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ABSTRACT .In [6], Lyapunov’s direct method was used as a 

In practical applications of self-synchronizing chaotic 
systems, it is undesirable to  be restricted to  the well- 
known low-dimensional systems; we need the ability 
to  choose from a wide variety of high-dimensional 
chaotic systems. This paper discusses systematic 
synthesis procedures for achieving this capability. 
The significance of this work lies in the fact that  the 
ability to  synthesize high-dimensional chaotic sys- 
tems further enhances their applicability for commu- 
nications, signal processing, and modeling of physical 
processes. 

I. INTRODUCTION 

The chaotic self-synchronization property [ 1, 21 
suggests some intriguing concepts for embedding 
information within a chaotic transmission and for 
recovering the message a t  the intended receivers 
[3, 4, 51. The current ch(a1lenge in this area is to cre- 
a te  high-dimensional self-synchronizing chaotic sys- 
tems which are practical1 to  implement and can be 
applied and tested against real-world problems. Pre- 
vious developments of systematic synthesis proce- 
dures have addressed this issue [6, 71; the procedures 
provided a means for designing a wide variety of 
high-dimensional chaotic systems that can be imple- 
mented with standard analog hardware. The many 
possible system designs improve the privacy aspects 
of self-synchronizing chaotic systems. 

basis t o  develop the systematic synthesis procedure 
for a general class of quadralically nonlinear chaotic 
systems that synchronize via a single drive signal. 
While those systems appear t o  be very promising, the 
state equations may contain a, large number of nonlin- 
ear terms making their circuit, implementation poten- 
tially difficult. The desire t o  create high-dimensional 
chaotic systems that are easier t o  implement moti- 
vated a later study of mutually coupled chaotic sys- 
tems [7]. A systematic synthesis capability was de- 
veloped for a class of chaotic arrays which possess 
the self-synchronization property. Chaotic arrays of- 
fer considerable flexibility in the design of complex 
chaotic systems, although they typically require mul- 
tiple drive signals for synchronization - - significantly 
increasing the complexity of ithe communication sys- 
tem. 

The work presented here focuses on an interest- 
ing subclass of chaotic arrays - - those consisting of 
a single low-dimensional chaeotic system and an N -  
dimensional linear feedback system. These systems, 
which we refer to as “Linear FeedBack Chaotic Sys- 
tems (LFBCSs),” have several implementation ad- 
vantages. They provide for high design flexibility and 
suggest straightforward circuit implementations. 

The paper is organized as follows. In Section 11, 
we describe the synthesis methodology used to  de- 
velop the various synthesis procedures. In Section 
111, we demonstrate the synthesis approach for LF- The views expressed are those of the author and do not 

reflect the official policy or position of the U.S. Government. 
This work was performed while the author was a graduate 
student a t  M.I.T. work 

BCSs. Section IV summarizes the Of this 
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11. SYNTHESIS METHODCCOGY 

ur approach to  synthesis has consistently followed 
a systematic four step process. First. we specify an 
algebraic model for the transmitter and receiver S J S -  

tems. As shown in [6, 71, the chaotic system models 
can be very general; in [6] the model represents a 
large class of quadratically nonlinear systems. while 
in [7] the model allows for an unlimited number of 
Lorenz oscillators to be mutually coupled via an LV- 
dimensional linear system. 

The second step in the synthesis process involves 
subtracting the receiver equations from the trans- 
mitter equations and imposing a global asymptotic 
stability constraint on the resulting error equations. 
Using Lyapunov’s direct method, sufficient condi- 
tions for the error system’s global stability are tisuali, 
straightforward to obtain. The sufficient conditions 
determine constraints on the free parameters of the 
transmitter and receiver which guarantee that they 
possess the global self-synchronization property. 

The third step in the synthesis process focuses 
on the global stability of the transmitter equations. 
First, a family of ellipsoids in state space is defined 
and then sufficient conditions are determined which 
guarantee the existence of a trapping regzon. The 
trapping region imposes additional constraints on the 
free parameters of the transmitter and receiver equa- 
tions. 

The final step involves determining sufficient condi- 
tions which render all of the transmitter’s fixed points 
unstable. In most cases, this involves numerically in- 
tegrating the transmitter equations and ccmputing 
the system’s Lyapunov exponents and/or attractor 
dimension [SI. If stable fixed points exist, the sys- 
tem’s bifurcation parameter is adjusted until the? 
all become unstable. In the next section. we demon- 
strate the synthesis approach for LFBCSs. 

I I I. Su N T H ES I z I N G S E L  F - S Y N c H RO N I z I h G 

CHAOTIC SYSTEMS 

Linear feedback chaotic systems (LFBCSs) are com- 
posed of a low-dimensional chaotic system and a lin- 
ear feedback system as illustrated in Fig. 1. Because 
the linear system is N-dimensional, considerable de- 
sign flexibility is possible with LFBCSs. Another 
practical property of LFBCSs is that they synchro- 

CHA 0 TIC SYNCHR QNIZING 
TRANSMITTER RECEIVER 

Figure 1: Linear Feedback Chaotic Systems. 

nize via a single drive signal while exhibiting complex 
dynamics. 

TYhile many types of LFBCSs are possible, we con- 
sidered two specific cases: ( i )  the chaotic Lorenz sig- 
nal z i t )  drives an N-dimensional linear system and 
the output of the linear system is added to  the equa- 
tion for i in the Lorenz system; and (ii) the Lorenz 
signal z ( t )  drives an N-dimensional linear system and 
the output of the linear system is added to  the equa- 
tion for i. in the Lorenz system. In both cases, a 
complete synthesis procedure was developed. 

To illustrate the approach, consider the x-input/z- 
output case. %.e. ,  where the transmitter equations are 
given by 

x = B ( y - z ) + v  

L - , -  - ~ y - b ~  

i = A ~ + B ~  
v = C I + D z  . 

j l  = r x - y - x z  

The first three state equations correspond to  the 
Lorenz system. The vector 1 and scalar v denote 
the state variables and output of the linear system, 
respectively. The linear system is N-dimensional, 
i .e.. A is K x N ,  B is N x 1, C is 1 x N ,  and D 
is 1 x 1. For notational simplicity, we refer to  the 
transmitter state variables collectively by the vector 
x = (z, y, z .  I ) ,  when convenient. 

The self-synchronization properties of the Lorenz 
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system suggested a receiver system of the form 

x, = U ( Y ~  - x r )  t v r  

i, = o ( t ) ! / T  - bzT (2) 

v, = c1, + D o ( t )  . 

y, = r a ( t )  - y, - x ( t ) z ,  

1, = AI, t Bz( t )  

Algebraically, the receiver system (2) is obtained 
from the transmitter (1) by renaming variables x + 

x, and substituting the drive signal z ( t )  foic x,( t )  in 
all state equations except the first. 

We can study the self- synchronization properties 
of the transmitter and receiver equations by forming 
the error system. The error system is derived by 
subtracting (2) from (1) to obtain 

Gx = o(ey - e,) + Cel 
Gy = -e5’ - x ( t ) e ,  
6, = x(t)ey - be, 
e l  = Ael . 

(3)  

Since the dynamics of el are independent of e,, ey ,  
and e,, we can see that if A is a stable matrix, then 
the el subsystem is globally asymptotically stable at  
the origin. The (ey,ez)  subsystem is also decoupled 
from the rest of the system, and can be shown to be 
globally asymptotically stable at  the origin [4]. The 
error signal e x ( t )  must adso go to  zero as t -+ 00 

because e,(t) is the output of a stable linear time- 
invariant system that is driven by e,( t )  and el( t ) .  
From this analysis, we conclude that the error sys- 
tem is globally asymptotically stable at  the origin if 
A is a stable matrix. Equivalently, with A as a stable 
matrix, the transmitter and receiver are guaranteed 
to  synchronize regardless of the initial conditions im- 
posed on these systems. 

The next step is to determine an appropriate set 
of conditions which guarantee that the transmitter is 
globally stable. The global stability conditions, to- 
gether with the self-synchronization conditions, sug- 
gest a systematic synthesis procedure. Below, we 
summarize the procedure; a complete development 
is given elsewhere [9]. 

Synthesis Procedure 

1. Choose any stable .A matrix and any N x N 
symmetric positive (definite matrix Q. 

2. Solve P A  + ATP t Q = 0 for the positive def- 
inite solution P. 

3. Choose any vector B and set C = -BTP/r .  

4. Choose any D such that U - D > 0. 

The first step of the procedure is simply the self- 
synchronization condition; it requires the linear sys- 
tem to be stable. Clearly, many choices for A are 
possible. The second and thiird steps are akin to  a 
negative feedback constraint, i . e . ,  the linear feedback 
tends to  stabilize the chaotic system. The last step in 
the procedure restricts U - D ;> 0 so that the x equa- 
tion of the Lorenz system remains dissipative after 
feedback is applied. 

For the purpose of demonstr<ation, consider the fol- 
lowing five-dimensional s-input/o-output LFBCS. 

x = o ( y - z ) + v  
j /  = T X - y - X Z  

It can be shown in a straightforward way that the 
linear system satisfies the synthesis procedure for 
suitable choices of P,Q, and R. For the numerical 
demonstrations presented below, the Lorenz param- 
eters chosen are CT = 16 and b = 4; the bifurcation 
parameter r will be varied. 

In Fig. 2. we show the computed Lyapunov di- 
mension as r is varied over the range, 20 < r < 100. 
This figure demonstrates that the LFBCS achieves a 
greater Lyapunov dimension than the Lorenz system 
without feedback. The Lyapunov dimension could be 
increased by using more states in the linear system. 
However, numerical experiments suggest that  stable 
linear feed back creates only neg,ative Lyapunov expo- 
nents, limiting the dynamical complexity of LFBCSs. 
Nevertheless, their relative ease of implementation is 
an attractive practical feature. 

In Fig. 3, we demonstrate the rapid synchroniza- 
tion between the transmitter m d  receiver systems. 
The curve measures the distance in state space be- 
tween the transmitter and receiver trajectories when 
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Figure 2: Lyapunoo Dimension of a 5-D LFBCS. 

the receiver is initialized from the zero state. Syn- 
chronization is maintained indefinitely. 

IV. CONCLUSIONS 

The synthesis methodology described in this paper 
provides the potential for designing high-dimensional 
self-synchronizing chaotic systems which could be im- 
plemented in hardware and used in practice. The 
Linear feedback chaotic system concept described 
here provides for high design flexibility and suggests 
straightforward circuit implementations. While these 
results appear promising, much work remains before 
chaotic communication systems can be considered 
truly private or practical. We are currently exploring 
the applied aspects of these systems. 
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Figure 3 :  Self-Synchronization in a 5-D LFBCS. 
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