of |F| linear programs. An alternative method is to determine

the minimum and maximum feasible values for each coefficient, specifically by solving the

following pair of linear programs for each n ∈ F :

min
bY

bn s.t. − δde ≤ AYbY − d ≤ δde, (8.5.1a)

max
bY

bn s.t. − δde ≤ AYbY − d ≤ δde, (8.5.1b)

where Y = U∪F . The minimum and maximum values in (8.5.1) define the interval of feasible

values and it suffices to check whether zero belongs to the interval. The second method is

less efficient than the first because it requires the solution of 2 |F| linear programs. However,

as discussed later in Section 8.6, the optimal values of (8.5.1) are also used to obtain the

tightest possible linear relaxation of (8.1.5).

The form of the linear programs (8.2.1) and (8.5.1) reflects the fact that the variables bn

for n ∈ U cannot be eliminated as in Chapter 3. As discussed in Section 8.2.1, the variables

bn, n ∈ U must remain in (8.2.1), (8.5.1), and other optimization problems because an

analytical expression for their optimal values is not available. Thus the dimensionality

reduction comes only from the zero-value constraints bn = 0 for n ∈ Z.

As noted in Section 3.2, the above tests are only necessary for subproblems generated

from a parent by fixing an indicator variable to zero since fixing an indicator variable to one

does not change the set of feasible b. In addition, the tests can be generalized to subsets

larger than a single coefficient with a corresponding increase in computation.

It can be shown that the optimal values of (8.5.1) are finite as long as the matrix A has

full rank. A slight generalization of this result verifies the earlier claim in Section 8.1 that

the polytope specified by the constraints in (8.1.5) is bounded if A has full rank. To see

this, consider the linear programming dual of (8.5.1a), given as follows:

max
p+,p−

dT (p+ − p−)− δdeT (p+ + p−)

s.t. AT
Y(p

+ − p−) = en,

p+ ≥ 0, p− ≥ 0,

(8.5.2)

where en is the nth standard basis vector. If A has full rank, then so too does AY , and this

combined with the fact that the combination p+−p− can generate any vector in RK implies
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that (8.5.2) always has a feasible solution. By linear programing duality, the optimal value

of (8.5.1a) is guaranteed to be finite [96]. A similar result holds for (8.5.1b) and indeed for

any linear function of b optimized over the same feasible set, and hence the feasible set is

bounded.

The second bounding method discussed in Section 3.2 involves determining whether

feasible solutions with small numbers of non-zero coefficients exist. This second method

again requires linear programming, unlike in Section 3.2. To determine whether the minimal

subset Y = U of non-zero coefficients is feasible, we may solve (8.2.1) with Y = U . Similarly,

determining the feasibility of Y = U ∪ {n} for all n ∈ F requires |F| linear programs.

In summary, while the methods discussed in this section were computationally simple

to implement in the quadratically constrained case, they now require substantial linear

optimizations in the present case. In Chapter 9, a possible approach to improving the

computational efficiency is suggested.

8.6 Linear relaxation

In this section, we apply the method of linear relaxation to problem (8.1.5), and more

specifically to its mixed-integer formulation in (8.4.1). Similar to the derivation in Section

3.3.1, the relaxation of the binary constraints on the indicator variables in in (8.4.1) to

unit-interval constraints allows in to be eliminated from the optimization. The resulting

problem is

min
b

N−1∑

n=0

|bn|
Bn

s.t. − δde ≤ Ab− d ≤ δde,

which is analogous to (3.3.1). Thus linear relaxation again yields a weighted ℓ1 minimization

problem whose optimal value is a lower bound on the optimal value of (8.4.1). For a general

subproblem defined by the subsets U and F , a linear relaxation takes the form

min
bY

|U|+
∑

n∈F

|bn|
Bn

s.t. − δde ≤ AYbY − d ≤ δde,
(8.6.1)
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where Y = U ∪ F . It is seen that the optimal value of (8.6.1) is in general a better lower

bound than the bound of |U| in Section 8.5.

As in Section 3.3.1, the lower bound resulting from linear relaxation can be tightened

by representing each coefficient as the difference between its positive and negative parts.

Following the same development as before leads to a relaxation that is analogous to (3.3.8):

min
bU ,b+

F ,b−
F

|U|+
∑

n∈F

(
b+n
B+

n
+
b−n
B−

n

)

s.t. − δde ≤ AUbU +AF (b
+
F − b−

F )− d ≤ δde,

b+
F ≥ 0, b−

F ≥ 0.

(8.6.2)

The split into positive and negative parts is done only for the coefficients in F since they

are responsible for the non-constant contribution to the lower bound. The coefficients in U
remain as variables in (8.6.2), continuing the pattern seen earlier in this chapter. To obtain

the tightest possible lower bound, the constants B±
n should be made as small as possible,

but must also be large enough to not impose further constraints on b+ and b− beyond the

original linear constraints in (8.1.5). It follows that the best choices for B+
n and B−

n are

given by

B+
n = max

bY

bn s.t. − δde ≤ AYbY − d ≤ δde,

B−
n = max

bY

−bn s.t. − δde ≤ AYbY − d ≤ δde,

which involve the same optimization problems as in (8.5.1) except for a sign change because

of the definition of b−n as a non-negative variable.

In Section 8.8, the lower bound of |U| and the lower bound resulting from (8.6.2) are

computed for several filter design examples. It will be seen that while the value of |U| can
account for a significant fraction of the non-zero coefficients in a solution, the additional

contribution due to linear relaxation tends to be small. The examples in Section 8.8 motivate

the development of relaxations that are better approximations to the original problem. As

discussed in the next section, strong diagonal relaxations do not appear to be tractable for

problem (8.1.5). Alternative relaxations are mentioned briefly in Chapter 9.
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8.7 Diagonal relaxation

We now consider the possibility of applying diagonal relaxation to problem (8.1.5). We first

observe that the direct substitution of a diagonal matrix for A in (8.1.5) leads to the lower

bound of |U| discussed previously in Section 8.5. With A replaced by a diagonal matrix,

the constraints in (8.1.5) become upper and lower bounds on individual components of b,

i.e., a box constraint. To obtain a lower bound on the optimal value of (8.1.5), this box

should be chosen to enclose the original feasible set. It can be seen that minimizing the

zero-norm over the smallest enclosing box yields the same result, namely the cardinality of

U , as counting the number of coefficients for which a zero value is infeasible.

A second type of diagonal relaxation involves replacing the constraint in (8.1.5) with

the diagonal quadratic constraint in (3.4.1), i.e., substituting a coordinate-aligned ellipsoidal

feasible set for the original polyhedral set. As with the box approximation above, to derive

a lower bound an ellipsoid that encloses the original polyhedron is desired. However, for

a polyhedron described by a set of linear inequalities as in (8.1.5), obtaining an enclosing

ellipsoid that is also a reasonably tight approximation is a difficult computational problem.

A natural choice might be an enclosing ellipsoid of minimal volume, but unfortunately

there are no efficient algorithms for determining a minimum-volume enclosing ellipsoid for

a polyhedron specified by linear inequalities, and indeed the problem is thought to be NP-

hard [113]. An alternative method for obtaining an enclosing ellipsoid is to first determine

the ellipsoid of maximal volume that can be inscribed in the polyhedron, which is known

to have polynomial complexity [113, 114] and can be done efficiently in practice [4, 115].

Dilating the maximum-volume inscribed ellipsoid by a factor of N is guaranteed to yield an

enclosing ellipsoid [113]. However, this dilation is unlikely to result in an ellipsoid that is

a good approximation to the polyhedron. Given the lack of appropriate algorithms, we do

not consider diagonal relaxations of (8.1.5) any further in this thesis.

8.8 Design examples

In this section, we present a number of design examples to illustrate the performance of

the algorithms in Sections 8.2 and 8.3, and also of the lower bounds in Sections 8.5 and

8.6. The first three examples in Sections 8.8.1–8.8.3 explore the dependence of the level

of sparsity on the characteristics of the desired frequency response. We consider angle-
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selective beamformers, bandpass filters, and an acoustic equalizer. For frequency-selective

filters in particular, the results suggest that the relative decrease in the number of non-zero

coefficients is smaller for higher stopband attenuations. For bandpass filters, we observe

that the sparsity does not seem to vary much with the passband center frequency except at

certain special values.

In Sections 8.8.4 and 8.8.5, we compare the algorithms of this chapter to a commercial

integer programming solver used in [3] and to a heuristic algorithm described in [1]. The

comparison with integer programming shows that our algorithms are capable of producing

optimally sparse solutions. The comparison with [1] shows that our algorithms are some-

what less adept at automatically discovering nth-band structure, but perform better on a

more generic example. Throughout this section, it is seen that the algorithms presented in

Sections 8.2–8.3 perform very similarly. In a few instances, the p-norm algorithm and the

smallest-coefficient rule give slightly worse results than the minimum-increase rule, but the

first two algorithms also have lower complexity. The examples also suggest that the lower

bounds in Sections 8.5–8.6 are not very tight.

8.8.1 Angle-selective beamformer

As is well known, the design of uniform linear beamformers is mathematically identical

to the design of discrete-time FIR filters [116]. For a length N linear array with uniform

spacing d, the beam pattern at a wavelength λ is given by

B(θ, λ) =
2N−2∑

n=0

wne
jn[ 2πd

λ
cos θ], 0 ≤ θ ≤ π, (8.8.1)

where θ is the angle from the array axis. Equation (8.8.1) has the form of a discrete-time

Fourier transform of the array weights wn with

ψ =
2πd

λ
cos θ (8.8.2)

playing the role of the frequency variable. The objective is to choose weights to approximate

a desired beam pattern. When the magnitude of the desired beam pattern is symmetric

about ψ = 0, it is typical to restrict the weights to be real and even-symmetric, in which

case the problem is equivalent to linear-phase filter design. Such symmetry occurs when
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the beam is directed normal to the array (broadside) with no nulls required at specific

angles. Moreover, beam patterns steered in other directions are frequently obtained by first

designing a symmetric broadside beam pattern and then modulating the corresponding

weights by an appropriate complex exponential. In this experiment, the beamformer is

restricted to have an odd number of elements for simplicity, i.e., only Type I linear phase

is considered.

The desired beam pattern chosen for this example has a mainlobe response that is equal

to unity over a range of angles as opposed to a single angle. The specifications for the desired

beam pattern (assumed to be symmetric) are listed in Table 8.1. In the case d = λ/2, the

width of the mainlobe region is 5◦ at broadside. Beam patterns with a relatively wide and

flat mainlobe find use in a number of contexts, which are sometimes grouped under the label

robust beamforming [117]. The mainlobe shape is motivated by the presence of uncertainty

in the direction of interest.

Table 8.1: Specifications for the beamformer example

mainlobe region 0 ≤ ψ ≤ ψp = 0.0436π

sidelobe region ψs = 0.0872π ≤ ψ ≤ π
mainlobe magnitude within ±0.5 dB of unity

sidelobe magnitude below −20, −30, −40 dB

We consider sidelobe levels of −20, −30, and −40 dB. For each sidelobe level, array

weights are designed using the successive thinning algorithms in Section 8.2 under both the

minimum-increase and smallest-coefficient rules, the p-norm algorithm in Section 8.3, and

the Parks-McClellan algorithm for comparison. For the sparse design algorithms, we allow

up to 50% more length than that required by the Parks-McClellan design. With an optimal

algorithm, sparsity is maximized by fixing the length N to the maximum allowable value as

mentioned in Section 2.1 since any solution of shorter length is feasible under the maximum

length. With heuristic algorithms however, the sparsest solution is not necessarily attained

at the maximum value of N since optimality is not guaranteed. Hence we typically try all

values of N between the Parks-McClellan length and the maximum length. Note that the

length of the final design is determined by the positions of the non-zero weights.

Table 8.2 lists the number of non-zero weights (corresponding to the number of required

physical array elements) and the array length returned by the algorithms for each sidelobe
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level. For the sparse design algorithms, the decreases in the number of non-zero weights

relative to the Parks-McClellan designs range from 15% to 33%, with the largest relative

decreases at a sidelobe level of −20 dB. Thus the greatest gains in sparsity appear to occur

at the least stringent sidelobe level. The amount of extra length used in the sparse designs

is not more than 5% of the Parks-McClellan length and can actually be zero as in the −30
dB case.

Table 8.2: Numbers of non-zero weights and array lengths for different sidelobe levels

sidelobe level [dB] algorithm non-zero weights array length (in units of d)
−20 Parks-McClellan 43 42

minimum-increase 29 44
smallest-coefficient 29 44

p-norm 29 44
feasible intervals 7 –
linear relaxation 17 –

−30 Parks-McClellan 55 54
minimum-increase 47 54
smallest-coefficient 47 54

p-norm 47 54
feasible intervals 23 –
linear relaxation 33 –

−40 Parks-McClellan 79 78
minimum-increase 65 80
smallest-coefficient 65 82

p-norm 67 78
feasible intervals 35 –
linear relaxation 45 –

Table 8.2 also shows the lower bound based on the feasible interval for each coefficient

(see Section 8.5) as well as the lower bound resulting from the linear relaxation. These lower

bounds are computed assuming the largest allowable value of N , i.e., 1.5 times the Parks-

McClellan value. At the higher attenuation levels, the bound based on feasible intervals

represents a significant fraction of the non-zero weights in the sparse solutions. The linear

relaxation however falls well short of closing the remaining gap.

In a related experiment, we fix the number of non-zero weights at the value required by

the Parks-McClellan algorithm (43, 55 and 79 for the different sidelobe levels) and determine

how much additional sidelobe attenuation can be achieved using the sparse design methods,

specifically by increasing the sidelobe attenuation in 0.1 dB increments until a design with

more than the desired number of non-zeros is obtained. Here we also allow up to 50% more
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length than required for the Parks-McClellan design. Due to their approximate nature, it

is possible that the sparse design algorithms may return a feasible design at attenuation

levels beyond the point where an infeasible design is first encountered. Hence our results

are conservative estimates of the potential improvement in attenuation. For the lower

bounding methods, we continue to increase the sidelobe attenuation until the lower bounds

also exceed the target number of non-zero weights. The attenuation levels at which this

occurs are therefore upper bounds on the true maximum attenuation.

Table 8.3 lists the sidelobe levels and array lengths yielded by the algorithms for each

number of non-zero weights. The sparse design algorithms increase the level of attenuation

by 5.3–8.8 dB over the Parks-McClellan designs, with the greatest gain in the −20 dB

case as before. Fig. 8-2 compares the beam patterns produced by the Parks-McClellan and

minimum-increase algorithms using 79 non-zero weights. We also observe that the upper

bounds in Table 8.3 from feasible intervals and linear relaxation are not particularly tight,

especially in the case of 79 non-zero weights where the gap is over 10 dB.

Table 8.3: Sidelobe levels and array lengths for different numbers of non-zero weights

non-zero weights algorithm sidelobe level [dB] array length (in units of d)
43 Parks-McClellan −20.0 42

minimum-increase −28.8 54
smallest-coefficient −28.3 52

p-norm −28.8 54
feasible intervals −33.6 –
linear relaxation −33.0 –

55 Parks-McClellan −30.0 54
minimum-increase −35.3 78
smallest-coefficient −35.3 78

p-norm −35.3 78
feasible intervals −41.4 –
linear relaxation −39.3 –

79 Parks-McClellan −40.0 78
minimum-increase −46.4 88
smallest-coefficient −46.4 88

p-norm −46.4 88
feasible intervals −59.4 –
linear relaxation −57.0 –
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Figure 8-2: Beam patterns produced by the Parks-McClellan and minimum-increase algo-
rithms given 79 non-zero weights.

8.8.2 Bandpass filters

The example in Section 8.8.1 featured a lowpass frequency response, assuming that ψ is in-

terpreted as a frequency variable. We now consider bandpass generalizations of this example

obtained by shifting the passband center frequency to non-zero values ψc. The passband

region is now defined by the interval [ψc−ψp, ψc+ψp] and its symmetric counterpart, where

ψp is the same as in Table 8.1. The stopband region consists of the intervals [0, ψc − ψs]

and [ψc+ψs, π] and their counterparts. It is assumed in this experiment that ψc > ψs. The

magnitude tolerances for the passband and stopband are as given in Table 8.1. Note that

these specifications do not correspond to modulating the array weights in Section 8.8.1 by

a complex exponential, which would yield an asymmetric response, or to modulating by a

cosine, which would likely increase the stopband error through addition.

For each center frequency and stopband attenuation level, bandpass filters are designed

using the sparse design algorithms of this chapter and the Parks-McClellan algorithm. As

in Section 8.8.1, the sparse design algorithms have access to 50% more length than the

Parks-McClellan algorithm. The lengths of the final designs however are much closer to

the Parks-McClellan lengths. Both Type I and Type II linear phase are now considered.

271



We also compute for each instance the lower bounds based on feasible intervals and linear

relaxation, again with N equal to the largest allowable value.

Fig. 8-3 shows the number of non-zero filter coefficients resulting from each of the design

and lower bounding methods. It appears that the center frequency has only a weak effect

on the sparsity in most cases. The values ψc = 0.5π and to a lesser extent ψc = 0.2π are

special cases and are discussed in greater detail below. The results of the two successive

thinning algorithms are nearly identical, while those of the p-norm algorithm are slightly

worse in a few instances. As in Table 8.2, the lower bound based on feasible intervals can

account for a significant number of non-zero coefficients, in particular at higher attenuation

levels. There is a still a sizable discrepancy however between the lower bound due to linear

relaxation and the values obtained by the approximate algorithms.

In Fig. 8-4, we examine the filter impulse responses yielded by the Parks-McClellan and

minimum-increase successive thinning algorithms for four contrasting center frequencies

and a stopband attenuation of 40 dB. Only half of each impulse response is shown, re-

indexed to allow easier comparison. We note also that the linear phase types (I or II) of

the Parks-McClellan impulse responses in Fig. 8-4 are chosen to allow direct comparison

with the sparse impulse responses and may not correspond to the number of non-zero

coefficients in Fig. 8-3, which are chosen to be minimal. In Fig. 8-4(a), the center frequency

is zero and the Parks-McClellan impulse response varies slowly. As a consequence, the

zero-valued coefficients in the sparse impulse response are concentrated near the end. The

center frequencies ψc = 0.2π and ψc = 0.5π in panels (b) and (c) are special cases. The

impulse responses of the ideal infinite-length bandpass filters with these center frequencies

have zero values at every fifth or second index respectively. Accordingly, the finite-length

Parks-McClellan impulse responses have very small values in the same positions, which are

then set to zero exactly in the sparse impulse responses. This structure accounts for the

increased sparsity seen at these center frequencies in Fig. 8-3. In Fig. 8-4(d), we show

impulse responses for a center frequency of ψc = 0.7π that does not appear to have special

properties. Compared to panel (a), the Parks-McClellan response varies more quickly and

the sparse impulse response has zero values at smaller indices.

The experiment in this subsection is intended to be a preliminary exploration of the

effect of the passband center frequency on the sparsity of bandpass filters. A finer grid of

center frequency values may be considered in future work.
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Figure 8-3: Number of non-zero coefficients returned by each design algorithm and lower
bounding method for different center frequencies.
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Figure 8-4: Impulse responses obtained using the Parks-McClellan and minimum-increase
algorithms for different center frequencies and a stopband attenuation of 40 dB. Zero-valued
coefficients are omitted.
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8.8.3 Acoustic equalizer

As an example of a filter that is not strictly frequency-selective, we consider the design

of an acoustic equalizer. In the equalization of acoustic systems such as loudspeakers and

microphones, a linear-phase discrete-time filter may be used to attain a desired magnitude

response while preserving the group delay of the original system to within a constant offset.

Specifications for the equalizer are often given in terms of upper and lower bounds on the

desired magnitude response of the overall system, which in turn specify bounds on the

magnitude response of the equalizer.

In this example, we design a sparse equalizer for use in a low-frequency portion of a

public address system for which the sampling rate is 400Hz. Two sets of specifications

are considered, corresponding to magnitude tolerances of ±0.25 dB and ±0.50 dB about an

ideal response. Fig. 8-5 depicts the desired magnitude response and the allowable range of

deviation. As in previous experiments, for the sparse design algorithms we allow 50% more

length than the minimum feasible Parks-McClellan length. Only type I linear phase is used

because the desired frequency response is non-zero at frequency π. Lower bounds on the

optimal number of non-zero coefficients are also computed.

Table 8.4 lists the number of non-zero impulse response coefficients and the number of

required delays returned by each algorithm. The reported number of delay elements assumes

a causal direct-form FIR structure. In contrast to the earlier frequency-selective examples,

a significantly larger gain in sparsity is obtained at the stricter tolerance level of ±0.25 dB.

The impulse responses plotted in Fig. 8-6 suggest why this may be reasonable. On the other

hand, the lower bounds for the ±0.25 dB case are much lower still. It seems that this is due

more to the weakness of the bounds than to the sub-optimality of the solutions we have

obtained.

The impulse responses given by the Parks-McClellan and minimum-increase algorithms

under a ±0.25 dB tolerance are shown in Fig. 8-6. The Parks-McClellan impulse response

has small values at many locations, which is exploited by the minimum-increase algorithm

to increase sparsity. In this particular example, the minimum-increase algorithm has also

introduced non-zero values at locations well beyond the support of the Parks-McClellan

response.
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Figure 8-5: Desired equalizer magnitude response and tolerances.

Table 8.4: Numbers of non-zero impulse response values and delay elements for different
equalization tolerances

tolerance [dB] algorithm non-zero impulse response values delay elements
±0.50 Parks-McClellan 45 44

minimum-increase 41 56
smallest-coefficient 41 56

p-norm 41 56
feasible intervals 27 –
linear relaxation 33 –

±0.25 Parks-McClellan 121 120
minimum-increase 81 172
smallest-coefficient 81 172

p-norm 81 174
feasible intervals 33 –
linear relaxation 45 –
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Figure 8-6: Equalizer impulse responses given by the Parks-McClellan and minimum-
increase algorithms for a magnitude tolerance of ±0.25 dB. Only half of each impulse
response is shown. Zero-valued coefficients are omitted.

277



8.8.4 Comparison with an optimal algorithm

In this subsection, it is shown that the approximate algorithms in this chapter can yield

optimally sparse solutions. We consider Examples 2 and 3 from [3] and compare our algo-

rithms to the commercial integer programming solver CPLEX that was used in [3]. Table

8.5 lists the specifications for the two examples. Example 2 corresponds to a wideband

lowpass filter and Example 3 to the first filter in an interpolated FIR cascade from [17].

Example 2 Example 3

passband edge 0.4π 0.1616π
stopband edge 0.5π 0.2224π
passband ripple 0.2 dB 0.1612 dB
stopband attenuation 60 dB 34.548 dB

Table 8.5: Specifications for Examples 2 and 3 from [3].

For the sparse design algorithms, we use 50% more length than required by the Parks-

McClellan algorithm and consider both Type I and II linear phase. Table 8.6 displays

the number of non-zero impulse response values and the number of delays returned by the

algorithms. The results indicate that the approximate algorithms are capable of producing

optimal designs with significantly less complexity compared to integer programming. The

numbers of non-zero coefficients that we obtained using integer programming are slightly

higher than those from [3]. The discrepancy is likely due to a larger number of frequency

domain constraints used in the approximation of the semi-infinite constraint in (8.1.3). It is

also seen that the lower bounds based on feasible intervals and linear relaxation are rather

loose for these two examples.
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example algorithm non-zeros delays

2 Parks-McClellan 48 47
integer programming 43 50
minimum increase 43 50
smallest coefficient 45 50

p-norm 43 50
feasible intervals 18 –
linear relaxation 24 –

3 Parks-McClellan 56 55
integer programming 46 57
minimum increase 46 55
smallest coefficient 46 55

p-norm 46 55
feasible intervals 24 –
linear relaxation 32 –

Table 8.6: Results for Examples 2 and 3 from [3].

8.8.5 Comparison with the heuristic algorithm of [1]

We now present an example in which the approximate algorithms of this chapter perform

significantly worse than an alternative heuristic algorithm proposed in [1], which implies

that our algorithms can yield solutions that are far from optimal. The specific example

from [1] is a lowpass filter with a passband edge of 0.26π and a stopband edge of 0.40π.

The number of non-zero impulse response coefficients is fixed to different values and the

objective is to minimize the passband and stopband ripple assuming equal weighting.

The midpoint between the band edges in this example is 0.33π ≈ π/3, and hence the

desired filter is close to a third-band filter. An ideal nth-band filter has the property that

every nth coefficient in the impulse response is equal to zero except for the central coefficient.

This property was exploited in [25] to pre-determine the positions of zero-valued coefficients

for filters with approximately nth-band characteristics. In the case of the present example,

the algorithm of [1], which is based on orthogonal matching pursuit (OMP), was able to

automatically discover the approximate third-band structure and determine the positions

of the given non-zero coefficients accordingly (two non-zero followed by one zero). Thus the

resulting filters are effectively 1.5 times the length of a Parks-McClellan design with the

same number of non-zero coefficients and the ripple levels are consequently much lower.

Motivated by the results in [1], we apply the algorithms developed in this chapter to the
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same example. For each number of non-zero coefficients, the ripple level is initialized at the

Parks-McClellan value and is decreased in increments of 0.1 dB until the algorithms return

a solution with more than the specified number of non-zeros. The final ripple levels are

compared against those obtained by explicitly enforcing the third-band structure as done

in [25], i.e., by constraining every third coefficient to zero and choosing the non-zero values

in between to minimize the ripple. Since the third-band design requires 1.5 times the length

of the Parks-McClellan design, we allow the same length for the successive thinning and

p-norm algorithms. We restrict attention to Type I linear-phase filters to conform with [1].

In Table 8.7, we report the ripple levels achieved by each of the design methods. In cases

where the approximate algorithms fail to improve upon the Parks-McClellan ripple level,

we give either the Parks-McClellan value or the value for the same algorithm using fewer

non-zero coefficients, whichever is lower. It is seen that the third-band constraint results

in substantial improvements over the Parks-McClellan designs. Furthermore, the ripple

values corresponding to the two lower bounding methods show that the third-band solutions

are either optimal or close to optimal. For small numbers of non-zero coefficients, the

approximate algorithms are able to keep pace with the third-band method. The minimum-

increase algorithm, being the most complex, tracks the third-band values the longest. The

two less complex approximate algorithms fall off sooner. All of our algorithms perform

worse than the OMP algorithm of [1], which replicates all of the third-band values.

non-zero coefficients 11 21 31 41 51 61 71 81
Parks-McClellan −19.5 −30.2 −40.8 −53.7 −62.2 −72.8 −84.6 −92.7

third-band −22.4 −39.0 −54.1 −69.0 −83.1 −98.4 −111.6 −127.1
minimum-increase −22.4 −39.0 −54.1 −69.0 −83.1 −98.4 −109.9 −109.9
smallest-coefficient −22.4 −39.0 −54.1 −69.0 −75.0 −75.2 −84.6 −92.7

p-norm −22.4 −39.0 −54.1 −54.1 −62.2 −73.1 −84.9 −95.0
feasible intervals −22.4 −39.6 −54.4 −69.1 −83.9 −98.5 −112.8 −127.5
linear relaxation −22.4 −39.0 −54.1 −69.1 −83.9 −98.4 −112.7 −127.4

Table 8.7: Ripple levels in dB for the first example from [1].

The preceding example suggests that the successive thinning and p-norm algorithms

are less suited to identifying nth-band structure than the OMP algorithm. Conversely,

our algorithms perform better on a less specialized example, also from [1]. In this second

example, the passband edge is increased to 0.39π while the stopband edge remains at

0.40π. The ripple level is now given, again with equal weighting, and the number of non-
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zero coefficients is to be minimized. Following [1], we focus on Type I linear phase and

use only the lengths required by the OMP algorithm. Table 8.8 shows the number of non-

zero coefficients given by the different algorithms. The successive thinning and p-norm

algorithms are able to reduce the number of non-zero coefficients significantly relative to

both the Parks-McClellan and OMP algorithms, in some cases more than halving the Parks-

McClellan number.

ripple level [dB] 7 8 9 10 13 16 20 25

Parks-McClellan 13 21 29 39 69 101 145 205
OMP 11 15 23 27 49 73 115 173

minimum-increase 9 13 17 21 33 49 77 121
smallest-increase 9 13 17 21 35 49 79 121

p-norm 9 13 17 25 39 51 77 127

Table 8.8: Numbers of non-zero coefficients for the second example from [1].
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Chapter 9

Conclusions and future work

In this thesis, we have considered the design of discrete-time filters according to measures

of complexity that can be more closely aligned with the actual implementation cost as

compared to a more conventional measure based on the total number of filter coefficients. A

large part of the thesis focused on reducing the number of non-zero coefficients, motivated by

the savings in computation, power consumption, hardware, or communication resulting from

the elimination of operations involving zero-valued coefficients. Sparsity can be particularly

important in the context of sensor arrays since the array elements can be expensive to

manufacture or operate. The methods developed to increase coefficient sparsity were also

extended to measures of complexity based on the number of bits in quantized representations

of the filter coefficients. Specifically, we focused on the number of non-leading-zero bits in a

sign-magnitude binary representation and the number of signed powers-of-two in a canonic

signed digit representation.

The thesis also addressed a variety of basic filtering tasks. In particular, it was shown

that the problems of weighted least-squares frequency response approximation, signal es-

timation, and signal detection could be unified under a single framework centered on a

quadratic measure of performance. The approximation of frequency responses under a

Chebyshev error criterion was also considered. Applications presented in the thesis in-

cluded the design of efficient equalizers for multipath communication channels, a range

of frequency-selective and frequency-shaping filters, and minimum-variance distortionless-

response beamformers.

In nearly all cases, the design problems studied in the thesis are computationally difficult
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to solve. Several exceptions were identified in the case of a quadratic performance criterion.

Specifically, it was seen that the diagonal, block-diagonal, and banded cases could be solved

efficiently using greedy algorithms or dynamic programming. We focused in particular on

the diagonal case, exploiting it to develop approximations.

The difficulty of the design problems in the general case motivated two basic approaches.

In the first approach, the computational complexity of the design algorithms was constrained

to be low. The various successive thinning algorithms, the sequential p-norm algorithm,

and the heuristic bit reduction algorithms fall into this category. Many alternative low-

complexity algorithms can be found in the literature. One of the contributions of this thesis

is the attention paid to efficient implementations, particularly for the successive thinning

and p-norm algorithms. The thesis also demonstrated through several experiments and

examples that the successive thinning and p-norm algorithms often yield optimal or near-

optimal designs. Hence these algorithms can be used with some confidence to design sparse

filters when computation is limited, as for example in an adaptive setting. The evidence for

near-optimality is less extensive for the heuristic bit reduction algorithms, largely because

optimal solutions are very difficult to obtain.

The main weakness of most low-complexity algorithms is the lack of an estimate of the

deviation from the true optimum. This weakness is addressed in the thesis by pursuing opti-

mal algorithms, which are useful for determining fundamental limits in addition to ensuring

optimal solutions. We focused in particular on branch-and-bound, a general procedure for

combinatorial optimization that can often result in high computational complexity. This

thesis emphasized techniques to reduce the complexity of branch-and-bound in the context

of the filter design problems considered. More specifically, we concentrated on developing

lower bounds on the optimal cost that can be leveraged effectively by the branch-and-bound

algorithm.

The first class of bounds is based on determining the range of candidate values sepa-

rately for each coefficient. We then check whether the range includes zero in the case of

sparse design, or determine the value of minimum cost in the case of bit-efficient design.

While the bounds based on candidate ranges are simple to compute, stronger bounds are

usually desired. Toward this end, we developed two classes of relaxations, one based on

linearization, the other on the diagonal case. The solutions to these relaxations yield lower

bounds on the optimal value of the original problem. Of the two types of relaxations,
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linear relaxations are more standard and our experiments have shown that they can make

branch-and-bound more efficient in the case of the non-leading-zero (NLZ) bit minimization

problem. However, similar experiments indicate that linear relaxations appear to be only

marginally beneficial for the signed power-of-two (SPT) minimization problem and not at

all for sparsity maximization.

Diagonal relaxations on the other hand are more specific to the quadratic formulation

that we considered and were shown to be more successful overall at improving efficiency.

The use of diagonal relaxations can be viewed as an instance of a broader approach in

which the solution to a special case is exploited to approximate and help solve the problem

in the general case. A key to achieving an overall reduction in complexity is the avail-

ability of efficient methods for solving diagonal relaxations, and several techniques in this

vein were discussed in the thesis. To characterize the approximation quality of diagonal

relaxations, both analytical and numerical methods were employed and the dependence on

problem parameters was investigated. The analysis and experiments showed that the ap-

proximation tends to be better when the matrix Q in the original problem is near-diagonal,

well-conditioned, or has an eigenvalue distribution weighted toward small values. In the

case of bit-efficient design, the lower bounds are also stronger in a relative sense for larger

wordlengths. Within these general trends however, the quality of approximation can also

depend on more detailed properties and further investigation may be necessary when spe-

cializing to a particular class of problem instances.

With the efficiency improvements made in this thesis to branch-and-bound, the design of

optimally sparse filters under a quadratic performance constraint can be seen as a tractable

problem even in moderately high dimensions, say up to 80 or 100. In situations that demand

low-complexity algorithms such as with adaptive design, the value of the branch-and-bound

algorithm lies in providing a computable benchmark against which the algorithms to be

used in practice can be compared. For larger and more difficult problems, the branch-and-

bound algorithm can be terminated early as done in some of the examples in the thesis,

yielding a bound on the deviation from optimality in addition to what is in many cases a

near-optimal solution. This bound is the main advantage of branch-and-bound under early

termination compared to a heuristic algorithm, which provides solutions without guarantees.

The typical behavior of branch-and-bound is such that the bound can often be made fairly

tight in many fewer iterations than that required to certify optimality exactly.
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Bit-efficient design on the other hand is a considerably more difficult problem and the

development of design algorithms is consequently less mature. This thesis has demonstrated

that lower bounds and relaxations can aid significantly in reducing computational complex-

ity. However, with the current implementation in MATLAB, the solution of most problems

of dimension greater than a few tens is not possible within a few hours of computation. This

situation would undoubtedly be improved by implementing the algorithm in a more efficient

(but less development-friendly) programming language such as C. Nevertheless, the intrinsic

complexity of the problem remains very high, especially when the performance specification

is loose enough to allow hundreds or even thousands of potential quantized values for each

coefficient. It may be necessary therefore to reconsider the branch-and-bound framework

that we have used.

Optimal algorithms for sparse filter design under a Chebyshev constraint have only been

addressed at a preliminary level in the thesis. Possibilities in this direction are mentioned

in the next section.

9.1 Future work

This thesis has focused on designing FIR filters and specifically those implemented in direct

form. The extension of the complexity measures considered to other filter structures and

to IIR filters could be of significant interest. Optimal design according to the measures of

performance used in this work is likely to be difficult. That does not preclude however the

development of design algorithms that are successful in practice. Furthermore, alternative

performance measures may be defined to make the problem more tractable mathematically

while still being relevant to applications.

Our presentation has focused mainly on real-valued filter coefficients. The quadratic

framework of Chapters 2–7 can be modified as indicated in Section 2.1.2 to handle complex-

valued coefficients provided that the real and imaginary parts are regarded as being inde-

pendent. However, it is sometimes desirable to treat a complex value as a single unit;

this appears to be necessary to reduce the complex-valued version of the detection prob-

lem in Section 2.1.3 to the canonical formulation. Moreover, applications such as channel

equalization and beamforming are frequently formulated in terms of complex values. The

complex-valued generalization of the algorithms of Chapters 2–7 is therefore deserving of
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further attention. Some of the techniques may be generalized with little effort. Other tech-

niques such as linear relaxation and the use of candidate ranges in Section 6.2 are closely

tied to real values and may need to be reformulated in terms of the complex modulus. The

methods of Chapter 8 could also be extended to the complex case, which would encompass

nonlinear-phase filters with real-valued coefficients in addition to filters with complex-valued

coefficients. It is likely that the linear optimization framework used in Chapter 8 would be

generalized to quadratic or second-order cone optimization.

From an optimization point of view, the development of relaxations and bounds is

perhaps the main contribution of this work and is also a potentially rich area for future

study. For the problem of quadratically constrained sparse filter design, an intriguing

possibility is to consider relaxations based on the other special cases in Section 2.2, and

especially the tridiagonal case which is known to be efficiently solvable. While it was

tractable computationally to determine the best possible diagonal relaxation, it is unclear

whether this is still the case for tridiagonal relaxations. Hence an alternative criterion

such as minimum volume may need to be adopted. It may also be possible to devise more

efficient algorithms for higher-bandwidth cases (pentadiagonal and so forth) and thereby

obtain higher-bandwidth relaxations. Specifically, there may be a connection between the

higher-bandwidth case and the junction tree algorithm [118], which aggregates nodes in a

graphical model into supernodes before performing inference. Alternative relaxations could

be of even greater importance for bit-efficient design given its higher difficulty compared

to sparse filter design. Such relaxations may require the identification of additional special

cases to exploit.

The existing relaxations are also a source of future work. One interesting idea is to com-

bine the linear and diagonal relaxations in such a way that the new relaxation is stronger

than either alone. A straightfoward but somewhat inefficient way is to solve both relaxations

and then take the maximum of the resulting lower bounds. For the diagonal relaxation of

(2.0.1), more analysis can be done to understand in particular the dependence on the eigen-

value distribution of Q, possibly using a stochastic approach instead of the deterministic

approach taken in Section 3.4. An alternative to the minimum volume criterion used in

Section 6.4.1 may be considered for the diagonal relaxation of problems (5.1.1) and (5.1.2).

Linear relaxations may benefit from having more specialized and efficient solvers such as

the ones used for the diagonal relaxations.
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It is clear from Chapter 8 that an optimal algorithm for sparse filter design under a

Chebyshev constraint has yet to be fully developed, and specifically one that is tailored

to the problem and not a general-purpose solver such as CPLEX. It appears that this will

require relaxations that are more powerful than the linear relaxation in Section 8.6. Higher-

order generalizations of linear relaxations have been developed in the integer optimization

literature [citations] and these could be applied to the mixed-integer formulation (8.4.1).

Another possibility is to rewrite the binary constraint on the indicator variables in (8.4.1)

as the quadratic constraint i2n − in = 0, and then apply semidefinite relaxations to the

resulting non-convex quadratic program [119,120]. These relaxations could be applied to the

quadratically constrained problem (3.1.1) as well. The currently high computational cost of

evaluating the bound in Section 8.5 and determining the tightest possible linear relaxation

could be addressed by developing an efficient specialized solver for linear programs in which

the constraints are known to represent frequency domain specifications. Such a solver would

also benefit the successive thinning algorithms in Section 8.2. As one example of what

could be exploited, multiplication by the matrix A defined in (8.1.4a), which transforms a

coefficient vector b into mostly uniformly-spaced samples of the frequency response, could

be implemented more efficiently using the FFT.

From the perspective of design applications, more careful studies could be done to

determine the effect of various specifications and problem characteristics on the expected

level of sparsity or the expected number of bits. For example, the dependence on attenuation

levels and passband center frequencies for frequency-selective filters was explored only at

a preliminary level in Section 8.8. It would also be interesting to understand how sparse

or bit-efficient an equalizer may be made for a channel that does not already have an

approximately sparse response. As for the heuristic algorithms, it was seen in Section 8.8.5

that one situation in which they do not perform as well is the case of approximate nth-band

filters. It would be desirable to identify additional cases in which they fail and to evaluate

their performance more thoroughly.

More broadly, the methods developed in this thesis could have applications beyond

signal processing that fall within a similar mathematical framework. Subset selection for

linear regression [93] is one such example, portfolio optimization [121] may be another.

288



Chapter 10

Evolution of the thesis

This thesis has as its immediate ancestor Tom Baran’s master’s thesis [122], in particular

his work on using 1-norm minimization to design sparse filters subject to a Chebyshev

constraint on the frequency response. Inspired by Tom’s work, the first part of this thesis

to emerge was the successive thinning algorithm of Section 8.2, which was intended as an

alternative heuristic. This was followed by the p-norm algorithm in Section 8.3 as a natural

extension of the 1-norm approach. So Chapter 8 is really the first chapter chronologically.

Early publications [111,112] were the source of many of the design examples in Section 8.8.

A branch-and-bound algorithm and the lower bounding methods of Sections 8.5 and 8.6

suggested themselves fairly early on, but these are fairly standard techniques and it was

unclear how the structure of the filter design problem could be exploited.

Also early in the Ph.D., Al Oppenheim suggested expanding the scope to include bit

sparsity for finite-precision representations as well as coefficient sparsity. It was through

an exploration of the literature in discrete-coefficient filter design that the idea of enclosing

shapes, specifically boxes and ellipsoids, began to take hold. The literature review also led

to a focus on the CSD representation. The thesis then started drifting toward quadratic

performance criteria, initially still tied to frequency response approximation as before. This

drift was fortunate since the quadratic version of the problem proved to be much more

fruitful and accessible to analysis. A suggestion from Petros Boufounos in a DSPG meeting

triggered an important generalization to filter design for signal detection and estimation.

Thus the quadratic framework of Chapters 2–7 was born. A very productive period followed

in which the diagonal relaxation was developed (the tractability of obtaining the tightest
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possible diagonal relaxation was a nice coup), and an efficient solver for diagonal relaxations

as well as a branch-and-bound algorithm were implemented in MATLAB. The theoretical

analysis of the diagonal relaxation took a longer time to mature and the process is still

ongoing. More careful analysis of the linear relaxation and work on special cases were

spurred by the presentation of preliminary results at ICASSP and by interaction with

Charles Sestok.

Although bit complexity had been a theme in the thesis for a long time, the real work

on bit-efficient design in Chapters 5–7 was only begun after the framework and results for

quadratically-constrained sparse design were established. Because of this precedent, the

work proceeded very quickly. It is apparent that each section in Chapters 5–7 has as its

parallel and draws upon the corresponding section in Chapters 2–4.

The numerical experiments and design examples in Chapters 4 and 7 were the last part

of the puzzle to fall into place. These turned out to be richer than first envisioned, at

least for sparse design, and made the thesis more complete and satisfying. The design

experiments were facilitated by collaboration and discussion with Xue Feng, Ballard Blair,

and Jon Paul Kitchens. To anyone who has completed a Ph.D. thesis, it may not come as

a surprise that the last experiments to make it into the thesis finished only a day before

submission.

After thesis submission comes optimal relaxation.
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Appendix A

Derivations and proofs for Chapter

2

A.1 Enumeration of the subsets required in the algorithm

of [2] for penta-diagonal Q

In this appendix, we determine the number of subsets that must be evaluated in the dynamic

programming algorithm of [2] for the case of penta-diagonal Q. In the penta-diagonal case

(W = 2), the subsets to be enumerated have the property that when the indices in a

subset are listed in order (increasing or decreasing), any two indices that are adjacent in

the sequence differ by at most 2. For example, the subset {3, 5, 7} is permissible while

{3, 6, 7} is not.

We use three numbers to parameterize the subsets: the cardinalityM , the smallest index

i, and the number ℓ of index values spanned by the subset, i.e., the difference between

the largest and smallest indices plus one. We assume that (2.2.1) is to be evaluated for

N − K = 1, . . . ,M0, so that M ranges from 1 to M0. We also assume that M0 grows

proportionally to N . For a fixed value of M , ℓ can range from M to min(2M − 1, N). The

lowest value for ℓ corresponds to all indices being consecutive in value, while the highest

value corresponds to each index differing by two from its neighbors, subject to not exceeding

the maximum span of N . For a fixed value of ℓ, i can range from 1 to N − ℓ+ 1.

We first determine the number of subsets having cardinality M and span ℓ. To simplify

the counting argument, we represent the indices belonging to a subset by ones and the
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indices not belonging to the subset but falling within its span by zeros. Thus the problem

is equivalent to counting the number of ways of ordering M ones and ℓ−M zeros such that

no two zeros are adjacent. It follows that a one must be placed between every pair of zeros

and also at either end, as otherwise the span would be less than ℓ. This fixes the locations

of ℓ−M + 1 of the ones relative to the zeros and leaves 2M − ℓ− 1 ones remaining to be

placed. There are ℓ−M+1 distinct positions for the remaining ones, defined relative to the

positions of the zeros (e.g. before the first zero, between the first and second zeros, etc.).

By a classical result from combinatorics (see e.g. [123]), the number of distinct orderings is

given by (
(2M − ℓ− 1) + (ℓ−M + 1)− 1

(ℓ−M + 1)− 1

)
=

(
M − 1

ℓ−M

)
. (A.1.1)

The total number of subsets, T , is equal to the sum of the quantity in (A.1.1) over all

possible values of M , ℓ, and i. Since there is no dependence on i,

T =

M0∑

M=1

min(2M−1,N)∑

ℓ=M

(N − ℓ+ 1)

(
M − 1

ℓ−M

)
. (A.1.2)

If M0 ≤ ⌈N/2⌉, then min(2M − 1, N) = 2M − 1 for every value of M in (A.1.2). For

M0 > ⌈N/2⌉, we decompose the sum over M into two sums as follows,

T =

⌈N/2⌉∑

M=1

2M−1∑

ℓ=M

(N − ℓ+ 1)

(
M − 1

ℓ−M

)
+

M0∑

M=⌈N/2⌉+1

N∑

ℓ=M

(N − ℓ+ 1)

(
M − 1

ℓ−M

)
,

and then discard the second sum in order to obtain a lower bound on T . In either case we

have

T ≥
M ′

0∑

M=1

2M−1∑

ℓ=M

(N − ℓ+ 1)

(
M − 1

ℓ−M

)

=

M ′
0∑

M=1

M−1∑

ℓ=0

(N + 1−M − ℓ)
(
M − 1

ℓ

)
, (A.1.3)

where M ′
0 = min(M0, ⌈N/2⌉) and the second line is obtained from the first via the change

of variables ℓ −M → ℓ. The summations in (A.1.3) can now be evaluated using standard
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formulas such as

M−1∑

ℓ=0

(
M − 1

ℓ

)
= 2M−1,

M−1∑

ℓ=0

ℓ

(
M − 1

ℓ

)
= (M − 1)2M−2,

yielding

T ≥
(
N + 3− 3

2
M ′

0

)
2M

′
0 −N − 3. (A.1.4)

Since M ′
0 = min(M0, ⌈N/2⌉) and we have assumed that M0 scales linearly with N , the

number of subsets T grows at least as fast as N · 2αN for some constant fraction α.

A.2 Proof of Theorem 1

First, by interchanging x1 and x2 in (2.2.13) we infer that

‖x1‖0 = ‖x2‖0 =⇒
∥∥T−1x1

∥∥
0
=
∥∥T−1x2

∥∥
0
∀ x1,x2 ∈ RM . (A.2.1)

Consider a vector x1 for which ‖x1‖0 = 1. If
∥∥T−1x1

∥∥
0
= 0, then (A.2.1) implies that

T−1em = 0 for all standard basis vectors em, m = 1, . . . ,M, and therefore T−1 = 0,

contradicting the fact thatT−1 is a left-inverse. If
∥∥T−1x1

∥∥
0
> 1, then according to (2.2.13),

∥∥T−1x
∥∥
0
> 1 for all non-zero x ∈ RM and T−1 is not surjective, again contradicting the

left-inverse property. Hence we must have
∥∥T−1x

∥∥
0
= 1 for all x with a single non-zero

component, and in particular for x = em, m = 1, . . . ,M . This implies that each column of

T−1 is a non-zero multiple of a standard basis vector en in RN . In the case M = N , no

two columns of T−1 can be multiples of the same standard basis vector as otherwise T−1

would not be a surjection. Since each column of T−1 is a multiple of a different standard

basis vector, T−1 can be transformed into a diagonal matrix by a permutation, and T is

therefore a composition of a permutation and a diagonal scaling. In the case M > N , there

must be two columns of T−1, say columns m1 and m2, that are multiples of each other.

Then by choosing a multiplier a to produce cancellation, we have

‖em1 + aem2‖0 = 2 and
∥∥T−1 (em1 + aem2)

∥∥
0
= 0,

which together with ‖em1‖0 =
∥∥T−1em1

∥∥
0
= 1 violates (2.2.13). Thus it is not possible to

meet the desired criteria with M > N .
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A.3 Derivation of subproblem parameters

In this appendix, we show that an arbitrary subproblem defined by subsets (Z,U ,F) can be

reduced to the form in (2.3.1), which is a lower-dimensional version of the original problem

(2.0.1). Recall that the subset Z represents the coefficients that have been constrained to a

value of zero, U represents the coefficients designated as being non-zero in the cost function,

and F represents the remaining coefficients. The assignment of coefficients to U can either

be by necessity because a zero value is no longer feasible, or by choice in the context of the

branch-and-bound procedure. We derive expressions for the parameters of the subproblem

in terms of the original parameters Q, c and γ.

We first consider the two special cases U = ∅ and Z = ∅ and then combine the results to

arrive at the general case. For the case U = ∅, the subset F is equal to Y, the complement

of Z, and the quadratic constraint with bn = 0 for n ∈ Z is given by (2.2.2). By completing

the square, (2.2.2) can be rewritten as

(
bY − cY − (QYY)

−1QYZcZ
)T

QYY
(
bY − cY − (QYY)

−1QYZcZ
)
≤ γ − cTZ(Q/QYY)cZ .

Comparing this with (2.1.1), we see that the subproblem defined by (Z, ∅,Y) can be for-

mulated as

min
bY

‖bY‖0 s.t.
(
bY − c′Y

)T
QYY

(
bY − c′Y

)
≤ γeff , (A.3.1)

with c′Y = cY + (QYY)−1QYZcZ and γeff = γ − cTZ(Q/QYY)cZ . Problem (A.3.1) is a

lower-dimensional instance of (2.0.1) with Q replaced by QYY , c by c′Y , and γ by γeff .

Next we consider the case Z = ∅. Since the variables bn for n ∈ U have been designated

as being non-zero, the zero-norm ‖b‖0 may be rewritten as |U| + ‖bF‖0. Problem (2.0.1)

becomes

|U|+ min
bU ,bF

‖bF‖0 s.t.
[
(bU − cU )T (bF − cF )T

]

QUU QUF

QFU QFF




bU − cU

bF − cF


 ≤ γ,

(A.3.2)

where we have partitioned Q, b, and c according to the subsets F and U . The variables

bn, n ∈ U , appear in the constraint in (A.3.2) but not in the objective. Thus we are free

to choose a value for bU without regard to its cost since it is already accounted for by the

term |U|. In the interest of minimizing ‖bF‖0, it is best to choose bU as a function of bF
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to maximize the margin in the constraint, thereby making the set of feasible bF as large as

possible. This is equivalent to minimizing the left-hand side of the constraint with respect

to bU while holding bF constant. By a calculation similar to the one made in deriving

(2.2.3) from (2.2.2), we obtain

b∗
U = cU − (QUU)

−1 QUF(bF − cF ) (A.3.3)

as the minimizer. Substituting (A.3.3) into (A.3.2) results in

|U|+ min
bU ,bF

‖bF‖0 s.t. (bF − cF )T (Q/QUU)(bF − cF ) ≤ γ, (A.3.4)

where the Schur complement Q/QUU = QFF −QFU (QUU)
−1 QUF . Problem (A.3.4) is of

the same form as (2.0.1) with |F| variables instead of N , Q/QUU in place of Q, cF in place

of c, and γ unchanged.

For a general subproblem defined by (Z,U ,F) with U 6= ∅ and Z 6= ∅, we may start

from (A.3.1), which corresponds to the subproblem (Z, ∅,F), and then apply the same

reductions as in the case Z = ∅, treating (A.3.1) as the original problem. Thus QYY , c′Y ,

and γeff in (A.3.1) play the roles of Q, c, and γ in (2.0.1). Transforming (A.3.1) in the

same way as (2.0.1) was transformed into (A.3.4) and noting that Y = U ∪ F , we arrive at

(2.3.1) with effective parameters given by

Qeff = QYY/QUU = QFF −QFU (QUU)
−1 QUF , (A.3.5a)

ceff = cF +
(
(QYY)−1QYZcZ

)
F = cF + (Qeff)

−1
(
QFZ −QFU (QUU)−1QUZ

)
cZ ,

(A.3.5b)

γeff = γ − cTZ(Q/QYY)cZ . (A.3.5c)

The second equality in (A.3.5b) is obtained by expressing QYY as a 2 × 2 block matrix

corresponding to the partition Y = U ∪F and applying the formula for the inverse of a 2×2

block matrix to (QYY)−1. Equations (A.3.5) with the second form of (A.3.5b) are identical

to (2.3.2). We may also define feff = Qeffceff in analogy with f = Qc. It can be shown that

feff = fF −QFU(QUU )−1fU . (A.3.6)
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Appendix B

Derivations and proofs for Chapter

3

B.1 Derivation of (3.3.3)

This appendix shows how (3.3.3a) is derived; the derivation of (3.3.3b) is similar. Let

b∗ denote an optimal solution to the maximization in (3.3.3a). The Karush-Kuhn-Tucker

optimality condition (see [98]) for (3.3.3a) is given by

en = λQ(b∗ − c), (B.1.1)

where λ is a non-negative Lagrange multiplier. Since (B.1.1) implies that λ cannot be zero,

(B.1.1) can be inverted to yield

b∗ − c =
1

λ
Q−1en. (B.1.2)

A non-zero value for λ also implies that the constraint in (3.3.3a), i.e., constraint (2.1.1),

must be met with equality. Substituting (B.1.2) into (2.1.1) to solve for λ,

1

λ2
eTnQ

−1en =
1

λ2
(
Q−1

)
nn

= γ,

λ =

√(
Q−1

)
nn

γ
.
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Hence

b∗ = c+

√
γ(

Q−1
)
nn

Q−1en

and the maximum value is given by the nth element of b∗, i.e.,

max
{
bn : (b− c)TQ(b− c) ≤ γ

}
= eTnb

∗ = cn+

√
γ(

Q−1
)
nn

eTnQ
−1en = cn+

√
γ
(
Q−1

)
nn
.

B.2 Derivation of the dual of the linear relaxation (3.3.8)

We refer the reader to [98] for background in duality theory in optimization. The Lagrangian

for problem (3.3.8) can be written as

L = (g+ − µ+)Tb+ + (g− −µ−)Tb− +
λ

2

(
(b+ − b− − c)TQ(b+ − b− − c)− γ

)
, (B.2.1)

where g+n = 1/B+
n and g−n = 1/B−

n for all n, and λ, µ+, and µ− are non-negative Lagrange

multipliers. The general form of the dual problem is

max
λ,µ+,µ−

min
b+,b−

L. (B.2.2)

We show that it is only necessary to consider µ+, µ− satisfying g+−µ+ + g−−µ− = 0 in

the outer maximization. Suppose that there is an index n for which g+n −µ+n +g−n −µ−n 6= 0.

Let b+ = αen + c/2 and b− = αen − c/2 with α an arbitrary real number, so that

b+ − b− − c = 0. Then (B.2.1) becomes

L = α(g+n − µ+n + g−n − µ−n ) +
1

2

(
(g+ − µ+ − g− + µ−)T c− λγ

)
,

which is affine in α. By taking α to +∞ or −∞, the value of the inner minimization in

(B.2.2) approaches −∞ and therefore does not need to be considered in the outer maxi-

mization. Henceforth we assume that g+ − µ+ + g− − µ− = 0.

The case λ = 0 can also be excluded from the maximization in (B.2.2). If λ = 0, the

value of the minimization over b+, b− is −∞ unless g+ − µ+ = g− − µ− = 0, in which

case the value is zero. As will be seen, the value of the outer maximization is at least equal

to zero, so the case λ = 0 does not have to be considered further.
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The first-order optimality condition for the minimization in (B.2.2) reads


g

+ − µ+

g− − µ−


+ λ


 Q −Q
−Q Q




b

+∗ − c

b−∗


 = 0.

Given that g+ − µ+ + g− − µ− = 0, the second row is the negative of the first and hence

is redundant. For λ > 0, the first row can be solved to yield

b+∗ − b−∗ − c = − 1

λ
Q−1(g+ − µ+). (B.2.3)

Substituting (B.2.3) into (B.2.1),

L = (g+ − µ+)T (b+∗ − b−∗) +
1

2λ
(g+ − µ+)TQ−1(g+ − µ+)− λγ

2

= (g+ − µ+)T
(
c− 1

λ
Q−1(g+ − µ+)

)
+

1

2λ
(g+ − µ+)TQ−1(g+ − µ+)− λγ

2

= cT (g+ − µ+)− 1

2λ
(g+ − µ+)TQ−1(g+ − µ+)− λγ

2
.

We have now reduced (B.2.2) to

max
λ,µ+,µ−

cT (g+ − µ+)− 1

2λ
(g+ − µ+)TQ−1(g+ − µ+)− λγ

2

s.t. g+ − µ+ + g− − µ− = 0,

λ > 0, µ+ ≥ 0, µ− ≥ 0.

Making the change of variables µ = g+ − µ+, this can be rewritten as

max
λ,µ

cTµ− 1

2λ
µTQ−1µ− λγ

2

s.t. − g− ≤ µ ≤ g+,

λ > 0.

(B.2.4)

The maximization over λ can be solved independently while holding µ fixed, resulting in

λ∗ =
√
γ−1µTQ−1µ.

Substituting λ = λ∗ in (B.2.4) yields the final form in (3.3.9).
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B.3 Proof of correctness for the best-case linear relaxation

examples

We wish to show that in the best-case examples constructed in Section 3.3.2, the lower bound

on (2.0.1) resulting from the linear relaxation is equal to N/2 for N even and (N − 1)/2 for

N odd. First we calculate B+
n and B−

n using (3.3.7). The inverse of Q is given by

Q−1 =
[
v1 V⊥

]



1
λ1

1
λ2
I




v

T
1

VT
⊥


 . (B.3.1)

Considering just the diagonal elements,

(
Q−1

)
nn

=
1

λ1
(v1)

2
n +

1

λ2
‖wn‖22 = 1 +

1

λ2
‖wn‖22 ,

where wn represents the nth row of V⊥. The equality of diagonal entries in (3.3.11) implies

‖wn‖22 = 1− (v1)
2
n =

N − 1

N
.

Hence
(
Q−1

)
nn

= 1 +
N − 1

Nλ2

and given that c = e and γ = 1,

B+
n =

√
1 +

N − 1

Nλ2
+ 1 = B+, (B.3.2a)

B−
n =

√
1 +

N − 1

Nλ2
− 1 = B−. (B.3.2b)

For the case of even N , we determine the optimal value of the linear relaxation directly,

specifically by exhibiting feasible solutions to the primal (3.3.8) and to the dual (3.3.9) that

have the same objective value. For the primal, let bℓ = c− (1/
√
Nλ2)e. Since v1 and e are

orthogonal, the eigendecomposition in (3.3.10) implies that e is an eigenvector of Q with

eigenvalue λ2. It follows from substituting b = bℓ into (2.1.1) that bℓ is a feasible solution

to the primal. The corresponding objective value is

N−1∑

n=0

cn − 1/
√
Nλ2

B+
=

1

B+

(
N −

√
N

λ2

)
, (B.3.3)
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assuming that λ2 is large enough for all components of bℓ to be positive. For the dual

(3.3.9), let µℓ = (1/B+)e, which is equal to g+ by definition and hence feasible. Using

the fact that e is also an eigenvector of Q−1 with eigenvalue 1/λ2, the dual objective value

corresponding to µℓ is

1

B+
cT e−

√
1

(B+)2
eTQ−1e =

1

B+

(
N −

√
N

λ2

)
,

which is equal to the primal objective value in (B.3.3). We conclude that the optimal value

of the linear relaxation is given by (B.3.3). As λ2 increases to infinity, B+ in (B.3.2a)

converges to 2 and the optimal value of the linear relaxation approaches N/2 from below.

Thus for sufficiently large λ2, the optimal value of the linear relaxation is strictly greater

than N/2− 1, yielding a lower bound on (2.0.1) equal to N/2 after rounding up to the next

integer.

When N is odd, the proof above does not apply directly because the vectors v1 and

e are no longer orthogonal and e is no longer an eigenvector of Q and Q−1. Thus the

solutions bℓ = c − (1/
√
Nλ2)e and µℓ = (1/B+)e are not necessarily optimal for (3.3.8)

and (3.3.9) respectively. Instead, given that vT
1 e = 1/

√
N , we may express e as

e =
1√
N

v1 +

√
N − 1

N
v⊥,

where v⊥ is a unit-norm vector orthogonal to v1, i.e., v⊥ is in the span of V⊥. Hence

eTQ−1e =

(
1√
N

v1 +

√
N − 1

N
v⊥

)T [
v1 V⊥

]



1
λ1

1
λ2
I




v

T
1

VT
⊥



(

1√
N

v1 +

√
N − 1

N
v⊥

)

=
[

1√
N

√
N − 1

N vT
⊥V⊥

]



1
λ1

1
λ2
I






1√
N√

N − 1
NVT

⊥v⊥




=
1

Nλ1
+

(
N − 1

N

)
1

λ2

∥∥VT
⊥v⊥

∥∥2
2

= 1 +

(
N − 1

N

)
1

λ2
,

where the equality
∥∥VT

⊥v⊥
∥∥2
2
= 1 can be deduced from (3.3.11), the orthogonality of v⊥ and

v1, and the assumption that v⊥ has unit 2-norm. The dual objective value corresponding
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to µℓ = (1/B+)e is therefore

1

B+

(
N −

√
1 +

(
N − 1

N

)
1

λ2

)
. (B.3.4)

Although µℓ may not be an optimal solution to (3.3.9), it is still a feasible solution and

consequently the quantity in (B.3.4) is a lower bound on the optimal value of the linear

relaxation. As λ2 increases to infinity, this lower bound approaches (N − 1)/2 from below.

Thus for sufficiently large λ2, the optimal value of the linear relaxation must be strictly

larger than (N −1)/2−1 and the lower bound on (2.0.1) that it yields is equal to (N −1)/2

after rounding up.

B.4 Proof of correctness for the worst-case linear relaxation

examples

For the worst-case examples constructed in Section 3.3.2, we wish to show that the optimal

value of (2.0.1) is equal to N − 1 and the optimal value of the linear relaxation is less than

1. To prove the first statement, we make use of the eigendecomposition of Q−1 in (B.3.1).

A calculation identical to that in Appendix B.3 shows that

(
Q−1

)
nn

=
1

Nλ1
+
N − 1

Nλ2
.

Substituting in λ1 = 1/(N − 1) and λ2 = (N − 1)/2 gives
(
Q−1

)
nn

= (N + 1)/N > 1.

Given that c = e and γ = 1, this implies that (2.3.3) is satisfied for all n and the minimum

zero-norm in (2.0.1) is no greater than N − 1. To show that the minimum zero-norm is no

less than N − 1, we verify that (2.2.3) is violated for every subset Z of size 2, i.e., that no

feasible combination of two zero-valued coefficients exists. Specializing (2.2.3) to the case

at hand, we obtain

[
1 1

]


(
Q−1

)
mm

(
Q−1

)
mn(

Q−1
)
nm

(
Q−1

)
nn



−1 
1
1


 ≤ 1 (B.4.1)

for arbitrary indices m and n. By symmetry,
(
Q−1

)
mn

=
(
Q−1

)
nm

, and from (B.3.1),

(
Q−1

)
mn

=
1

λ1
(v1)m(v1)n +

1

λ2
wT

mwn =
N − 1

N
+

2

N − 1
wT

mwn.
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From the off-diagonal entries of (3.3.11) we have

wT
mwn = −(v1)m(v1)n = − 1

N
.

Hence (B.4.1) becomes

[
1 1

]



N+1
N

1
N

(
N − 1− 2

N−1

)

1
N

(
N − 1− 2

N−1

)
N+1
N



−1 
1

1


 ≤ 1.

The left-hand side reduces to
N

N − 1
N−1

,

which is strictly greater than 1, thus violating (B.4.1). We conclude that the minimum

zero-norm in (2.0.1) is equal to N − 1.

It remains to show that the optimal value of the linear relaxation is less than 1. Using

a proof identical to the one in Appendix B.3, it can be seen that bℓ = c− (1/
√
Nλ1)e and

µℓ = (1/B+)e are optimal solutions to the primal (3.3.8) and the dual (3.3.9), where B+

is now given by

B+ =
√(

Q−1
)
nn

+ 1 =

√
N + 1

N
+ 1.

The corresponding optimal value is

1

B+

(
N −

√
N

λ1

)
=
N −

√
N(N − 1)√

N+1
N + 1

. (B.4.2)

The denominator is clearly greater than 2 and it is straightforward to verify that the nu-

merator is less than 1 for any N . Thus the lower bound on (2.0.1) that results from taking

the ceiling of (B.4.2) is equal to 1.

B.5 Proof of Lemma 2

To derive the desired bounds on K∗, we first obtain bounds on E0(K), beginning with a

lower bound. Using the second definition of the Schur complement in (2.2.4), we observe
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that for each subset Z of size K,

cTZ(Q/QYY)cZ = cTZ
((
Q−1

)
ZZ
)−1

cZ ≥ λmin

(((
Q−1

)
ZZ
)−1
)
‖cZ‖22 = λ−1

max

((
Q−1

)
ZZ
)
‖cZ‖22 .

Given that

λmax

((
Q−1

)
ZZ
)
≤ λmax

(
Q−1

)
,

it follows that

cTZ(Q/QYY)cZ ≥ λ−1
max

(
Q−1

)
‖cZ‖22 = λmin(Q) ‖cZ‖22

for all Z of size K. Hence

E0(K) ≥ min
|Z|=K

λmin(Q) ‖cZ‖22 = λmin(Q)ΣK

(
{c2n}

)
. (B.5.1)

An upper bound on E0(K) can be derived in a similar manner. For each Z of size K we

have

cTZ(Q/QYY)cZ ≤ λmax

(((
Q−1

)
ZZ
)−1
)
‖cZ‖22 ≤ λmax(Q) ‖cZ‖22 ,

and therefore

E0(K) ≤ min
|Z|=K

λmax(Q) ‖cZ‖22 = λmax(Q)ΣK

(
{c2n}

)
. (B.5.2)

The lower bound on E0(K) in (B.5.1) implies thatK defined in (3.4.9) is an upper bound

onK∗. Likewise from (B.5.2), K in (3.4.10) is a lower bound onK∗. To obtain the bound on

the ratio K/K, we infer from the definition of K in (3.4.10) that λmax(Q)ΣK+1

(
{c2n}

)
> γ.

This can be rewritten in terms of λmin(Q) as

λmin(Q)κ(Q)ΣK+1

(
{c2n}

)
> γ.

Furthermore,

κ(Q)ΣK+1

(
{c2n}

)
≤ ⌈(K + 1)κ(Q)⌉

K + 1
ΣK+1

(
{c2n}

)
≤ Σ⌈(K+1)κ(Q)⌉

(
{c2n}

)
,

where the second inequality is due to the average of the (K + 1) smallest elements in a

sequence being smaller than the average of the ⌈(K + 1)κ(Q)⌉ smallest elements, given
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κ(Q) ≥ 1. Combining the last two lines of inequalities,

λmin(Q)Σ⌈(K+1)κ(Q)⌉
(
{c2n}

)
> γ.

It follows from the definition of K that K ≤ ⌈(K + 1)κ(Q)⌉ − 1.

B.6 Proof of Lemma 4

We expand Λ−1/2QΛ−1/2 as

Λ−1/2QΛ−1/2 = Λ−1/2(I+∆)Λ(I +∆)TΛ−1/2

= I+Λ−1/2∆Λ1/2
︸ ︷︷ ︸

∆̃

+Λ1/2∆TΛ−1/2
︸ ︷︷ ︸

∆̃T

+Λ−1/2∆Λ1/2Λ1/2∆TΛ−1/2
︸ ︷︷ ︸

∆̃∆̃T

.

Then

λmin

(
Λ−1/2QΛ−1/2

)
= 1 + λmin

(
∆̃+ ∆̃T + ∆̃∆̃T

)

≥ 1 + λmin

(
∆̃+ ∆̃T

)
(B.6.1)

since ∆̃∆̃T is positive semidefinite. Similarly

λmax

(
Λ−1/2QΛ−1/2

)
= 1 + λmax

(
∆̃+ ∆̃T + ∆̃∆̃T

)

≤ 1 + λmax

(
∆̃+ ∆̃T

)
+ λmax

(
∆̃∆̃T

)
. (B.6.2)

We proceed to show that λmin

(
∆̃ + ∆̃T

)
is bounded from below by −κ(Q)ρ(∆) and

λmax

(
∆̃+∆̃T

)
is bounded from above by κ(Q)ρ(∆). First we determine the set of possible

locations in the complex plane for the eigenvalues of ∆̃. Because ∆̃ and ∆ are related by a

similarity transformation, they share the same set of eigenvalues. Since V is an orthogonal

matrix, its eigenvalues are located on the unit circle centered at the origin, and thus the

eigenvalues of ∆ are located on the unit circle centered at −1. The assumption that ρ(∆)

is small compared to 1 further restricts the eigenvalues of ∆ to lie on a small arc near the

origin as depicted in Fig. B-1.

To relate the eigenvalues of ∆̃ + ∆̃T to those of ∆̃, we make use of a diagonalization

of ∆̃. Given that V is orthogonal, both V and ∆ are normal matrices and ∆ can be
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−1

1

ρ(∆)

Figure B-1: The set of possible locations (dark segment of arc) in the complex plane for the
eigenvalues of ∆ and ∆̃.

diagonalized as ∆ = UΨUH , where U is a unitary matrix and Ψ is a complex diagonal

matrix. Then

∆̃ = Λ−1/2U︸ ︷︷ ︸
Ũ

ΨUHΛ1/2
︸ ︷︷ ︸

Ũ−1

. (B.6.3)

Using (B.6.3) and a theorem from [92], it follows that for any eigenvalue of ∆̃+ ∆̃T , there

exists an eigenvalue λ0 of ∆̃ such that

∣∣∣λ
(
∆̃+ ∆̃T

)
− λ0

∣∣∣ ≤
∥∥∥Ũ−1∆̃T Ũ

∥∥∥
2
, (B.6.4)

where ‖A‖2 denotes the spectral norm of the matrix A. Expanding the right-hand side of

(B.6.4) and using the sub-multiplicative property of matrix norms,

∣∣∣λ
(
∆̃+ ∆̃T

)
− λ0

∣∣∣ ≤
∥∥∥UHΛ1/2Λ1/2UΨHUHΛ−1/2Λ−1/2U

∥∥∥
2

≤
∥∥UHΛU

∥∥
2

∥∥ΨH
∥∥
2

∥∥UHΛ−1U
∥∥
2

= λmax(Q)ρ(∆)λ−1
min(Q)

= κ(Q)ρ(∆), (B.6.5)

where the second-to-last equality is due to the equivalence between the spectral norm and

the spectral radius for normal matrices.
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Equation (B.6.5) implies that λmin

(
∆̃+ ∆̃T

)
and λmax

(
∆̃+ ∆̃T

)
lie within a Euclidean

distance of κ(Q)ρ(∆) from the arc in Fig. B-1. Furthermore, λmin

(
∆̃+∆̃T

)
and λmax

(
∆̃+

∆̃T
)
must be real because ∆̃ + ∆̃T is symmetric. It is clear then that λmax

(
∆̃ + ∆̃T

)

can be no greater than +κ(Q)ρ(∆). Given the assumption that κ(Q)ρ(∆) < 1, it is

also apparent from Fig. B-1 that −κ(Q)ρ(∆) is the minimum possible value for λmin

(
∆̃+

∆̃T
)
, corresponding to setting λ0 = 0 in (B.6.5). All other points on the arc of possible

locations for eigenvalues of ∆̃ are farther away from the point −κ(Q)ρ(∆) than λ0 = 0.

Combining (B.6.1) and the lower bound of −κ(Q)ρ(∆) on λmin

(
∆̃+∆̃T

)
proves the bound

on λmin

(
Λ−1/2QΛ−1/2

)
.

To complete the proof of the bound on λmax

(
Λ−1/2QΛ−1/2

)
, it remains to bound the

last term in (B.6.2) as the middle term is now bounded by κ(Q)ρ(∆). Using the definition

of the spectral norm and the sub-multiplicative property,

λmax

(
∆̃∆̃T

)
=
∥∥∥∆̃T

∥∥∥
2

2
=
∥∥∥Λ1/2∆TΛ−1/2

∥∥∥
2

2

≤
∥∥∥Λ1/2

∥∥∥
2

2

∥∥∆T
∥∥2
2

∥∥∥Λ−1/2
∥∥∥
2

2

= κ(Q)ρ2(∆).
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Appendix C

Derivations for Chapter 5

C.1 Scalar CSD quantization given a fixed number of SPTs

This appendix discusses the CSD quantization of scalars under a constraint on the number

of SPTs (problem (5.2.7)). Our objective is to find the closest integer-valued approximation

to a real number c where the approximation is of the form

b =

P−1∑

p=0

sp2
p, sp ∈ {−1, 0,+1}

with at most B of the digits sp being non-zero. Furthermore, in a CSD representation,

no two non-zero digits can be adjacent. This non-adjacency property restricts B to be no

greater than ⌈P/2⌉.

The quantization can be performed recursively, first by determining the position p1 of

the most significant non-zero digit, subtracting the corresponding SPT from c, and then

repeating with the residual. More specifically, once p1 is determined, we set sp1 = sgn(c),

update the parameters as follows:

ĉ = c− sgn(c)2p1 , B̂ = B − 1, P̂ = p1 − 1,

and then proceed in the same way with the next most significant non-zero digit. The update

to P reflects the fact that the next highest power of two can be at most p1 − 2 due to the

selection of p1. The process continues until either B̂ = 0 or P̂ ≤ 0, for a maximum of ⌈P/2⌉
iterations.
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To determine p1 as a function of c, B, and P , we can equivalently specify the interval

of real numbers for which choosing p1 as the highest power of two will result in the best

approximation. We may restrict attention to the case c ≥ 0 since the sign of c affects only

the sign of sp1 . Then p1 is determined by the interval in which c falls. Note that in addition

to the values 0, 1, . . . , P −1, p1 can also equal −∞, i.e., the best approximation to c is b = 0.

First we determine the range of integers that can be represented exactly when p1 is the

highest power of two. With sp1 = +1, the largest possible integer bmax(p1, B) is attained

by alternating 0’s and +1’s after sp1 , while the smallest integer bmin(p1, B) is attained by

alternating 0’s and −1’s. The number of non-zero digits occurring after sp1 is at most

B′ = min{B − 1, ⌊p1/2⌋}. Hence

bmax(p1, B) = 2p1


1 +

B′∑

p=1

(
1

4

)p

 = 2p1

(
4

3
− 1

3

(
1

4

)B′
)
,

bmin(p1, B) = 2p1


1−

B′∑

p=1

(
1

4

)p

 = 2p1

(
2

3
+

1

3

(
1

4

)B′
)
.

Since

bmin(p1 + 1, B) = 2p1

(
4

3
+

2

3

(
1

4

)B′′
)
> bmax(p1, B)

where B′′ = min{B−1, ⌊(p1+1)/2⌋}, the range of integers with p1 as the highest power does
not overlap with the corresponding range for p1+1. The boundary between the quantization

intervals for p1 and p1+1 is given by the midpoint between bmax(p1, B) and bmin(p1+1, B).

After some straightforward calculations, we obtain

bmax(p1, B) + bmin(p1 + 1, B)

2
=





2p1

(
4

3
+

1

6

(
1

4

)B−1
)
, B − 1 ≤

⌊p1
2

⌋
,

2p1
(
4

3
+

1

6

(
−1

2

)p1)
, B − 1 >

⌊p1
2

⌋
.

Similarly, the boundary between the quantization intervals for p1 and p1−1 is the midpoint

between bmax(p1 − 1, B) and bmin(p1, B). In addition, there are two special cases: The

boundary between p1 = −∞ and p1 = 0 is 1/2, corresponding to the choice between b = 0

and b = 1. For p1 = P−1, there is no upper boundary and the quantization interval extends

to ∞. This completes the specification of the quantization intervals for a single iteration.
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C.2 Derivation of subproblem parameters

In this appendix, we consider the subproblem that is created when some of the coefficients in

either problem (5.1.1) or (5.1.2) are fixed. We show that the subproblem is also quadratically

constrained and we relate the parameters Qeff , ceff , and γeff for the subproblem to the

original parameters Q, c, and γ.

Denote by K the subset of coefficients whose values have been fixed and by F the

complementary subset. In terms of these two subsets, (2.1.1) can be rewritten as

(bF − cF )TQFF(bF − cF ) + 2(bK − cK)QKF (bF − cF ) + (bK − cK)TQKK(bK − cK) ≤ γ,
(C.2.1)

which is quadratic in the variables bF when bK is held constant. From the term in (C.2.1)

that is quadratic in bF , we see that the subproblem parameter Qeff is given by

Qeff = QFF . (C.2.2)

By partitioning Q−1 according to K and F and inverting the resulting 2× 2 block matrix,

it can be shown that the corresponding relationship between (Qeff)
−1 and Q−1 is

(Qeff)
−1 =

(
Q−1

)
FF −

(
Q−1

)
FK
((
Q−1

)
KK
)−1 (

Q−1
)
KF . (C.2.3)

The parameter ceff is equal to the value of bF that minimizes the left-hand side of (C.2.1),

just as b = c minimizes the left-hand side of (2.1.1). A straightforward calculation results

in

ceff = cF − (QFF )−1QFK(bK − cK). (C.2.4)

An alternative form for (C.2.4) is

ceff = cF +
(
Q−1

)
FK
((
Q−1

)
KK
)−1

(bK − cK), (C.2.5)

which can be derived in the same way as (C.2.3). Using (C.2.4), (C.2.1) can be rewritten

as

(bF − ceff)
TQeff(bF − ceff) ≤ γ − (bK − cK)

T (Q/QFF )(bK − cK),
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which shows that

γeff = γ − (bK − cK)
T (Q/QFF )(bK − cK). (C.2.6)

Equations (C.2.2)–(C.2.6) give the desired expressions for the subproblem parameters.

In Section 5.3.2, we make use of the special case in which a single coefficient bm is fixed.

With K = {m}, (C.2.3), (C.2.5) and (C.2.6) become

(Qeff)
−1 =

(
Q−1

)
FF −

1(
Q−1

)
mm

(
Q−1

)
Fm

(
Q−1

)
mF , (C.2.7a)

ceff = cF +
bm − cm(
Q−1

)
mm

(
Q−1

)
Fm

, (C.2.7b)

γeff = γ − (bm − cm)2(
Q−1

)
mm

. (C.2.7c)

Note that no matrix inversions are required in (C.2.7).
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Appendix D

Derivations for Chapter 6

D.1 Derivation of the dual of problem (6.3.6)

In this section, we derive the dual of problem (6.3.6), the linear relaxation of problem

(5.1.1). The derivation is broadly similar to that in Appendix B.2.

We first introduce some definitions to facilitate the use of matrix notation. To express

the objective function more compactly, we replace bn by b̃n = bn − Bn for n ∈ P and by

b̃n = bn −Bn for n ∈ N . The parameters cn are changed accordingly as shown in (6.3.8a).

We also define the vectors p+
D, p

−
D, pP , and pN as in (6.3.8b) and (6.3.8c). With these

definitions and neglecting the constant terms in the objective, (6.3.6) can be rewritten as

min
b
+
D ,b−

D,b̃P ,b̃N




w+
D

w−
D

wP

−wN




T 


b+
D

b−
D

b̃P

b̃N




(D.1.1)

s.t.




b+
D − cD

b−
D

b̃P − c̃P

b̃N − c̃N




T 


QDD −QDD QDP QDN

−QDD QDD −QDP −QDN

QPD −QPD QPP QPN

QND −QND QNP QNN







b+
D − cD

b−
D

b̃P − c̃P

b̃N − c̃N



≤ γ,

0 ≤ b+
D ≤ p+

D, 0 ≤ b−
D ≤ p−

D,

0 ≤ b̃P ≤ pP , 0 ≤ −b̃N ≤ pN .
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We assign the non-negative Lagrange multiplier λ/2 to the quadratic constraint in

(D.1.1), µ+
D, µ−

D, µP , and µN to the corresponding non-negativity and non-positivity

constraints, and ν+
D , ν−

D , νP , and νN to the constraints involving p+
D, p

−
D, pP , and pN

respectively. The Lagrangian for (D.1.1) is then given by

L =
λ

2




b+
D − cD

b−
D

b̃P − c̃P

b̃N − c̃N




T 


QDD −QDD QDP QDN

−QDD QDD −QDP −QDN

QPD −QPD QPP QPN

QND −QND QNP QNN







b+
D − cD

b−
D

b̃P − c̃P

b̃N − c̃N




+




w+
D + ν+

D − µ+
D

w−
D + ν−

D − µ−
D

wP + νP − µP

−(wN + νN − µN )




T 


b+
D

b−
D

b̃P

b̃N



− λγ

2
−




p+
D

p−
D

pP

pN




T 


ν+
D

ν−
D

νP

νN



. (D.1.2)

The objective function for the dual is obtained by minimizing L with respect to b+
D, b

−
D, b̃P ,

and b̃N . Given that the dual is a maximization problem, we show that it is only necessary

to consider µ±
D and ν±

D satisfying w+
D + ν+

D − µ+
D +w−

D + ν−
D − µ−

D = 0. This restriction is

similar to the constraint g+ − µ+ + g− − µ− = 0 imposed in Appendix B.2. Supposing to

the contrary that there is an index n ∈ D such that w+
n + ν+n − µ+n + w−

n + ν−n − µ−n 6= 0,

consider the solution b+
D = αen + cD/2, b

−
D = αen − cD/2, b̃P = c̃P , and b̃N = c̃N . The

quadratic term in (D.1.2) vanishes and the remainder becomes

L = α(w+
n+ν

+
n −µ+n+w−

n+ν
−
n −µ−n )+




w+
D + ν+

D − µ+
D

w−
D + ν−

D − µ−
D

wP + νP − µP

−(wN + νN − µN )




T 


c+D/2

−c−D/2
c̃P

c̃N



−λγ

2
−




p+
D

p−
D

pP

pN




T 


ν+
D

ν−
D

νP

νN



.

By taking α to +∞ or −∞, we can drive L to −∞. This shows that the dual objective

function is unbounded from below in the absence of the constraint w+
D + ν+

D − µ+
D +w−

D +

ν−
D − µ−

D = 0.

The Lagrangian is minimized with respect to b+
D, b

−
D, b̃P , and b̃N when the following
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optimality condition is satisfied:

λ




QDD −QDD QDP QDN

−QDD QDD −QDP −QDN

QPD −QPD QPP QPN

QND −QND QNP QNN







b+
D − cD

b−
D

b̃P − c̃P

b̃N − c̃N



+




w+
D + ν+

D − µ+
D

w−
D + ν−

D − µ−
D

wP + νP − µP

−(wN + νN − µN )



= 0.

Given the constraint w+
D+ν+

D −µ+
D +w−

D+ν−
D −µ−

D = 0, the second row is the negative of

the first row and is therefore redundant. The remaining system of equations can be solved

to yield the minimizer




b+
D − b−

D − cD

b̃P − c̃P

b̃N − c̃N


 = − 1

λ
Q−1




w+
D + ν+

D − µ+
D

wP + νP − µP

−(wN + νN − µN )


 , (D.1.3)

where λ is assumed to be strictly positive as in Appendix B.2 and the partitioning of Q−1 is

not shown for brevity. Substituting (D.1.3) into (D.1.2) and simplifying, the dual problem

can now be stated as

max
λ,µ,ν

− 1

2λ




w+
D + ν+

D − µ+
D

wP + νP − µP

−(wN + νN − µN )




T

Q−1




w+
D + ν+

D − µ+
D

wP + νP − µP

−(wN + νN − µN )


−

λγ

2

+




cD

c̃P

c̃N




T 


w+
D + ν+

D − µ+
D

wP + νP − µP

−(wN + νN − µN )


−




p+
D

p−
D

pP

pN




T 


ν+
D

ν−
D

νP

νN




s.t. w+
D + ν+

D − µ+
D +w−

D + ν−
D − µ−

D = 0,

λ > 0,

µ+
D ≥ 0, µ−

D ≥ 0, µP ≥ 0, µN ≥ 0,

ν+
D ≥ 0, ν−

D ≥ 0, νP ≥ 0, νN ≥ 0.

315



As in Appendix B.2, the maximization over λ can be solved independently, yielding

max
µ,ν

−



γ




w+
D + ν+

D − µ+
D

wP + νP − µP

−(wN + νN − µN )




T

Q−1




w+
D + ν+

D − µ+
D

wP + νP − µP

−(wN + νN − µN )







1/2

+




cD

c̃P

c̃N




T 


w+
D + ν+

D − µ+
D

wP + νP − µP

−(wN + νN − µN )


−




p+
D

p−
D

pP

pN




T 


ν+
D

ν−
D

νP

νN




s.t. w+
D + ν+

D − µ+
D +w−

D + ν−
D − µ−

D = 0,

µ+
D ≥ 0, µ−

D ≥ 0, µP ≥ 0, µN ≥ 0,

ν+
D ≥ 0, ν−

D ≥ 0, νP ≥ 0, νN ≥ 0.

(D.1.4)

To convert (D.1.4) into its final form (6.3.7), we examine the quantity ρ = w+
D + ν+

D −
µ+
D = −w−

D−ν−
D+µ−

D that appears in several places in (D.1.4). It can be seen that ρ ranges

over all of R|D|, but if any component ρn exceeds w+
n , ν

+
n is forced to be positive, whereas if

ρn < −w−
n , ν

−
n is forced to be positive. Since the vectors p+

D, p
−
D, pP , and pN are all strictly

positive, the last term in the objective function in (6.3.7) penalizes positive components of

ν. We may equivalently express ρ as ρ = πD + ν+
D − ν−

D , where −w−
D ≤ πD ≤ w+

D. The

range of values for πD corresponds to the range of values for ρ that are not penalized. In a

similar vein, we also substitute πP for wP−µP and πN for −wN +µN . These substitutions

result in the final form given in (6.3.7).
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D.2 Derivation of the dual of problem (6.3.15)

This appendix presents a derivation of the dual of problem (6.3.15), the linear relaxation of

problem (5.1.2). The derivation is somewhat similar to those in Appendices B.2 and D.1.

In Section 6.3.3, we defined a vector s that collects together all variables s±np that have

not been fixed. We also defined a power-of-two matrix P such that b = Ps, and matrices

J, F, and a vector ℓ to represent constraints (6.3.13) and (6.3.14). With these definitions

and neglecting the constant term in the cost function, problem (6.3.15) can be stated in a

more compact form:

min
s

eT s

s.t. (Ps− c̃)TQ(Ps− c̃) ≤ γ,

Js ≤ e,

Fs ≥ ℓ,

0 ≤ s ≤ e,

(D.2.1)

recalling that e denotes a vector of ones with dimensions that depend on context. We

associate a non-negative Lagrange multiplier λ/2 with the quadratic constraint in (D.2.1),

and vectors of Lagrange multipliers µ, ν, π− and π+ with the constraints Js ≤ e, Fs ≥ ℓ,

s ≥ 0, and s ≤ e respectively. The resulting Lagrangian is

L = (e+JTµ−FTν+π+−π−)T s+
λ

2
(Ps−c̃)TQ(Ps−c̃)−λγ

2
−eTµ+ℓTν−eTπ+. (D.2.2)

As in Appendices B.2 and D.1, the dual objective function is obtained by minimizing

the Lagrangian with respect to s. Also similar to before, we show that it is not necessary to

consider certain combinations of Lagrange multipliers (i.e., dual variables) since they lead

to a dual objective value of −∞. To make this more explicit, we consider vectors s of the

form s = s0 + αsker, where s0 is an arbitrary fixed vector and sker belongs to the nullspace

of P. The Lagrangian then takes the form

L = (e+JTµ−FTν+π+−π−)T (s0+αsker)+
λ

2
(Ps0−c̃)TQ(Ps0−c̃)−

λγ

2
−eTµ+ℓTν−eTπ+,

which is affine in α. Unless (e + JTµ − FTν + π+ − π−)T sker = 0, the value of the
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Lagrangian approaches −∞ as α → ∞ or α → −∞. Hence in the dual problem, we can

restrict attention to dual variables µ, ν, π+ and π− for which e+JTµ−FTν+π+−π− is

orthogonal to every vector in the nullspace of P. In other words, e+JTµ−FTν+π+−π−

belongs to the row space of P, which we represent by the constraint

e+ JTµ− FTν + π+ − π− = PTρ (D.2.3)

for some vector ρ in RN . Substituting (D.2.3) into (D.2.2) results in

L = ρTPs+
λ

2
(Ps− c̃)TQ(Ps− c̃)− λγ

2
− eTµ+ ℓTν − eTπ+, (D.2.4)

which depends on s only through the quantity Ps. Minimizing (D.2.4) with respect to Ps

by setting the gradient to zero, we obtain the condition

Ps− c̃ = − 1

λ
Q−1ρ,

which yields the dual objective function upon substitution into (D.2.4).

The dual of (D.2.1) can now be formulated as follows:

max
µ,ν,π±,ρ

c̃Tρ− 1

2λ
ρTQ−1ρ− λγ

2
− eTµ+ ℓTν − eTπ+,

s.t. e+ JTµ− FTν + π+ − π− = PTρ,

λ > 0, µ ≥ 0, ν ≥ 0, π± ≥ 0.

As in Appendices B.2 and D.1, the maximization over λ can be done independently. The

resulting maximization problem is the one shown in (6.3.18).
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Appendix E

Proofs for Chapter 8

E.1 Proof of Theorem 8

To facilitate the proof, we first show that the inequality

∣∣AT
n (p

+ − p−)
∣∣ < C (E.1.1)

holds for any feasible solution (p+,p−) to the dual problem (8.2.2), any column An of the

matrix A defined in (8.1.4a) (n is not necessarily in Y), and C satisfying (8.2.6). Using the

fact that the magnitude of a sum is bounded by the sum of the magnitudes of individual

terms,

∣∣AT
n (p

+ − p−)
∣∣ =

∣∣∣∣∣

K∑

k=1

W (ωk) cos(nωk)
(
p+k − p−k

)
∣∣∣∣∣

≤
K∑

k=1

W (ωk) |cos(nωk)|
∣∣p+k − p−k

∣∣

≤
K∑

k=1

W (ωk) |cos(nωk)|
(
p+k + p−k

)
,

noting that W (ωk), p
+
k and p−k are non-negative. Bounding W (ωk) by its maximum value

and |cos(nωk)| by 1, we obtain

∣∣AT
n (p

+ − p−)
∣∣ ≤ max

k=1,...,K
W (ωk)

K∑

k=1

(
p+k + p−k

)
< C
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as desired, where the second inequality follows from the first constraint in (8.2.2) and the

assumption (8.2.6) on C.

Proceeding with the proof of the main result, suppose
(
δ̂, b̂Y2 , b̂

+
m, b̂

−
m

)
is an optimal

solution to (8.2.5). Then b̂+m and b̂−m cannot both be non-zero, as otherwise both could

be decreased by min
{
b̂+m, b̂

−
m

}
, reducing the objective value without affecting feasibility.

Assume first that b̂−m = 0 and b̂+m > 0. Let
(
δ∗,b∗

Y2

)
be an optimal solution to (8.2.1)

with Y = Y2, and (p+∗,p−∗) be an optimal solution to the corresponding dual (8.2.2).

We wish to show that
(
δ∗,b∗

Y2
, 0, 0

)
, which is a feasible solution to (8.2.5), has a strictly

lower objective value than the assumed optimal solution
(
δ̂, b̂Y2 , b̂

+
m, b̂

−
m

)
, thus establishing

a contradiction.

First, we use strong duality to equate the optimal values for (8.2.1) and (8.2.2) under

Y = Y2:
δ∗ = dT

(
p+∗ − p−∗) . (E.1.2)

Since p+∗ and p−∗ are non-negative and
(
δ̂, b̂Y2 , b̂

+
m, b̂

−
m

)
satisfies the constraints for (8.2.5),

dTp+∗ ≤



[
e AY2

]

 δ̂

b̂Y2


+Amb̂

+
m




T

p+∗, (E.1.3)

−dTp−∗ ≤



[
e −AY2

]

 δ̂

b̂Y2


−Amb̂

+
m




T

p−∗. (E.1.4)

Combining (E.1.2)–(E.1.4),

δ∗ ≤ δ̂eT (p+∗ + p−∗) + b̂T
Y2
AT

Y2
(p+∗ − p−∗) + b̂+mAT

m(p+∗ − p−∗)

= δ̂ + b̂+mAT
m(p+∗ − p−∗), (E.1.5)

where the simplifications result from the feasibility of (p+∗,p−∗) for the dual (8.2.2). Ap-

plying the bound in (E.1.1) to (E.1.5),

δ∗ < δ̂ + Cb̂+m.

The left-hand side represents the objective value of the feasible solution
(
δ∗,b∗

Y2
, 0, 0

)
, while

the right-hand side represents the value of the assumed optimal solution
(
δ̂, b̂Y2 , b̂

+
m, 0

)
.
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This contradicts the optimality of
(
δ̂, b̂Y2 , b̂

+
m, 0

)
, and hence b̂+m must be zero. The case

b̂+m = 0, b̂−m > 0 is similarly excluded.

The conclusion that b̂+m = b̂−m = 0 has two consequences: First, the pair
(
δ̂, b̂Y2

)

becomes a feasible solution to (8.2.1) with Y = Y2. Secondly, the inequality in (E.1.5)

becomes δ∗ ≤ δ̂, and in fact equality must hold in order for
(
δ̂, b̂Y2 , 0, 0

)
to be an optimal

solution to (8.2.5). Therefore
(
δ̂, b̂Y2

)
is also an optimal solution to (8.2.1) for Y = Y2,

completing the proof of the forward direction.

To prove the converse, suppose that
(
δ∗,b∗

Y2

)
is an optimal solution to (8.2.1) with

Y = Y2. It was shown in the proof of the forward direction, specifically in (E.1.5), that the

optimal objective value in (8.2.5) can be no less than δ∗. Furthermore,
(
δ∗,b∗

Y2
, 0, 0

)
is a

feasible solution to (8.2.5) and achieves a value of δ∗. We conclude that
(
δ∗,b∗

Y2
, 0, 0

)
is an

optimal solution to (8.2.5).

E.2 Proof of Theorem 9

For ease of notation, we collect all of the variables in (8.3.6) into a single vector x =

(b+0 , b
−
0 , b

+
1 , b

−
1 , . . . , b

+
N−1, b

−
N−1) (b

+
n and b−n are interleaved for later convenience). The vector

xY is defined similarly except that only the indices in Y are included. We prove the theorem

for the case in which Y = {0, . . . , N − 1} so that xY = x and PY = P. For cases in which

Y 6= {0, . . . , N − 1}, it suffices to observe that a local minimum x∗ for (8.3.6) is also a local

minimum for the problem

min
x

F (x)

s.t. x ∈ P,

x2n = x2n+1 = 0, n ∈ Z,

i.e., the restriction of (8.3.6) to a smaller feasible set. Equivalently, the vector x∗
Y is a local

minimum of

min
xY

F (xY) s.t. xY ∈ PY ,

and the proof follows with x and P replaced by xY and PY .
We prove by contradiction that (8.3.8) holds, following ideas from [98]. Suppose that

there exists a vector x ∈ P, x 6= x∗, such that ∇F (x∗)T (x− x∗) < 0. Define ∆x = x− x∗
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and

g(ǫ) = F (x∗ + ǫ∆x) , ǫ ∈ [0, ǫ]

to be the restriction of F (x) to a line segment in the direction of ∆x. Since x∗2n+x
∗
2n+1 > 0

for all n, it is possible to choose ǫ sufficiently small so that

x∗2n + x∗2n+1 + ǫ (∆x2n +∆x2n+1) > 0, n = 0, . . . , N − 1, (E.2.1)

for all ǫ ∈ [0, ǫ]. The function F is continuously differentiable wherever (E.2.1) holds, and

as a result,

g′(ǫ) = ∇F (x∗ + ǫ∆x)T ∆x, ǫ ∈ [0, ǫ],

exists and is continuous. Applying the mean value theorem to g(ǫ), there exists a number

s ∈ [0, 1] such that

F (x∗ + ǫ∆x) = F (x∗) + ǫ∇F (x∗ + sǫ∆x)T ∆x ∀ ǫ ∈ [0, ǫ].

As ǫ converges to zero, ∇F (x∗ + sǫ∆x) converges to ∇F (x∗), and consequently the second

term on the right-hand side becomes negative according to the assumption. Therefore, for

all ǫ sufficiently small, F (x∗ + ǫ∆x) < F (x∗), which contradicts the fact that x∗ is a local

minimum.

Next, suppose that x ∈ P, x 6= x∗, is such that ∇F (x∗)T∆x = 0. As before, when ǫ is

sufficiently small, x∗ + ǫ∆x satisfies condition (E.2.1) for all ǫ ∈ [0, ǫ]. Since F is also twice

continuously differentiable wherever (E.2.1) holds, the second-order version of the mean

value theorem guarantees the existence of s ∈ [0, 1] such that

F (x∗ + ǫ∆x) = F (x∗) + ǫ∇F (x∗)T∆x+
1

2
ǫ2∆xT∇2F (x∗ + sǫ∆x)∆x,

= F (x∗) +
1

2
ǫ2∆xT∇2F (x∗ + sǫ∆x)∆x ∀ ǫ ∈ [0, ǫ],

where the first-order term is zero by assumption. The Hessian ∇2F (x) is a block-diagonal

matrix with 2× 2 diagonal blocks as follows:

∇2F (x) = p(p− 1)×
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Diag


|x0 + x1|p−2


1 1

1 1


 , |x2 + x3|p−2


1 1

1 1


 , . . . , |x2N−2 + x2N−1|p−2


1 1

1 1




 .

It can be seen that for p < 1, each 2 × 2 block is negative semidefinite and the product

∆xT∇2F (x∗ + sǫ∆x)∆x is strictly negative unless ∆x is of the form

∆x = (−k0,+k0,−k1,+k1, . . . ,−kN−1,+kN−1), (E.2.2)

in which case the product is zero. Hence if ∆x does not conform to (E.2.2), then F (x∗ + ǫ∆x) <

F (x∗) for all ǫ ∈ (0, ǫ], again contradicting the local minimality of x∗.

It remains to consider the case in which ∆x is of the form in (E.2.2) and the kn are

not all zero. First, note that the signs of kn in (E.2.2) cannot be arbitrary. Recalling that

x∗ must have the property that x∗2nx
∗
2n+1 = 0, it follows that kn must be non-negative if

x∗2n+1 = 0 and must be non-positive if x∗2n = 0. Assume without loss of generality that

x∗2n+1 = 0 for all n so that kn ≥ 0. Given that x is feasible, the points

x∗ + ǫ∆x = (x∗0 − ǫk0, ǫk0, x∗2 − ǫk1, ǫk1, . . . , x∗2N−2 − ǫkN−1, ǫkN−1), ǫ ∈ (0, 1],

are also feasible by the convexity of P and have the same cost value as x∗. Since feasibility

depends only on the differences x2n − x2n+1, the points

(x∗0 − 2ǫk0, 0, x
∗
2 − 2ǫk1, 0, . . . , x

∗
2N−2 − 2ǫkN−1, 0), ǫ ∈ (0, 1],

are also feasible, but have a strictly lower cost than x∗. This is again a contradiction, and

thus we have proven that condition (8.3.8) holds for any local minimum x∗
Y . The vertex

property follows by definition because (8.3.8) implies that x∗
Y can be strictly separated from

the rest of PY by a hyperplane, specifically one normal to ∇F (x∗
Y).
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