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ABSTRACT

A nonlinear generalization of the family of autoregressive
signal models is introduced. This generalization can be
viewed as an autoregressive model with state-varying pa-
rameters. For such signals, minimum mean-square error
prediction can be reformulated as an interpolation prob-
lem. A novel interpretation of the signal as a codebook for
its own prediction leads to an interpolation strategy resem-
bling a predictive counterpart to vector quantization. The
applicability of this model is then demonstrated empirically
for a variety of signals.

1 INTRODUCTION

A popular signal modeling technique is to model signals as
outputs of dynamic systems excited by either deterministic
or random inputs. Once the appropriate form of the signal
model is specified, its parameters can be estimated from ob-
servations of the signal, and properties of the signal can be
inferred from the model. Autoregressive (AR) signal mod-
eling, a particularly useful technique in which the system
model is linear and time-invariant, is described in terms of
an 2" order difference equation of the form,

n—1

y[k+1]:Zaiy[k—f]+U[k], (1)

=0

where y[k] is the output signal and input, u[k), is station-
ary white noise. Not only have these models been shown to
be well-suited for many signals of interest, but the linear-
ity of the model also allows for simple analysis, especially
when the mean-square error criterion is used. In fact, very
efficient algorithms exist for calculating model parameters.
For these reasons, AR modeling has been popular in the

a small region of the signal and the parameters of the model
are allowed to vary as a function of time.

In a complementary manner, a nonlinear time-invariant
(NLTT) generalization of the AR model can be used to ac-
count for signals for which the linearity requirement is in-
appropriate. There are, of course, many physical signals
generated by processes that are inherently nonlinear. In
such cases, exploitable redundancies may exist in the signal
that are transparent to linear methods, so linear modeling
may fail to sufficiently capture the underlying structure. As
we will show, an effective strategy for nonlinear signal mod-
eling of this case involves fitting an AR model to the signal
locally in state space. In effect, the model parameters vary
as a function of the state.

2 NONLINEAR AUTOREGRESSIVE MODELS

A broad class of systems, including AR models and both
the LTV and NLTI generalizations, can be represented in a
common state space form:

x(k+1] =
y[k]

where the n X 1 vector x[k] is the state, the p x 1 vector ufk]
is the input, and the m x 1 vector y[k] is the output. When
the system is LTI, the state equations (2) may be written
in the form

F(X[k], ll[k}, k) (26,)
G(x[K], u[k], k), (2b)

I

x[k+1] = Ax[k]+ Bulk] (3a)
yIk] Cx[k] + Dulk]. (3b)

In the AR case, the matrix A from (3) takes companion
form,

signal processing literature in, e.g., problems of prediction 0 1 0 0 0
and spectral estimation [3] [4]. 0 0 1 0 0

For nonstationary signals, such as speech, a linear time- : (@)
varying (LTV) generalization of the AR model is frequently - '
used. In particular, an AR model is fit locally in time over 0 0 0 0 1
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Generalizing the the model to include nonlinear sys-
tems, while retaining the companion state variable struc-
ture, leads to systems described by n*" order nonlinear dif-
ference equations of the form

ylk+1] = F(y[k] gk~ 1],...,y[k = n +1]) + u[k], (5)

where F(-) maps R" to ®, and u[k] is stationary white noise.
The state space representation can be viewed as a simple
extension of (3), i.e.,

010---00

001---00 0 0

x[k+H1]= : D x[k]+ 0 + u(k], (6a)
voo.oo)  Lrean L

y[k]=[ 0 0 1 ]x[k]. (6b)

For convenience, we will refer to the class of processes that
can be expressed in the form (6) as nonlinear autoregressive
(NLAR) processes.

3 PREDICTION OF NLAR PROCESSES

From the Markov structure of NLAR processes, we can see
that the statistics for y[k+1] given its entire history depend
only on the most recent n values:

P(y[k+1]| yli], 0<i<k) = P(y[k+1] | y[i], k-n+1<i<k). (7)

It is clear from (6), that we can reconstruct the state vector,
x[k], from observations of the the scalar output, y[k], in the
following manner,

x[k] = [ylk —n+1],...,ylk — 1], y[k))7 . (8)
From (7) and (8), the conditional statistics become,
P(y[k+1] | y[il, 0<i<k) = P(y[k+1} | x[K]).  (9)

Thus, the minimum mean square error (MMSE) estimate
of y[k + 1] given its entire signal history is

I

lk+1] E{ylk +1] | x[k]}
E{F(x[k]) + u[K] | x[k]}

= F(x[k]). (10)

Il

Although F(x) is part of the system model, and therefore
unavailable, the state dynamics of the system can be ob-
served through

ylk+1] = F(x(k]) + ulk]. (1)

Thus, given y[k] and recovering x[k] from (8), the signal
history represents a set of noisy samples of F(x), nonuni-
formly distributed in state space. Consequently, the esti-
mation problem for y[k + 1] can be viewed as a problem of
interpolating F'(x) from noisy samples.

Based on the interpolation viewpoint, several solutions
to the prediction problem arise naturally. For example,

kernel-based strategies involving splines or radial basis func-
tions can be used to create a global approximation of F(x)
[1]. One benefit of such a scheme is that the model for
F(x) can be precomputed, making signal prediction a sim-
ple function evaluation. However, the performance of such
schemes depends critically on the choice of the kernel, since
rather strong assumptions are imposed on F(x) between
the observed samples.

A philosophically different approach which makes fewer
assumptions about the behavior of the function between
samples is based on the use of local models. In a manner
reminiscent of vector quantization, we can view the signal as
a codebook of (state-vector,signal-value) pairs of the form,
(x[k], y[k + 1]). Because each codebook entry must satisfy
(11), the strategy is to use the present state of the system,
x[k], to “lookup” F(x[k]) in the codebook. Assuming only
that the state dynamics are locally smooth, and given a
long enough signal history, the elements of the codebook
near the present state of the system describe a local model
of the state dynamics from which F(x[k]) can be inferred.
In order for such a scheme to succeed, the codebook must
contain entries near any encountered state of the system —
therefore only a finite portion of state space can be modeled.

We arrive at the following strategy for predicting y[k+1]
given y[i],0 < i < k:

¢ Form a codebook of pairs (x[i], y[i+1]) from the signal

history.

® Select pairs (x[i], y[7 + 1]) from the codebook for x[i]
near x[k].

o Fit a local model y[i + 1] ~ F(x][i]) to the selected
pairs.

o Apply the local model to obtain [k + 1] = F(x[k]).

Although the problems can be considered independently,
it will be easier to approach pair selection once the local
models are determined.

3.1 LOCAL MODELS

If the state update function is sufficiently smooth that we
can closely represent F(x) in the vicinity of x[k] by the first
few terms of its multidimensional Taylor series expansion,
e,

F(x) F(x[k]) + VFT (x[k])(x — x[k]) + - - -

b+aTx, (12)

Q

then we may approximate F(x) as either a constant or
as a linear function near x[k]. If our selected pairs are
close enough to x[k], the local model will be a good ap-
proximation. Generating a locally linear approximation
(F(x) = F(x) = b+ a’x), amounts to fitting the param-
eters b and a to the selected pairs, (x[i], y[i + 1]), in the
region of state space near x[k]. The model will generally
provide an overdetermined set of linear equations in the
model parameters,

yfi + 1] = b+ a%x[4), (13)
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Figure 1: Locally Linear State Space Model

which can be solved in a least-squares sense.

Our locally linear model can be seen as a generalization
of the AR model of (4), with the matrix A varying as a
function of the state. We also have the addition of the
constant, b, to account for any local mean of the process.
For example, in the case of a second order system (n = 2),
our state space, S, is a plane with axes z; and z,. As
shown in Fig. 1, we can look at F(x) as a surface over the
plane, S. In Fig. 1, we model F(xo) for xo near x[k] by a
plane tangent to F'(x) at x = x[k]. In contrast, traditional
AR modeling of the system would approximate the function
F(x) with a single plane through the origin — thus the
locally linear model reduces to the AR model when the
“local” region extends to include all of state space.

3.2 PAIR SELECTION

Pair selection involves two conflicting requirements. On
one hand, our selection process must choose pairs that are
close to x[k] in order that the local model hold; on the
other, we need to ensure that the local fitting procedure is
taken over a large enough number of measurements. Us-
ing nearest-neighbor pair selection, various trade-offs can
be made. For a large class of signals, including many sta-
ble AR and Markov processes [7], an estimation procedure
that selects a number of nearest-neighbors that increases at
a rate slower than the data length can be shown to converge
in the mean-square sense to F(x[k]). As we will show, how-
ever, in other cases it is preferable to hold fixed the number
of nearest neighbors as the data length increases.

4 RESULTS

The NLAR prediction procedure has been tested on a vari-
ety of signals, with traditional AR modeling (linear predic-
tion) used as a means of comparison. To demonstrate the

viability of the algorithm, the first set of experiments in-
volve predicting the following NLAR process,

ylk+1] = 2y[k]*+.25y[k] - . 2y[k]y[k— 1]+.125y [k — 1] +uk],

(14)
where u[k] is a unit variance white Gaussian noise sequence.
Theoretically, we expect the NLAR model to yield a mean-
square prediction error that decreases monotonically to the
variance of the driving noise. In Fig. 2, the mean-square
prediction error for 100 Monte Carlo trials of both linear
prediction and locally linear prediction are shown. We see
that empirically, only the locally linear technique achieves a
mean-square prediction error near the variance of the driv-
ing noise, i.e., the minimum attainable mean-square predic-
tion error.

Second Order Prediction of a NLAR Process

Locally Linear Prediction

Mean Squared Prediction Error

o 2000 4000 6000 8000 70000
data length (samples)

Figure 2: Prediction of 2*¢ Order NLAR Process

A rich class of NLAR processes exist even when the
drive term, u[k], is identically zero. In fact, an increasingly
important class of such NLAR processes are chaotic pro-
cesses. As an example, the Henon Map is a NLAR process
given by

y[k+1] =1 — 1.4y[k])* + 3y[k — 1], (15)

which is known to exhibit chaotic behavior for certain ini-
tial conditions, e.g., y[0] = y[1] = 0. Because there is no
drive term, and the processes are therefore deterministic,
the prediction performance is limited only by the numer-
ical instability of the map. For this example, four meth-
ods of prediction were employed: linear, locally constant,
25 neighbor locally linear, and 10 neighbor locally linear.
Prior to prediction, the mean of the process was removed
and the variance was normalized to ensure fair coniparisons.
From Fig. 3, we see that linear prediction yielded almost no
prediction gain, while the mean-square error for the local
models decreases steadily with the data length. In the ab-
sence of the driving noise, as the data length increases, the
average distance from x[k] to the selected pairs decreases.
Thus, the approximation of (12) becomes more accurate.
The 10 neighbor locally linear technique outperforms the 25
neighbor technique because the average distance to the se-
lected pairs is smaller. More generally, NLAR prediction is
useful in modeling a variety of chaotic data. In fact, Farmer
and Sidorowich have used essentially such an approach for
the prediction of chaotic time series [2].

Our final example involves prediction of speech. Tra-
ditionally, speech is modeled as a time-varying AR process
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Figure 3: Prediction of Henon Process

to account for the nonstationarity of the speech produc-
tion mechanism. Fig. 4 shows the mean-square prediction
error achieved by time-varying AR and state-varying AR
models. In each case, 50 previous samples were used to
determine the parameters of a 12" order model. For the
state-varying case, the 50 nearest neighbors in state space
were used, while for the time-varying model, the 50 most
recent samples in time were used. That there are regions
in the signal where the state-varying approach significantly
outperforms the LTV AR model, suggests that NLAR mod-
els may be potentially useful for speech analysis. In fact,
one can interpret the preliminary work of Townsend on the
nonlinear prediction of speech in the NLAR framework [6].

5 CONCLUDING REMARKS

For a nonlinear time-invariant generalization of AR pro-
cesses we have developed a signal modeling algorithm based
on a codebook prediction paradigm. The development of
algorithms for model order selection represents an impor-
tant direction for future research. Another direction in-
volves improving the computational efficiency of these algo-
rithms perhaps by incorporating codebook structuring no-
tions from vector quantization. Finally, by combining the
LTV and NLTI generalizations of AR processes, a broader
class of signals can be modeled. This too represents a po-
tentially rich area of investigation.

REFERENCES
[1] M. Casdagli. Nonlinear prediction of chaotic time series.
Physica D, 35:335-356, 1989.

[2] J.D. Farmer and J.J. Sidorowich. Predicting chaotic
time series. The American Physical Society, 59(8), 1987.

Speech Data

o

0 v T
E Linear Prediction

m

Mean Squared Prediction Error (dB)

-40

[ 625 1250 1875 2500 3125  37s0
data fength (ms)
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