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Abstract

The problem of data transmission over additive Gaussian
fractal noise channels is considered. Exploiting an efficient, wavelet-
based representation for fractal processes, the problem of coher-
ent detection in Gaussian fractal noise is addressed, from which
the optimum receiver for bit-by-bit signaling is obtained. This
leads to a multirate modulation strategy that is inherently well-
suited for use with the fractal noise channel. Computationally
efficient implementations of the transmitter and receiver struc-
tures for this system are also developed.

Introduction

Frequently, communication theory focuses on the use of channel
models in which the additive noise is white. This is both because
white noise is a reasonable model for a variety of broadband
noises encountered in many physical systems and because white
noise is particularly amenable to analysis.

However, there are a wide range of environments in which the
predominant noise is not white but more generally fractal, i.e.,
the noise is characterized by various degrees of scale-invariance
[8] [9]. For instance, such noise is often associated with laser
systems, electronic devices and turbulent flow. Consequently,
the problem of transmitting data over fractal noise channels is an
important one in a variety of optical, electrical, and underwater
(acoustic) communication contexts.

This work exploits an efficient representation for fractal noise
in terms of orthonormal wavelets bases that was developed in
[12]. From this representation, we are able to address problems
of optimal receiver design for bit-by-bit signaling in fractal back-
grounds. In turn, this suggests an efficient and practical mul-
tirate modulation strategy for use with fractal noise channels.
Related work on detection in fractal noise is described in i1,
while work on the estimation of fractal signals is presented in
13;.
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Fractal Noise

The 1/ f family of fractal noise processes are generally defined (8]
as processes whose empirical power spectra are of the form
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over several decades of frequency f, where 0 < v < 2is a param-
eter typically near unity. Although such power spectra are often
not integrable, a variety of interpretations of such spectra have
emerged in the literature [4] (8] [9] [12].

A truly enormous range of natural phenomena are well-modeled
as 1/f processes (8] (9], although the ubiquity itself is not well-
understood. Moreover, these processes have a number of im-
portant properties, among which is a statistical invariance to
scale and persistent long-term correlation structure, that contrast
sharply with those of the well-studied class of ARMA processes.

Processes that exhibit only a constant percentage deviation
from the nominal 1/f characteristic, i.e., processes whose power
spectra are bounded according to
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where 0 < k; < kg < oo are arbitrary, also possess the funda-
mental characteristics of 1/f processes. Consequently, the defini-
tion of 1/f processes can generally be extended to include these
nearly-1/ f processes [13]. Examples of such processes include the
dyadic fractal processes—processes that are statistically invariant
only to changes of scale by factors of two [13].

The fractal noise channels considered in this work are additive
noise channels with no intersymbol interference where the noise is
a 1/f process. While the ideal (infinite bandwidth) fractal noise
channel has infinite capacity (since S(f) — 0 as f — o0), any re-
alistic communication scenario involves a bandwidth constraint.
This can be accommodated in our model either by adding a white
noise component or by treating the channel as bandlimited. We
will generally adopt the latter approach, although it is worth-
while to remark that the former can be readily accommodated
using techniques developed in {13!
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Orthonormal Wavelet Bases

Briefly, an orthonormal wavelet transformation of a signal z{t} is
defined through the synthesis/analysis equations
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and has the special property that all basis functions are dila-
tions and translations of a single function: YZ(t) = 2™/2¢{2™t -
nj, where m and n are the dilation and translation indices, re-
spectively [3]. Since the basic wavelet, ¥(t}, has an essentially
band-pass Fourier transform, the wavelet transformation is con-
veniently interpreted in terms of a generalized constant-@ or
octave-band filter bank.

A resolution-limited approximation of & signal z(t) in which
details on scales smaller than 2™ are discarded can be expressed
via the orthonormal expansions

Ap()= Y amwniti= 3 adent(t), (4}

m<M n

with the coefficients a,"f obtained by
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The basis functions ¢(t) also have the property that they are
dilations and translatiens of a single scaling function: ¢7(t} =
2m12g(2™t — n), where ¢(t)] has an essentially low-pass Fourier
transform.

There is considerable flexibility in the clioice of ¢(t), which
characterizes the wavelet, basis. It is frequently desirable to choose
this scaling function to be localized in both time and frequency,
and of finite length. There exist a variety of such wavelet bases;
see, e.g., Daubechies [3].

The discrete wavelet transform (DWT) defined in terms of
the quadrature filter pair

e = [T el (62)
dinl = [ v eeyar (eb)

relates the approximation coefficients @] and detail coefficients

27 through: the filter-dow nple and upsample-filter relations
af = 5 hfk- ma]+? (72}
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] for a discussion of the computational complexity of the

DWT.

Wavelet Representations of Fractal Noise

The wavelet-based Karhunen-Logve-like expansion for I/f pro-
cesses described in [12] is a synthesis result—that one can: con-
struct a class of dyadic fractal processes using wavelet expansions
in terms of uncorrelated transform coefficients having the vari-

ance progression

Varz = g2, = g2 "™ {8}
where - is the exponent of the nearly-1/f spectrum, and 0% is a
positive constant: propartional to a2,

At least empirically, there exists a corresponding aenalysis
result—for a reasonably arbitrary choice of wavelet, there isstrong
empirical evidence that the wavelet coefficients from all 1/f and
nearly-1/[ processes both obey the variance progression (8) and
are weakly correlated both along and across scales. Recently,
work such as that of Tewfik, et al [10] suggests that this analysis
result can be made rigorous.

We shall use these properties of the wavelet expansion to
convert the problem of continuous-time communication in fractal
noise into a problem of discrete-time communication over parallel
white noise channels.

Bit-by-bit Signaling

Let us consider the problem: of designing an optimal receiver for
bit-by-bit signaling in fractal noise. In particular, consider a
collection of mutually orthogonal waveforms {s(t — kT'}}, each
of energy E such that the kth bit is represented by —s(t — KT') if
the bit is a0, or by s(t — KT} if the bit is a I. This correspends
to transmission at. rate R = 1/T bits/sec with average power
P=ER.
Designing the optimal receiver for determining each bit amounts

to: solving a detection problem involving two equally-likely hy-
potheses for the received signal rft):

Ho:elty = —sft)+z(t} (9a)
Hyorlt) = s{t)+ oft) (9b)

whiere z(t) represents the fractal noise. Here we assume that the
channel is bandlimited, that s(t) is sufficiently Jow-pass so as to
be transmitted undistorted, and that z(t) represents, specifically,
the bandlimi ractal noise. We further assume for simplicity
that: the bandlimit. can be expressed as W = 21} Hz for some
integer M.

Using a wavelet-based representation for z{t} for which the
corresponding ¢(t} is a reasonably good low-pass filter, we can
rewrite (9) as & multichannel hypothesis test:

HoerP = —p e (100)
Hy:tlb = s+ (1ob)

where m < M is the channel index and n is the discrete-time
index. In each channel, the noise is white with variance (8}, and
the noise from channel to channel is uncerrelated. For Gaus-
sian noise, it is straightforward to show that the optimal receiver

computes
¢ —~ RSy
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m<kM
and decides that the received bit is a 1 if £ > 0 and 0 otherwise.
The resulting bit-error probability for a system with this receiver
can be readily expressed as

(r2).
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where Q(-) is defined by

Because o2, is a monotonically decreasing function of m, s(t)
can be chosen to minimize (12) subject to the energy constraint
E by putting all the energy into the least noisy channel: m =
M — 1. The best achievable bit-error probability using bit-by-bit
signaling is then given by

r -
)A (13)
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The results of this section suggest that bit-by-bit signaling
can be rather inefficient in many respects, particularly in terms of
bandwidth. Indeed, the optimum signaling waveform, expressed

s(t) = S M gM () (14)

is essentially band-pass, so that effectively only the upper half of
the available bandwidth W is used.

Note that one optimal choice for the signaling waveform for
this problem is s(t) = \VE¥}~!(t). While the use of wavelet
basis functions as modulating waveforms is clearly inefficient in
this example, the notion of using these bases more generally for
modulation has considerable potential, as we show next.

A Multirate Modulation Scheme

In developing an uncoded modulation strategy optimized for the
additive Gaussian fractal noise channel, we start by recognizing
that for a fixed integer m, we may send data using Lp-level
pulse amplitude modulation (PAM) at b,,2™ bits/sec where b, =
log, Ly, using the signaling waveforms {y*(t)} such that the nth
symbol in the stream modulates ¥*(t). Using this modulation,
the data is transmitted essentially in the frequency band 2™~! <
/ < 2™ Hz, the effective frequency support of $7(t). With an
average energy per symbol Ey,, the bit-error rate of such a scheme
with the optimum receiver is

Pu(e) =2 (L,z; 1) 0 ( (LGai;';)az,,) , (15)

However, we may add additional, orthogonal channels in par-
allel by using other values of m and exploiting the orthogonal-
ity of the waveforms {)7(t)}. The result is a sequence of data
streams occupying consecutive octave-width frequency bands. For
each successive value of m, the bandwidth and data rate of the
corresponding channel doubles. Note that while the bandwidth
constraint W on the system limits the highest channel, the geo-
metric escalation of noise in the channels corresponding to suc-
cessively lower frequencies ultimately gives rise to a limit on the
lowest available channel, M.

The problem concerning which channels to use and how to
distribute power among those channels is well-posed. Specifically,
given an average power constraint

> Ex2"<E (16)

m<M

and a desired common bit-error rate P, = Pp(e) for each of

the channels, it is possible to distribute the power among the
channels so as to maximize the overall bit rate

R= ) bn2™ (17)

m<M

This optimization problem arises in various forms in such mul-
tichannel communication problems, and the solution involves a
water-pouring algorithm [2] {7] very similar to that which solves
the problem, of computing the capacity of the composite channel
[6, pp. 343-354].

This multirate modulation scheme can be implemented very
efficiently. Specifically, while a straightforward, entirely continuous-
time implementation of the transmitter and receiver is possible,
it turns out that there is considerable advantage to implementing
much of the system in discrete-time by exploiting the structure
of the DWT discussed earlier.

The construction of the multiple data streams required for
this scheme proceeds as follows. Since there are M = M-M
channels, corresponding to M < m < M, and since the symbol
rate doubles for each successive channel, the bit stream to be
coded can be partitioned into blocks of length

ST 2™ My, bits,
MSm(ﬁ

of which 2™~M}p . bits are assigned to the mth channel. Con-
tinuing this bit assignment strategy among the channels over
successive blocks, we construct the M bit streams. Next, each
of the bit streams is converted into a stream of L,-ary symbols
by collecting successive groups of by, bits. Let {dm|n]} represent
the stream of symbols for the mth channel, so each dn[n] takes
on one of the Ly, values associated with a minimum-energy PAM

constellation of average energy Ev,.
In terms of the multiple PAM streams described above, the
transmitter constructing
t)= D dmlnjur’(t) (18)

M<m<M

can be implemented as follows. Using the successive upsample-
filter-add operations of the DWT synthesis relations (7}, the data
streams can be combined into a single sequence c[n| as illustrated
in Fig. 1. Then, consistent with (4), this composite sequence can
be modulated on the low-pass waveform ¢}(t) to produce

o(t) = Y clrlen’(t) = Yoclnléb’(t - 27Mn),  (19)
n n
which is transmitted over the channel.

The optimum receiver can be implemented in a complemen-
tary fashion. First the composite sequence estimate &[n| is ob-
tained from the noisy received signal &(t) = ¢(t)+z(t) by low-pass
filtering and sampling:

i = [ ey = (e« F (-], m, (@)

Then, using the successive filter-downsample operations of the
DWT analysis relations (7), we can extract estimates of the indi-
vidual data streams (im[n] for M < m < M, as shown in Fig. 2.
Finally, each of these noisy L,,-ary PAM streams is decoded via
a quantization process according to the appropriate minimum
distance decision rule.
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Concluding Remarks

While the system above has been designed specifically for the
additive Gaussian fractal noise channel, it is generally applicable
to a much broader range of scenarios. In particular, with the
appropriate power distribution among the channels, this system
is inherently well-suited to ios in which. it is more appro-
priate to treat channel noise and LTI channel characteristics on
a Jog-frequency scale.

Finally, while we have restricted our attention to uncoded
medulation, the incorporation of ideas from caded modulation
5] appears to hold considerable promise. Indeed, this, together

vith a study of the performance of the schemes described in this
work, suggests some interesting and important future directions
for this work.
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Figure 2: The optimum receiver for multirate medulation
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