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A systematic approach is developed for synthesizing N-dimensional dissipative chaotic systems which possess the
self-synchronization property. The ability to synthesize new chaotic systems further enhances the uscfulness of

synchronized chaotic systems for communications.

1. INTRODUCTION

Tt is well known that a certain class of chaotic sys-
tems possess a self-synchronization property [Pec-
ora & Carroll, 1990 & 1991; Carroll & Pecora,
1991]. Specifically, two identical chaotic systems
may synchronize when the second system is driven
by the first. Pecora and Carroll [1990 & 1991] have
shown numerically that synchronization occurs if
all of the Lyapunov exponents for the driven sys-
tem are negative. Later, He and Vaidya [1992]
developed the necessary and sufficient conditions
for synchronization using the notion of asymp-
totic stability. As discussed in [Oppenheim et al.,
1992; Cuomo & Oppenheim, 1992 & 1993; Parlitz
et al., 1992; Kocarev et al., 1992], the combina-
tion of synchronization and unpredictability from
purely deterministic systems leads to some inter-
esting communication applications.

A potential drawback for utilizing synchronized
chaotic systems in communications is that the anal-
ysis and synthesis of chaotic systems is not well
understood due to the highly nonlinear nature of
these systems. In fact, only a few chaotic systems
which possess the self-synchronization property are
currently known. In He & Vaidya [1992], it was
demonstrated that it is possible to use Lyapunov
functions to create a five-dimensional chaotic sys-
tem by augmenting the Lorenz system with addi-
tional states. However, the approach involves con-
siderable trial and error.

In this paper, we utilize Lyapunov functions to
develop a systematic approach for synthesizing N-
dimensional dissipative chaotic systems which pos-
sess the self-synchronization property. The abil-
ity to analyze and synthesize new chaotic systems
further enhances the usefulness of synchronized
chaotic systems for communications. Our main
theoretical results include the development of self-
synchronization and global stability conditions for
a certain class of chaotic systems. We also suggest
a numerical procedure for studying the stability of
the fixed points for this class of systems. Numerical
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examples illustrate the results.

2. THEORY

In the development of the synthesis approach, we
will limit consideration to nonlinear systems which
are representable by a set of first-order ordinary dif-
ferential equations having a quadratic vector field
defined on RY. While this limitation makes the
problem more amenable to analysis, it also has the
practical advantage of restricting the class of non-
linear systems to those which are relatively easy to
implement. Specifically, a quadratic term in the
vector field can be realized using a single analog
multiplier, whereas a cubic or higher-order term
would require additional components.

A general nonlinear system with a quadratic vec-
tor field is given by

x = Ax+(x"’rle?...,xTQNx) (L)

The vector x denotes the NV states (z1,...,ZN), the
A matrix is N x N, and the ¢;, + = 1,..., N, are
symmetric N X N matrices. In the communication
scenario illustrated in Fig. 1, Eq. (1) can be in-
terpreted as a transmitter or drive system which
transmits the chaotic signal z4(¢) over a commu-
nications channel to the synchronizing receiver(s).
Because chaotic signals are typically broadband,
noise-like, and difficult to predict, they can be used
in various contexts to mask information-bearing
waveforms. They can also be used as modulating
waveforms in spread spectrum systems. The self-
synchronization property provides the potential for
coherent information transfer between the trans-
mitter and receiver. For example, the ability to
privately communicate speech waveforms between
the transmitter and receiver was demonstrated in
Cuomo & Oppenheim [1992 & 1993] using an ana-
log circuit implementation of the Lorenz equations.

It is useful in our subsequent analysis to express
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Figure 1: A Chaotic Communication System.

Eq. (1) in the form

x = A0x+a°x1-I-(xTle,xTQ’zx,..., @)

xTQlyx) + 241z1x + 8% .

This form results by decomposing the A matrix into
A= Ag + 2], where

[ @11 @12 - GIN
0 @922 s 2N
Ay = : : ;
. 0 an2 -+ anN
[ 0 1
i _ a21 B 0
a b b e -
| an1 0

Also, the matrices Q;, ¢ = 2,..., N, have been de-
composed into Q; = Q) + q?e? + e q?T + ele{g\;,
where

0 0 --- 0
¢ - [T T
[0 a4 ay
B
q; = qrf‘ . G = 6
| )

For simplicity in notation, the vectors q?, i =
2,..,N are collected in the matrix A; =
(0,45, ...,q?v]T and the scalars ¢;, i = 2,..., N, are
collected in the vector s° = (0, g2, ..., gn)-

Note that the transmitter equations (1) have a to-
tal of N2(N + 1)/2 free parameters corresponding
to the nonlinear terms. If these parameters were
selected at random, it is unlikely that a chaotic sys-
tem which possesses the self-synchronization prop-
erty would result. We now determine sufficient con-
ditions on the algebraic structure of the transmitter

which guarantees that it possesses the global self-
synchronization property.

2.1. Conditions for Global Self-Synchronization
As we show below, by requiring that a self-
synchronizing receiver exists, many of the free pa-
rameters in the transmitter equations will vanish.
Also, a significant analytical simplification is ob-
tained by requiring the transmitter/receiver error
dynamics to be linear.

Requirement 1 The transmitter equations must
allow for the exisience of a single-input globally
self-synchronizing receiver. Moreover, the error dy-
namics between the transmitter and receiver must
be linear.

It is beneficial from an implementation viewpoint
if the receiver has the same algebraic structure as
the transmitter. Thus, consider a receiver which is
formed from the transmitter (2) by renaming vari-
ables x — x,. The resulting receiver is given by

Aﬂxr + aoxl + (XIQIX‘I‘?){E’QEXTT =rry
XL Qlyx,) + 24121%, + s%27
(3)

Sufficient conditions for the synchronization of the
transmitter (2) and receiver (3) can be determined
by forming the error system. The error system is
obtained by defining e = x — x, and subtracting
(3) from (2) to obtain

Xr =

X;;Qﬂc - x;@lxr
; x1 @hx — x; @5
é = (Ado+241z1)e+ Sl e
2T x—xI Q=

If we now make the substitution x, = x — e, we
obtain

e = (Ao+ 2A1x1)er-|‘- ‘
xT(Q1+ Qf )e — e’ Qre
xT(Q5+ Q5 )e —eTQje (4)

xT(Qy + Q% )e — T Qlye

Observe that for linear error dynamics, the ma-
trices Q; and Q), i = 2,...N, must be skew-
symmetric. Since these matrices are also symmet-
ric by definition, they must be identically zero for
linear error dynamics. Thus, a significant simplifi-
cation in the analysis is obtained by requiring the
transmitter/receiver error dynamics to be linear.
Under these requirements, Eq. (4) reduces to

e = (Ao+24:21)e . (5)



Equation (5) is linear in e, but has a time-
dependent chaotic coefficient 21(¢). A sufficient
condition for this system to be globally asymptot-
ically stable at the origin can be obtained by con-
sidering a Lyapunov function of the form

1
E(e) = §eTRe ,

where R is a symmetric N X N positive definite
matrix. The time rate of change of E(e) along
trajectories is given by

s AT
Ee) = eT(RA"; o), 4

21’ (RA; + AT R)e .

Observe that E is negative definite if the following
two conditions are satisfied.

e RA, = -ATR
o (RAo+ AL R) is negative definite

Because the first row and column of A; is the
zero vector, the first condition can be satisfied by
choosing R to be a diagonal matrix of the form
R = diag(p,1,...,1),p > 0, and restricting A; to
be skew-symmetric. This restriction results in a
further reduction in the number of free parameters
in the transmitter equations. The second condition
can be satisfied by choosing a stable matrix Ag such
that (RAo + AT R) is negative definite.

2.2. Conditions for Global Stability

Requirement 1 reduces the transmitter equations
to the form

% = Aox+a’zy +24,2x+ sox% . (6)
By requiring the transmitter to be globally stable,
further constraints on the algebraic structure of the
transmitter can be obtained.

Requirement 2 All trajectories of the transmit-
ter equations must remain bounded for t > 0.

A sufficient condition for which all trajectories of
(6) remain bounded can be determined by defining
a family of ellipsoids

V(x) = %(x—c)’fp(x-c) =k, (7)

where P is a symmetric N x .V positive definite
matrix, ¢ is a vector which defines the center of the
ellipsoids, and k is a positive scalar. As we show
below, for k sufficiently large V(x) will determine
a trapping region for the N-dimensional flow.

If we restrict PA; to be skew-symmetric, then
V(x) can be written in the form

"
(- 1y7 (Po 42— ATP) gy

V(X) =

xt [(Paﬂ — 24T Pe)z, + Psomﬂ =
cI(Pa’z; + Ps%?)
where the vector 1is given by
1 = (PAg+ AFP) Al Pc .

Sufficient conditions for V = 0 to define an ellipsoid
in state space are given below.

o PA; =-ATP

o (PAg + AL P) is negative definite
es'=0

e a’ = —24;¢c

Note that the first condition is the skew-symmetry
restriction on PA;. The second condition can
be satisfied by choosing a stable matrix Ao such
that (PAo + AL P) is negative definite. Note that
the first two conditions are consistent with the
self-synchronization conditions. The third condi-
tion excludes the quadratic drive term, z?(¢), from
the transmitter/receiver equations and reduces the
number of free parameters which correspond to
nonlinear terms to only (N — 1)(N — 2)/2. The
fourth condition uniquely determines a® in terms
of Al and c. N

If these conditions are satisfied, then V' = 0 re-
duces to

(x —DT(PAy+ AT P)(x 1)
IT(PAy + AT P)L

1. (8)

Because (PAg 4+ Al P) is restricted to be negative
definite, Eq. (8) defines an ellipsoid in state space.
Since V < 0 for all x outside of the ellipsoid (8), any
ellipsoid from the family (7) which contains (8) will
suffice as a trapping region for the /N-dimensional
flow.

It is also important to recognize that if tr(A;) =
0, then the transmitter equations will have a con-
stant divergence. Specifically, the divergence of the
vector field corresponding to (6) is given by

Vek = tr(A)+2atr(A;) .

Thus, if tr( A1) = 0, then the system (6) will have a
constant divergence. Note also that if tr(4) < 0, in



addition to tr(A;) = 0, then the system (6) is dissi-
pative with a constant negative divergence. Recall
that a constant negative divergence implies that
volumes in state space will go to zero exponentially
fast at every point in R". This property ensures a
rapid convergence of trajectories to a set of points
having zero volume in state space. This property
also has practical significance, and thus, we add a
constant negative divergence requirement.

Requirement 3 The transmitter equations must
have a constant negative divergence.

As discussed above, this requirement is satisfied if
°® M"(Al) =0
e tr(A) < 0.
2.3. Summary of Self-Synchronization and Global
Stability Results
Sufficient conditions on the algebraic structure of
an N-dimensional nonlinear system which ensure
that Requirements 1 through 3 are satisfied have
been determined. Specifically, no nonlinearities in
the drive equation are allowed and all remaining
nonlinearities consist of cross product terms which
include the drive variable. Thus, the transmitter
can be conveniently expressed as

x = (A+242)x , (9)
and the self-synchronizing receiver can be ex-
pressed as

(Ao + 2A1I1 )Xr + B.O:rl = (10)

e =
Moreover, if the conditions

1. RA, = —Ar{R, for some N x N positive definite
matrix R

2. (RAo + AT R) is negative definite

3. PA, = —AfP, for some N x N positive definite
matrix P

. (PAg 4 A% P) is negative definite

.a% = —24;¢

tT{Al) =1

.tr(A) <0

are satisfied, then the transmitter equations are dis-
sipative and globally stable and the receiver system
will possess the global self-synchronization prop-
erty.

It is also important to recognize that if we choose
P = cR, where ¢ is a positive scalar, then condi-
tions 1 and 3 and conditions 2 and 4 are equivalent.
Furthermore, if we choose R = diag(p,1,...,1),
where p is a positive scalar, then condition 1 implies

that A; is skew-symmetric and condition 2 implies
that Ag is stable. In this case, conditions 6 and
7 will be automatically satisfied. In light of these
simplifications, the following synthesis procedure is
suggested.

Synthesis Procedure

1. Choose R = diag(p,1,...,1),p > 0,and set P =
cR,e>0

2. Choose A; to be skew-symmetric, where the
first tow and column of A; is the zero vector

3. Choose any stable Ay such that (RAo + A R)
is negative definite

4. Choose the vector ¢ arbitrarily and set a* =
—2A1(‘.

5. With A = Ag + aoe’f‘, the transmitter and re-
ceiver equations are given by (9) and (10), re-
spectively.

Another important issue concerns the stability of
the fixed points. Specifically, we need to ensure
that all of the fixed points of the transmitter equa-
tions are unstable so that non-trivial motion will
occur. So far we have not determined any condi-
tions for the fixed points to be unstable. Linear
stability analysis of the transmitter equations (9)
will help on this issue.

2.4. Linear Stability Analysis

Linearizing the vector field of (9) about the point
Xg we obtain

x =~ (A424;1210)%0 + J(Xo0)(x — x0) ,(11)
where the Jacobian matrix, J(xq), is given by

J(x0) = A+241(z10l +x0e]) . (12)

In many cases an analytical determination of the
fixed points may not be possible. However, Eq.
(11) provides a useful approach for determining
the fixed points numerically. Specifically, the fixed
points of (9) can be determined numerically by the
Newton-Raphson iteration,

xg'l'l = xg - J(XD)"ll\(_A + 21412?10))(0 (13)

In practice, convergence to the fixed points is usu-
ally rapid. However, a large number of initial con-
ditions should be tested in order to ensure that
all of the fixed points have been found. Once the
fixed points have been found, their stability is de-
termined from the eigenvalues of J(xg). For exam-
ple, the origin of (9) is always a fixed point, and
from (12) we observe that the origin’s stability is
determined by the eigenvalues of A. This provides
a simple condition on the eigenvalues of A in order



to ensure that the origin is unstable. Specifically,
the origin of the transmitter equations (9) is unsta-
ble if and only if A is an unstable matrix.

If any of the remaining fixed points are stable,
we must adjust the free parameters in the trans-
mitter equations and observe if chaotic motion oc-
curs. Fortunately, there is a simple way to vary
the transmitter parameters without violating any
of self-synchronization and global stability condi-
tions. Specifically, the Jacobian matrix (12) can be
written in the form

J(XD) = Ag+ 3.0331 + 2A1($1UI + err{) =

Inspection of J(xo) suggests that by fixing Ao and
A; the eigenvalues of J(xg) can be affected by vary-
ing a°. Since a® = —24;¢c, we can adjust a’ by
varying the c vector. In typical cases, we have ob-
served numerically that by increasing the magni-
tude of ¢ all of the fixed points eventually become
unstable. Since the trajectories are bounded, ei-
ther limit cycles or chaotic motion will result. Fur-
thermore, invariant tori are not possible, because
of the constant negative divergence requirement.
Using specific examples, we will demonstrate this

behavior numerically in the next section.

3. SYNTHESIS EXAMPLES WITH
NUMERICAL EXPERIMENTS

As a first example, we will utilize the synthesis pro-
cedure to obtain the Lorenz equations. This exam-
ple also shows that the Lorenz system is only one
member of a class of three-dimensional chaotic sys-
tems which possess the self-synchronizing property.
Subsequent examples will consider the synthesis of
higher dimensional systems.

3.1.

To begin, we must choose the state space dimension
N, define R = diag(p,1,...,1),p > 0, and select an
appropriate A;. Recall that the elements of A
correspond to the nonlinear terms in the transmit-
ter equations. There are exactly (N — 1)(N —2)/2
independent free parameters in A;. Thus, for a
three-dimensional system there is only one free pa-
rameter.

To illustrate the method, suppose we choose N =

3, R = diag(1/0,1,1),and A; as

0 0 0
[0 0 —1/2]
0 1/2 0

Synthesizing the Lorenz System

4 =

Note that A; is skew-symmetric and that RA; =
—ATR. Next we must choose a stable matrix Ao
such that (RAo + AT R) is negative definite . A
simple way to ensure that Ap is stable is to choose

o

Ap to be upper triangular with negative coefficients
on the main diagonal. For example, suppose we
choose

-0 0
Ay = 0 -1 0 ,
0 0 -b

where ¢,b > 0. Clearly Ay is a stable matrix, and
it is straightforward to verify that (RAp + AT R)
is negative definite. Next, we must choose the ¢
vector. Recall that ¢ determines the center of the
ellipsoidal trapping region in state space. lFor ex-
ample, suppose we choose

[¢]

At this point, we have enough information to
fully specify the transmitter equations. The vec-

Cc =

tor a’ = —2A4;c is given by
0
ao = r
0
The linear coefficient matrix A = Ag+ale] is given
by
- o 0
A = r =1 0
0 0 =b

When the transmitter equations are written in
terms of a set of first-order differential equations
we obtain

& = o(zea—11)
ig = Tr] — ¥y —T1I3
ii)‘g = I1&y — bfﬂ;} ,

which we recognize as the well known Lorenz sys-
tem [Lorenz, 1963].

3.2. Synthesizing a Four-Dimensional Chaotic Sys-

tem
In four dimensions, the matrix A; contains three
free parameters. These parameters may be chosen
arbitrarily. Suppose, for example, that we choose
Al as

0 0 0 0

o o -1/2 -1/2

4 = | 1/2 0 1/2
0 1/2 -1/2 0



By analogy with the Lorenz example, suppose that
we choose Ag as

16 16 0 0

0 -1 0 0

Ao = 0 0 -4 0
0 0 0 -1

These choices satisfy the synthesis conditions for
R = diag(1/16,1,1,1). Finally, we choose the ¢

vector as

0
. 0
¢ = Tlas|
1
where 7 is treated as a bifurcation parameter. The
vector a® = —2A4;c is given by
0
At = F 1_2;’) ,
.25

and the linear coefficient matrix A = Aq + a%e] is

given by

- o 0 0
125 -1 0 O
4 = -r 0 =b 0
28 9 0 =1
When the transmitter equations are written in
terms of a set of first-order differential equations
we obtain
&1 = 16(zg —z1)
Ty = 1.28rzy— 29— 2123 — 2124
T3 = —rz;—4r3+ 2122+ T124
T4 = .206rxy— T4+ T1T9— 123 .

As an illustration of the nonlinear dynamical be-
havior of the transmitter equations, consider Fig.
2 which shows the computed Lyapunov exponents
as r is varied over the range 20 < r < 100. The
QR decomposition method of Eckmann & Ruelle
[1985] was used to compute the exponents numer-
ically. Note that the onset of chaotic behavior oc-
curs near r = 42, as evidenced by the existence of
a positive Lyapunov exponent. Note also that two
negative exponents are apparent as well as the zero
exponent. For comparison purposes, the computed
Lyapunov exponents for the Lorenz system are also
shown (dashed lines).

Figure 3 shows the computed Lyapunov dimen-
sion as r is varied over the same range. The Lya-
punov dimension, Dr, is defined by

b

D =
- (RYARY

k+

1
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Figure 2: Lyapunov Ezponents for a 4-Dimensional Chaotic
System.

o=16 l«<—— Chaotic Behavior —
b=4
3t i
=
2
=
g % :
E I| ———- Lorenz System
S i! ———  4-D Synthesis
Sy |
3 It I
[
|
i
I
i
I
0 1 : . .
20 40 60 80 100

Bifurcation Parameter, r

Figure 3: Lyapunov Dimension for a 4-Dimensional Chaotic
System.

where Aq,...,Ax are the Lyapunov exponents of
a chaotic system and where k = maz{i : A\ +
-++4 A; > 0}. The Lyapunov dimension provides
a useful and meaningful measure of the fractional
dimension of a chaotic attractor. Note that the
Lyapunov dimension increases significantly as r in-
creases. This is in contrast to the Lorenz system,
where the attractor dimension is approximately
constant at a value near 2.06.

Figure 4 shows various projections of the chaotic
attractor corresponding to r = 60. Note that the
(z1,2) projection is qualitatively similar to the
Lorenz attractor. The (z,z3) projection is also
similar to the Lorenz attractor except that one of
the “wings” is twisted. The remaining projections
illustrate the complicated topology of the chaotic
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Figure 4: Chaotic Attractor Projections for a 4-Dimensional
Chaotic System (r = 60).

attractor.
The self-synchronizing receiver equations are
given by

16(z9, — 21r)

Zor = 1.26r24(t) — z2r — 21 ()23, — 21(8)T4r
E3r = —rz1(t) — 4T3, + T1(2)T2r + T1(t)T4r
= .25r21(%) — T4r + 21(t)22r — 21(t)23r .

Ty =

54;47

Figure 5 illustrates the exponentially fast synchro-
nization between the transmitter and receiver sys-
tems. The curve measures the distance in state
space between the transmitter and receiver trajec-
tory, when the receiver is initialized from the zero
state. Synchronization is rapid and is maintained
indefinitely.

3.3. Synthesizing an Arbitrary Five-Dimensional

Chaotic System
To further emphasize the simplicity and general-
ity of the synthesis procedure, we consider the de-
sign of a 5-dimensional chaotic system. Specifically,
consider the matrix A; given by

0 0 0 0 0
0 0 -56 -91 .36
4 = 0 .56 0 .36 .87
0 91 -—-.36 0 —-.23
0 —-36 —-87 .23 0

In this case, the six free parameters of A; were
selected at random from the normal distribution
with zero mean and unit variance. Next, consider

=1

10 R - e

[fx=x,/I

R 2 4 6 3
Time (s)

Figure 5: Self-Synchronization in a 4-Dimensional Chaotic
System.

the stable matrix Ag given by

~16 16 3.66 0 0

0 -1 .06 —.80 0

By = 0 0 -4 -1.07 155
0 0 0 -1 .38

0 0 0 o=

Note that randomly selected elements have been
placed above the main diagonal of Ap. It
is straightforward to verify that these choices
satisfy the synthesis conditions for R =
diag(1/16,1,1,1,1). Finally, we choose the ¢ vec-
tor as

.00
.00
04|
58
—~82

where r is treated as a bifurcation parameter. The
vector a’ = —24;¢ is given by

.00
1.68

a® = r| 1.00] ,
~.35
~.20

and the linear coefficient matrix A = Ag + a':'eT is

given by

-16 16 3.66 0 0

1.68r -1 .06 —.08 0

A = 1.00r 0 -4 -1.07 1.55
—-.35r 0 0 -1 .38

—-20r 0O 0 0 =%

The transmitter equations are fully determined,
and are of the form x = (A + 24z, )x.
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Figure 6: Lyapunov Ezponents for a 5-Dimensional Chaotic
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As an illustration of the nonlinear dynamical be-
havior exhibited by the transmitter equations, con-
sider Fig. 6 which shows the computed Lyapunov
exponents as r is varied over the range 20 < r <
100. As 7 increases, all of the fixed points even-
tually lose stability and the motion is confined to
stable limit cycles. These limit cycles lose stabil-
ity near r = 70 and a chaotic attractor appears, as
evidenced by the existence of a positive Lyapunov
exponent. Note also that three negative exponents
are evident in the chaotic regime.

Figure 7 shows the Lyapunov dimension as r is
varied over the same range. This figure clearly
shows the presence of the limit cycle regime (D =
1). After a sequence of bifurcations takes place, the
Lyapunov dimension increases sharply as r enters
the chaotic regime.

Figure 8 shows various projections of the chaotic
attractor corresponding to r = 90. These projec-
tions clearly illustrate the extremely complicated
topology of the chaotic attractor.

Figure 9 demonstrates that synchronization takes
place between the transmitter and receiver systems.
The curve measures the distance in state space be-
tween the transmitter and receiver trajectory, when
the receiver is initialized from the zero state. Syn-
chronization is rapid and is maintained indefinitely.

It should be emphasized that it is also straight-
forward to synthesize significantly higher dimen-
sional systems. The relatively low-order systems
discussed in this section were chosen to illustrate
the synthesis approach, rather than to suggest lim-
itations.
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Figure 7: Lyapunov Dimension for a 5-Dimensional Chaotic
System.

4. CONCLUSIONS

In this paper, we have developed a systematic ap-
proach for synthesizing a class of N-dimensional
dissipative chaotic systems which possess the self-
synchronization property. The ability to synthesize
new chaotic systems further enhances the useful-
ness of synchronized chaotic systems for communi-
cations and signal processing. Exploring the wealth
of nonlinear dynamical behavior exhibited by this
class of systems is an exciting topic for future re-
search. There is also considerable potential for
designing and implementing new chaotic circuits
which could form the basis of a secure communica-
tion system.

We note that it would also be an interesting fu-
ture experiment to explore the possibility of utiliz-
ing our synthesis procedure to obtain a set of trans-
mitter equations which exhibit multiple positive
Lyapunov exponents. If this were possible, then it
follows that hyperchaotic self-synchronization can
be achieved when the receiver is driven by only a
single transmitter component.
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