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ABSTRACT

The main results of this paper are characterizations of
the Cramer-Rao (CR) bound on the variance of direction
estimates for closely-spaced emitters in multiple parameter
(multi-D) scenarios. Specifically, simple analytic expres-
sions for the CR bound are presented for co-linear emitter
configurations, which show the bound to be very sensitive to
the maximum spacing between emitters (6w). Results also
are cited for CR bound sensitivity to éw for emitter config-
urations in which the emitters are not co-linear. The latter
results exhibit greatly reduced sensitivity to the direction
separation factor §w. Thus the results show that degenera-
cies are present in multi-D parameter estimation scenarios
that are not present in 1.D scenarios. Specifically emitter
resolution and direction estimation can be expected to be
much more challenging for some emitter configuration than
for others. The case of co-linear emitters appears to be a
particularly stressful one.

1. INTRODUCTION

The Cramer-Rao (CR) bound on the variance of direction
estimates provides a useful benchmark for assessing estima-
tion accuracy of direction-finding algorithms. Evaluation
of the CR bound generally requires inverting the applicable
Fisher Information matrix, leading to expressions in terms
of matrix inverses [1],[2]. For closely-spaced emitters, sim-
ple analytic expressions for the CR bound applicable to sin-
gle parameter (1-D) direction finding problems have been
obtained [3]. This paper extends the latter result to exam-
ple multi-dimensional (multi-D) direction finding scenarios,
and shows that behavior of the bound is strongly dependent
upon the emitter configuration.

@(@) is a known generic signal vector for parameter vector
@ =[w, - wa)”. Z(t) is an unknown nx1 vector of complex
amplitudes which can change with index 1. €(t)isanmx1
vector of additive complex noise at sample index {.

Let superscripts 7 and * denote the transpose and the

conjugate transpose respectively.

Paralleling Reference [1], assume that m > n, that the
elements of d@(w) are bounded and possess derivatives of all
orders, that the sequence of vectors F(t)t=1---Nis fixed
for all realizations of the data sequence §(t), that the matrix

N
pa % PO ON 3)
t=1

is positive definite, and that the vector €(t) varies ran-
domly across the ensemble of data vectors 7(t). Specifically
the &(t) are samples of a zero-mean, uncorrelated complex
Gaussian random process with variance o. The data model
{1)-(3) often is designated as the Conditional Model [1}, [3).

3. CR BOUND EXPRESSION

The CR bound applicable to the parameter vectors
@1 ---dn takes the following form. If @ji is an unbiased
estimate of the ;'* element of Gi, J=1---dyi=1...m),
then

%vw}=s{@-s)@_sy}zac (4)

where E{} denotes expectation, A > B means that the
matrix A — B is non-negative definite, and

- . " -
2. PROBLEM ASSUMPTIONS G = [Gndin o Da e an)” (5)
We utilize the data model of [1). Specifically assume that ) {5,} (6)

Parameter vectors &, - - - &n are to be estimated from N data
vectors (“snapshots”) of the form

¥(t) = A-E(t) +&(1) t=1---N (1)

¥(?) is a noisy (complex) m x 1 vector observed at sample
index t. Ais a constant m x n matrix of n signal vectors
having the special form

A S (A(G),- - #(Gn)) (2)
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Bc is the nd x nd submatrix of the inverse Fisher Informa-

tion matrix corresponding tu the suitably ordered elements
of &y --- &y,

In Reference [1], Stoica and Nehorai derive an expression
for B2 valid for one-dimensional parameter scenarios. Yau
and Bresler extend the result to vector parameters & in
Reference [2]. Straightforward re-arrangement of Equation
(9) of [2] gives

BZ' = -ZaﬁRe [# o P]) (7
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where ® denotes the Hadamard element-by-element matrix
product, and

HErT (8)
T 2 5@, 71(Bn), - Fal@), - Fal@)]  (9)
(@) = [1-A4* )~ 4% [ a(c)] (10)
{=a;
where ¢ = [¢1---¢d)” and
pP...P
Pz (nd xnd)  (11)
pP...P

4. ANALYSIS APPROACH

The main results of this paper are obtained by identifying
the dominant term for small parameter separations of (7) for
selected multi-dimensional scenarios. Following Reference
[3], we express @; as follows

Gi = o + 6w - & (12)

1 = 1-..n, where &g is a nearby fixed reference vector, fw
is a variable real scalar parameter, and

= [q1i, -+ qai]” (13)

i = 1..-n are constant normalized real parameter offset
vectors. The §; are normalized so that §w measures the
maximum separation ||@x — &i|| between pairs of the pa-
rameter vectors &1 - - - @Wn.

The analysis strategy is to examine the behavior of (7)
as the scaling parameter éw — 0, while the ¢; are held
constant.

5. CO-LINEAR EMITTERS IN MULTI-D

The first case that we address is that of estimating the
multi-dimensional angle of arrival for n co-linear emitters
with arbitrary spacing. To simplify the analysis, assume 1)
that the spatial line of the emitters parallels the coordinate
axis for the first angular variable, and 2) that the remaining
angular variables are measured relative to the emitter line
along orthogonal coordinate axes. That is, assume

-

@ = Qo + [bw gi,0,---0]T (14)

t = 1..-n. (Note that this assumption does not constrain
the sensor array. Specifically we are not assuming that the
line of emitters coincides with a line of sensor array sym-
metry.)

Use of results presented in [3] (specifically Eqs (A.19),
(A.2)-(A.6)), shows that as §w — 0 the dominant terms of
the columns of (9) are as follows:

wh—1 ¢ (Qc)
1[), +0(6w)

X+0(6 n) (15)

i=1---n,j=2---d, with the constant vectors
&I - A4 AT AT, (16)
¥; £ [I- A(A* Ay Amam

where A is the constant matrix

At [a@o).a a®, - an;V)] an)

s afo 8 18
Gy dn [351‘1 JeN (C)](=‘30 "

1>

and

n

$'@) = [J@-a) (19)

1=1

t#¢
It can be shown that the X, 1,/72 1/-;4 are non-zero and
linearly independent if the columns of A, a(") ".‘El), cee &"(il)
are linearly independent. Many sensor array geometries of
interest satisfy this condition, and we assume it to be true

in this analysis.

1t follows from (15) that (7) can be expressed as
2N

BZ! Re [(T*T) © P{]

H

"7@) {K + O(bw)} @ (20)
where

& £ Diag [w"“———"”(q,l) Y Wi ¢'(‘{"),1, e 1] (21)
n.

(EDPT (£GP - (£-50)PT

* - - P P

K 2 Re (’/’l)f)P (1 1/”1) ' - (1 1/’.4) (22)
(F2X)PT (Pa$1)PT - ($39a)PT

It can be shown that the constant matrix K is positive

definite if ¥, a2, J;d are linearly independent. Therefore
we have

Bc = —-—<I>“‘ {K7' + O(sw)} @71 (23)
The following general form of the CR bound on each of

the @;; follows from (23) and the 6w dependence of @ in

(21):

Var {&1:} > N ;NR.' 5“,:(]:-1) +O(sw™H D (24)
Var {@;i} > mb]‘g‘ + O(6w)
fori=1.---m, 7 = 2-.-d, where SNR, denotes the signal-
to-noise ratio for the i** emitter
SNR; £ (P)ii/o (25)

( )rs denotes the r,s'" element of the referenced matrix and
byi,bji are positive constants straightforwardly calculable
from (23).
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Egs. (24) are important because they make explicit the
small éw behavior of the CR bound. Specifically as §w — 0,
the CR variance bound for the angular coordinate along the
emitter line is asymptotically proportional to 1/6w7("‘1);
therefore the bound increases rapidly as éw — 0. By con-
trast the bounds for angular coordinates perpendicular to
this line are asymptotically constant. Thus the bound for
any angular coordinate not perpendicular to the emitter
line also is proportional to l/&wz("'”.

5.1 Special Cases

More explicit expressions can be obtained if any of the
following conditions are satisfied.

I P is real. (This includes the uncorrelated emitter case
for which P is diagonal.)

IT All inner products of vectors X, v2,---9a are real.
(This condition occurs automatically for arrays of
omni-directional sensors with pair-wise sensor symme-
try about the array center.)

IIT All vectors ¥, Jz, .- 1[-;4 are orthogonal. (This condi-
tion occurs for 2-D sensor arrays with the above sym-
metry if the number of emitters is even.)

If any of the above conditions is satisfied, then

aii1(Re [PT])"1 --- a14(Re [PT] )~?
: : (26)

K= :
aa(Re [PT])™! .- aga(Re [PT])~

where the oj; are the real constant elements of

(X*X) Re[f°h] - Re[t"da) |7
Re[$i%] (#141) - Re [d144]

(27)
Re [#3%] Re [(bads] -+ (P3da)
In these special cases, the constants in (24) satisfy
1 [)? -1
bii = -——— R g
M= g (Rl (28)

bji

il ({Relel} ™),

where p denotes the matrix of signal correlation coefficients

p £ P32 pp;i/ (29)

Pp £ Diag. [(P)n, Pz, (Pun]  (30)

If Condition III is satisfied, then matrix K is block diag-
onal and 1 )

o1 = Tk oj; = ll%j“z , a =0 (31)

j=2---d, k # I Then the CR bound expressions (24)
can be further simplified by referencing the MUSIC null
spectrum, as noted in [3] for 1-D scenarios. Specifically
(24) takes the remarkably simple form

({Re[o]} ™).,
N - ASNR; - D{?(&;)

Var {@5:} > [1+0@w)] (32)

fort=1.--m, j=1---d, where ASNR; denotes the array-
signal-to-noise ratio for the i** emitter defined as

ASNR; = SNR; - [|a(@)| (33)

and Dg)(cﬁ) is the second partial derivative along the j**

coordinate of the multi-dimensional MUSIC null spectrum

@ (@) — A(A*A) 1 A*]E(D)
lla(@)|?

6. GENERAL EMITTER CONFIGURATIONS

We also have obtained asymptotic expressions for B¢ as
6w — 0 for more general emitter configurations [4]. The
most striking feature of these results is that B¢ increases
much less rapidly as éw — 0 for such emitter configurations
than for the co-linear configuration. For example, we have
shown for 2-D problems that

D(@) & (34)

Var {@;i} oc 1/6w® (3 emitters not constrained
to a line)

(6 emitters not constrained
to a conic section)

Var {@;i} o« 1/6w* (35)

By contrast, the corresponding worst-case dependencies for
co-linear emitters are 1/6w* and 1/6w'® (See (24)). Thus
in multi-D problems the co-linear configuration is an ex-
tremely unfavorable one with regard to estimating direc-
tional parameters.

7. NUMERICAL EXAMPLES

Example 1: To illustrate the results, asymptotic and ex-
act CR bounds were compared for 2-D direction estimates
of far-field emitters located near broadside of a 13 element
planar array of omni-directional sensors. 12 of the sensors
were uniformly distributed around a circle with unit wave-
length spacing between adjacent sensors, and 1 sensor was
at the circle center. The array satisfies the Condition II
of Section 5.1. Figure 1 shows the values of CR bounds
for parameter estimates along the z and y axes for a sce-
nario with two correlated emitters. One of the emitters is
exactly at array broadside. The z-axis was selected to co-
incide with the straight line defined by the two emitters;
the y-axis was selected to be the orthogonal axis. The co-
ordinate origin was selected such that & = (0,0) was at
array broadside. The z-axis formed a 10° angle with the
line through the two nearest sensors on the array perimeter
and the sensor array center. The emitter correlation coef-
ficient was p12 = 0.4 + 0.61, where i = /=1. The solid
curves depict the exact CR bounds; the dashed lines depict
the asymptotic behavior predicted by Eqs (24), (28) and
(31). Clearly the simplified asymptotic expressions capture
the essence of the bounds for emitter separations less than
one beamwidth.

Example 2: Exact and asymptotic bounds also were cal-
culated for one of three far-field emitters observed by the
sensor array of Example 1. The emitter correlation matrix
was

1 piz o pt

pi2 1 pi2 (36)

(i) ool 1
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with p12 = 0.4 4+ 0.6i and n = 3. The bounds for emit-
ters in a triangular distribution (emitter directions are

= (8w/3,0), 32 = (0,26w/3), T3 = (0,—6w/3)) are
compared with the bounds for emitters co-linear with the
z-axis (&; = (0,0), &2 = (6w/3,0), &3 = (§w,0)). Fig-
ure 2 presents the results. The graph abcissa measures
the minimum separation between @& and & .- P, in ar-
ray beamwidths. Once again the asymptotic expressions
(dashed lines) closely approximate the exact CR bounds
(solid curves) for 6w = éw - z'x:gx lIgi — §ill/beamwidth < 1.

Also note that the bound for the linear array increases much
more rapidly than that for the triangular array as 6w — 0
in agreement with the discussion of Section 6.

Example 3: To further illustrate the results, exact and
asymptotic bounds were calculated for two six-emitter con-
figurations observed by the array of Example 1. The cor-
relation matrix p is as in (36) with n = 6. The bounds for
an emitter distribution that satisfies (35) (& = (~», —7),
@G = (-n,0), & = (0,0) & = (0,n), &5 = (n,-n),

g

N -SNR, - (B.),; (dB)

C

il

z-axis bound j =1

:Qope 30 d?/decade 2

y-axis boun:d j=2 5 -
507 G 6w/‘Bean:w~i:lth

Fig. 1: Exact ‘-’ and Asymptotic ‘- -> CR Bounds;

2 Correlated Signals in 2-D.
108 ¢ v v

Ph.D. Thesis, MIT.

Fig. 3: Exact ‘-’ and Asymptotic ‘- -’ CR Bounds;

6 Correlated Signals in 2-D.
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= (n,0), with g = 8w/v/5) are compared with the z-axis bound j =1 3_
bounds for emitters co-linear with the r-axis (3; = (0 0), Co-linear emitters
B = (bw/S,0), 35 = (6w/3,0), By = (26w[3,0), G = _ "% kS (Slope 40 dB/decade :
(48w/5,0), Js = (bw, 0)). Flgure 3 presents the results for (@ 3 b
the emitter at &;. Once again, the results are in accordance T 100 r
with our analyses. ,-u\: E Non co-linear emitters
8. CONCLUSIONS S ~ /{ e e
. 1
The main results of this paper are characterizations of the & i_
dependence of the CR variance bound on emitter spacing % 100 g
Sw for small w and selected emitter geometries. Simple : 3
analytic expressions were derived for special case co-linear = ]
emitter scenarios and were cited for other scenarios. It was TN - 1
shown via analysis and simulations that the CR bound is f y-axis bound j =2 E
typically much larger as §w — 0 for co-linear emitters than t Co-linear emitters - p
for general emitter distributions. Thus the results show that 104 — i S
degeneracies are present in multi-D parameter estimation 10 ‘_°° w
scenarios that are not present in 1-D scenarios. Specifically Fig. 2: Exact ‘-’ and Asymptotic ‘- -> CR Bounds;
emitter resolution and direction estimation can be expected 3 Correlated Signals in 2-D.
to be much more challenging for some emitter configuration 108 ¢ A Tb 4=
than for others. The case of co-linear emitters appears to t ::-:-J;Zea:u:mii t:rls
be a particularly stressful one. - \lSlope 100 dB/decade —
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