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A Class of Block-Iterative Equalizers for Intersymbol
Interference Channels: Fixed Channel Results
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Abstract—A new and efficient class of nonlinear equalizers is
developed for intersymbol interference (ISI) channels. These “it-
erated-decision equalizers” use an optimized multipass algorithm
to successively cancel ISI from a block of received data and gen-
erate symbol decisions whose reliability increases monotonically
with each iteration. These equalizers have an effective com-
plexity comparable to the decision-feedback equalizer (DFE), yet
asymptotically achieve the performance of maximum-likelihood
sequence detection (MLSD). We show that, because their structure
allows cancellation of both precursor and postcursor ISI, iterated-
decision equalizers outperform the minimum mean-square error
DFE by 2.507 dB on severe ISI channels even with uncoded
systems. Moreover, unlike the DFE, iterated-decision equalizers
can be readily used in conjunction with error-control coding,
making them attractive for a wealth of applications.

Index Terms—Decision-feedback equalizer, equalization, inter-
ference cancellation, iterative decoding, multipass receivers, strip-
ping.

I. INTRODUCTION

OVER THE LAST several decades, a variety of equal-
ization techniques have been proposed for use on

intersymbol interference (ISI) channels. Linear equalizers (LE)
are attractive from a complexity perspective, but can suffer
from excessive noise enhancement. Maximum-likelihood
sequence detection (MLSD) [13] is an asymptotically optimum
receiver in terms of bit error rate (BER) performance, but its
high complexity generally precludes its use in practice.

Decision-feedback equalizers (DFE) [3] are a widely used
compromise, retaining a complexity comparable to linear equal-
ization, but incurring much less noise enhancement. However,
some significant shortcomings arise out of the sequential way
in which the DFE processes the received data. First, decisions
made at the slicer can only be fed back to improve future de-
cisions. Thus, only postcursor ISI can be subtracted, so even if
ideal postcursor ISI cancellation is assumed, the performance
of the DFE is still limited by possible residual precursor ISI and
noise enhancement. Second, the sequential structure of the DFE
makes it somewhat difficult to use in conjunction with coding
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(on channels not known at the transmitter, as is the case of in-
terest in this paper).

In this paper, we introduce a multipass equalizer whose
structure overcomes these principal limitations of the DFE,
achieving the performance of MLSD and being fully compat-
ible with coding, while retaining the low complexity of the
DFE and the LE.1

II. CHANNEL MODEL

In the discrete-time baseband model of the pulse amplitude
modulation (PAM) communication system we consider, the
transmitted data is a white -ary phase-shift keying (PSK)
stream of (possibly coded) symbols , each with energy

. The symbols are corrupted by a convolution with the
impulse response of the channel and by additive noise

to produce the received symbols

(1)

The noise is a zero-mean, complex-valued, circularly sym-
metric, stationary, white Gaussian noise sequence with variance

that is independent of . The associated channel fre-
quency response is denoted by

(2)

Throughout this paper, we focus on the fixed channel case in
which the receiver has perfect knowledge of , in order to de-
velop the basic theory and fundamental limits. In the companion
paper [8], we develop and analyze adaptive implementations in
which the channel coefficients arenotknowna priori. Ex-
amining the fixed and adaptive scenarios separately and com-
paring their results allows system designers to isolate channel
tracking effects from overall equalizer behavior. We emphasize
that in both papers, we restrict our attention to transmitters that
have no knowledge of the channel, as is often the case in, for
example, wireless applications.

In an increasing number of practical wireless applications,
such as underwater acoustic communications [15] and future
spectrally efficient implementations of emerging ultrahigh rate
wideband radio-frequency (RF) communications [19], ISI can
be particularly severe. This paper devotes particular attention
to this scenario, examining the performance and developing the
properties of the various equalizers in this regime. In fact, we
shall optimize the iterated-decision equalizer for the severe-ISI

1A corresponding multipass multiuser detector with analogous properties for
iterative cancellation of multiple-access interference is described in [9] and [22].
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case in Section III in order to develop the basic theory and fun-
damental limits. However, the resulting equalizers are also ef-
fective on a broad range of shorter-ISI channels as well, as we
discuss at the end of Section III.

For the purposes of analysis, a convenient severe-ISI channel
model we will exploit is one in which is a finite impulse
response (FIR) filter of length , where is large and the taps
are mutually independent, zero-mean, complex-valued, circu-
larly symmetric Gaussian random variables with variance.
The channel taps are also independent of the data and
the noise . It is worth pointing out that this is also a good
channel model for many wireless systems employing transmitter
antenna diversity in the form of linear space-time coding [21]
with arrays having a large number of elements.

III. T HE ITERATED-DECISION EQUALIZER

The iterated-decision equalizer we now develop processes the
received data in a block-iterative fashion. Specifically, during
each iteration or “pass,” a linear filter is applied to a block of
received data, and tentative decisions made in the previous it-
eration are then used to construct and subtract out an estimate
of the ISI. The resulting ISI-reduced data is then passed on to a
slicer, which makes a new set of tentative decisions. With each
successive iteration, increasingly refined hard decisions are gen-
erated using this strategy.

The detailed structure of the iterated-decision equalizer is de-
picted in Fig. 1. The parameters of all systems and signals asso-
ciated with the th pass are denoted using the superscript. On
the th pass of the equalizer where , the received
data is first processed by a linear filter , producing the
sequence

(3)

Next, an appropriately constructed estimate of the ISI is
subtracted from to produce , i.e.,

(4)

where

(5)

(In subsequent analysis, we will show that is never re-
quired for the first iteration, so its value may remain undefined.)
Note that since is intended to be some kind of ISI estimate,
we are primarily interested in the case in which

(6)

Finally, the slicer then generates the hard decisions from
using a (symbol-wise) minimum-distance rule.

Some important properties of the composite system, con-
sisting of the channel and the iterated-decision equalizer, can
be derived when mild restrictions are imposed on the filters

Fig. 1. Iterated-decision equalizer structure.

and . To develop these restrictions, we make use of
the following definition.

Definition 1: Let be the impulse response of an LTI filter
with frequency response . Then is an admissible filter
if can be written in the form

(7)

where is the channel frequency response (2), and where
is a complex-valued function that satisfies the admissibility

conditions:

1) is bounded within any finite region of the complex
plane, i.e., for every , there exists a positive real constant

such that

for all (8)

2) grows more slowly than a quadratic exponential, i.e.,2

for every (9)

With our channel model, is a complex-valued, Gaussian
random variable where and .
Thus, expectations involving only admissible filters at a single
frequency are functions only of and not of . Consequently,
we shall omit the dependence onin our notation when dealing
with such expectations.

The following useful theorem, which is analogous to ones
in [21] and [2],3 characterizes the composite system consisting
of the channel in cascade with the multipass equalizer afterth
iterations; a proof is provided in Appendix A.

Theorem 1: Let and be sequences of zero-mean
uncorrelated symbols, each with energy; and let the normal-
ized correlation between the two sequences be expressed in the
form4

(10)

2The order notationo(�) is to be interpreted in the usual sense. Ifp(z) �

o(q(z)), then

lim
p(z)

q(z)
= 0:

3While they focus on fundamentally different digital communication prob-
lems, both [21] and [2] exploit system analysis and optimization tools related
to those used in this paper, which reflects the breadth of applicability of these
tools.

4Our empirical analysis confirms that this model for the correlation between
the transmitted symbols and tentative decisions is a very good one in practice.
Note, too, that� will in general be a function of the equalizer parameters; we
suppress this dependency to simplify our notation.



1968 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 11, NOVEMBER 2001

Moreover, let be a channel impulse response of length,
where5 are mutually independent, zero-
mean, complex-valued, circularly symmetric Gaussian random
variables with variance . Finally, suppose and are
the impulse responses of admissible filters in the sense of Def-
inition 1, and that in addition satisfies the natural require-
ment (6). Then, as , we have that the slicer input
defined via (4) with (3), (5), and (1) satisfies, for each,6

(11)

where is a complex-valued, marginally Gaussian,
zero-mean white noise sequence, uncorrelated with the input
symbol stream , and having variance

(12)

The second-order model (11) turns out to be a useful one for
analyzing and optimizing the performance of the iterated-de-
cision equalizer at each iteration. In particular, it can be used
to obtain a surprisingly accurate estimate at each iteration of
the symbol error rate for -ary PSK even though we ignore
the higher-order statistical dependencies. The evolution in per-
formance of the equalizer with iteration is, in turn, analyzed in
Section III-A.

The first step in developing these results is to observe that
(11) implies that the signal-to-interferencenoise ratio (SINR)
at the slicer input during each pass can be written, using (12), as
shown in (13) at the bottom of the page, and that the probability
of symbol error at theth iteration is well-approximated by the
high signal-to-noise ratio (SNR) formula for the -ary PSK
symbol error rate of a symbol-by-symbol threshold detector for
additive white Gaussian noise (AWGN) channels, given by [17]

(14)

where

(15)

For the special case of QPSK ( ), (14) can be replaced
with [17]

(16)

Note that this equivalent channel model effectively suggests
that, in the absence of coding, the computationally expensive

5Since infinite-complexity equalizers can compensate for arbitrary time de-
lays, we let the nonzero taps ofa[n] correspond ton = 0; 1; . . . ; L�1without
loss of generality.

6We use the notation���! to denote convergence in the mean-square sense.

Viterbi-algorithm-based MLSD can be avoided—that a simple
symbol-by-symbol detector may suffice, as if the channel were
an AWGN channel.7 In this case, since the probability of error
for -ary PSK given by (14) is a monotonically decreasing
function of SINR, a natural equalizer design strategy involves
maximizing the SINR over all and .

For a given filter , it is straightforward to find the op-
timal filter . In particular, note that the SINR expression
given in (13) contains only once, and the nonnegative de-
nominator term in which it appears can be made exactly zero by
setting

(17)

Using (17) to eliminate , the SINR expression in (13) now
simplifies to

(18)

This result for is intuitively satisfying. If
so that , then the output of

exactly reproduces the ISI component of . More
generally, describes our confidence in the quality of the
estimate . If is a poor estimate of , then

will in turn be low, and consequently a smaller weighting
is applied to the ISI estimate that is to be subtracted from.
On the other hand, if is an excellent estimate of ,
then , and nearly all of the ISI is subtracted from

. Thus, while the strictly causal feedback filter of the DFE
subtracts out only postcursor ISI, the noncausal nature of the
filter allows the iterated-decision equalizer to cancel both
precursor and postcursor ISI. Note also that the center tap of

is indeed zero, as stipulated by (6).
The filter can be optimized using a method analogous

to one used in [20]. Specifically, we can use the identity

(19)

to rewrite (18) as

(20)

where

(21)

7Whenx[n] is a sequence coded for the Gaussian channel, Theorem 1 is
still valid—typical trellis codes used with random bit streams generally pro-
duce white symbol streams [6], as do random codes. More will be said about
coding in Section IV.

(13)
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Using the Schwarz inequality, we have

(22)

with equality if and only if

(23)

So substituting (22) into (21), we see that (23) maximizes (21)
and, in turn, (18).

Note that if the arbitrary complex constant of proportionality
is set to unity, the optimal can be implemented as the
cascade of a matched filter that realizes the nu-
merator of (23) and a filter that realizes the denominator of
(23). Note that changes with each iteration because of its
dependence on . Because the denominator is purely real,

is a conjugate-symmetric function in time that is gener-
ally infinite in extent. However, when the lengthof is fi-
nite, both sides of quickly decay. Thus, can be trun-
cated and effectively approximated by a conjugate-symmetric
FIR filter.

The optimal given by (17) also warrants some dis-
cussion. Since the cascade of with is purely real,
the frequency response is purely real. Thus, the corre-
sponding impulse response is generally a two-sided, con-
jugate-symmetric sequence. Though infinite in extent, can
be truncated and effectively approximated by a conjugate-sym-
metric FIR filter, using the same reasoning as for . While
the strictly causal feedback filter of the decision-feedback equal-
izer subtracts out only postcursor ISI, the noncausal nature of

allows the iterated-decision equalizer to cancel both pre-
cursor and postcursor ISI.

Some comments can also be made about the special case
when . During the first pass, the feedback branch is not
used because , so the sequence does not need to be
defined. Moreover, the filter takes the form

(24)

which is the minimum mean-square error linear equalizer
(MMSE-LE). Thus the performance of the iterated-decision
equalizer, when using just one iteration, is identical to the
performance of the MMSE-LE. In Section III-A, we show
that the equalizer, when using multiple iterations, performs
significantly better than both the MMSE-LEand the minimum
mean-square error decision-feedback equalizer (MMSE-DFE).

We now proceed to simplify the SINR expression that char-
acterizes the resulting performance. With the optimum
and , we have, substituting (22) into (21),

(25)

After some algebraic manipulation, the SINR from (20) then
becomes

(26)

where

(27)

Now since our channel model implies that is a complex-
valued, circularly symmetric Gaussian random variable with
zero mean and variance , then is exponentially dis-
tributed with mean

(28)

where

(29)

is the expected SNR at which the transmission is received. Thus,
using the identity [1]

(30)

where

(31)

is the exponential integral, it is straightforward to show that

(32)
Substituting (32) back into (26), our simplified SINR expression
is

(33)

Equation (33) can, in turn, be used in the following convenient
iterative algorithm for determining the set of correlation coeffi-
cients to be used at each iteration, and simultaneously pre-
dicting the associated sequence of symbol error probabilities.

1) Set and let .
2) Compute the SINR at the slicer input on theth de-

coding pass from via (33), (28), and (29). [It is worth
pointing out that for shorter ISI channels, we can alterna-
tively (and in some cases more accurately) compute
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Fig. 2. Iterated-decision equalizer performance. The successively lower solid
curves plot QPSK symbol error rate as a function of the correlation coefficient
� for SNRs of 7, 10, and 12 dB. Along each curve,�s identify the theoretically
predicted decreasing error rates achieved withl = 1; 2; . . . decoding passes,
and the intersections with the dashed line are the steady-state values (l !1).
The associated experimentally obtained values forL = 256 are depicted using
�’s.

from via (18) and (23), where the expectations are
replaced by frequency averages.]

3) Compute the symbol error probability at the slicer
output from via (14).

4) Compute the normalized correlation coefficient be-
tween the symbols and the decisions generated
at the slicer via the approximation [2]

(34)

5) Increment and go to step 2.
In the special case of QPSK, it can be shown that the algorithm
can be streamlined by eliminating Step 3 and replacing the ap-
proximation (34) with

(35)

A. Performance

Though the iterative nature of the equalizer complicates an
analysis of its performance, useful insights and approximations
can nevertheless be obtained. From Steps 2 and 3 of the algo-
rithm, we see that can be expressed as

(36)

where is a monotonically decreasing function in both
SNR and correlation . The monotonicity of is
illustrated in Fig. 2 where the successively lower solid curves
plot as a function of for various values of

. Meanwhile, from Step 4 of the algorithm, we see that we
can also express as

(37)

where is a monotonically decreasing function of. The
dashed line in Fig. 2 plots as a function of .

At a given SNR , the sequence of error probabilities
and correlation coefficients can be obtained by

Fig. 3. Theoretical iterated-decision equalizer performance as a function of
SNR per bit. The successively lower solid curves depict the QPSK BER as a
function of SNR per bit for 1, 2, 3, 5, and1 decoding iterations. The dashed
curve is the matched filter bound.

starting at the left end of the solid curve (corresponding to
) and then successively moving horizontally to the

right from the solid curve to the dashed line, and then moving
downward from the dashed line to the solid curve. Each “step”
of the resulting descending staircase corresponds to one pass
of the equalizer. In Fig. 2, the sequence of operating points is
indicated on the solid curves with thesymbols. The set of
operating points obtained from Monte Carlo simulations is also
indicated in Fig. 2 by the symbols. These results suggest that
the theoretical predictions are quite accurate.

That the sequence of error probabilities
obtained by the recursive algorithm is monotonically decreasing
suggests that additional iterations always improve performance.
The error rate performance for a given SNR of eventually
converges to a steady-state value of , which is the unique
solution to the equation

(38)

corresponding to the intersection of the dashed line and the ap-
propriate solid curve in Fig. 2.

As Fig. 2 suggests, steady-state performance is effectively
achieved with comparatively few iterations, after which addi-
tional iterations provide only negligibly small gains in perfor-
mance. This observation can also be readily made from Fig. 3,
where BER is plotted as a function of SNR per bit for 1, 2, 3,
5, and an infinite number of iterations. It is significant that few
passes are required to converge to typical target BERs, since the
amount of computation is directly proportional to the number of
passes required; we emphasize that the complexity of a single
pass of the iterated-decision equalizer is comparable to that of
the DFE or the LE.

We now discuss the high-SNR ( ) performance of the
equalizer. We first note from (28) that if , then .
Using the asymptotic series expansion [1]

for large (39)
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Fig. 4. Theoretical (L ! 1) and experimentally observed (L = 256)
performance for various equalizers. The solid curves depict QPSK BERs for
the iterated-decision equalizer, MMSE-DFE, MMSE-LE, and ZF-LE as a
function of SNR per bit. The dashed curve is the matched filter bound.

in (33) and retaining only the first two terms of the series, our
SINR expression as becomes

(40)

where the equality follows from (28). When (40) is substituted
into (14) or (16), we obtain the matched filter bound. Now, the
asymptotic performance of the equalizer can be inferred from
Fig. 2. Specifically, since the successively lower solid curves in
Fig. 2 achieve increasingly higher values of at the intersec-
tions with the dashed line, perfect ISI cancellation is thus ap-
proached at high SNR.

In Fig. 4, we compare the theoretical performance of the iter-
ated-decision equalizer when the number of channel taps

with experimentally obtained results when . The
experimental results are indeed consistent with theoretical pre-
dictions, especially at high SNR.

For comparison, in Fig. 4 we also plot the theoretical
error rates of the ideal MMSE-DFE, the MMSE-LE, and the
zero-forcing linear equalizer (ZF-LE), which are developed
in Appendix B. We can readily see that at moderate to high
SNR, the iterated-decision equalizer requires significantly less
transmit power than any of the other equalizers to achieve the
same probability of error. Specifically, at high SNR ( ),
we have from Appendix B that and

, where
denotes Euler’s constant. Thus, the MMSE-DFE theoretically
requires times or dB more transmit
power to achieve the same probability of error as the iter-
ated-decision equalizer. Moreover, as , the MMSE-LE
requires increasingly more transmit power than the iterated-de-
cision equalizer to achieve the same probability of error.

Since maximum-likelihood sequence detection is optimal in
terms of BER [13], the BER curve for maximum-likelihood se-
quence detection (not shown in Fig. 4) must lie below the BER
curve for the iterated-decision equalizer but above the matched

filter bound. But the theoretical ( ) and simulated (
) BER curves in Fig. 4 for the iterated-decision equalizer ap-

proach the matched filter bound at high SNR, so iterated-deci-
sion equalizers asymptotically achieve the performance of max-
imum-likelihood sequence detection.

Some further comments on the results of Fig. 4 are worth
making. First, similar experimental curves to those depicted in
the figure are obtained even when the channel coefficients are
not Gaussian and/or not independent. What is important is that
the effective number of degrees of freedom describing the taps
be large for behavior to converge to the predicted values. Thus
the stronger the correlation between taps, the larger the number
of them required to converge to the theoretical predictions.

It should also be stressed that when the effective number
of taps (or degrees of freedom) is small, the performance of
any equalizer obviously becomes realization-dependent, i.e., a
function of the particular realized channel coefficients, and thus
in this regime equalizer performance is less well-represented
by the asymptotic expressions developed in this section of the
paper. For example, simulations involving the iterated-decision
equalizer with channel taps show that performance
close to the case is achieved for most channels. How-
ever, about one out of every thousand 64-tap channels at an SNR
per bit of 10 dB leads to a significantly higher probability of
error, and about one out of every hundred 64-tap channels at an
SNR per bit of 9 dB leads to a significantly higher probability
of error. As another example, the simulated performance of the
iterated-decision equalizer for 3-tap and 5-tap channel impulse
responses was found to be strongly dependent on the particular
channel realization [7]. As a useful rule of thumb, our experi-
ence suggests that the iterated-decision equalizer as we have de-
veloped it in this paper performs well (i.e., performs similarly to
the MLSD and better than the MMSE-DFE) on channels whose
normalized, unbiased deterministic autocorrelation function of

satisfies

(41)

Essentially, this condition ensures that the channel has sufficient
variation in its taps, and the larger the effective number of taps a
channel has, the greater the likelihood its autocorrelation func-
tion meets this condition; see [7] for further details.

IV. CODED SYSTEMS

For ideal bandlimited AWGN channels, powerful coding
schemes such as trellis-coded modulation with maximum
likelihood (ML) decoding can improve the performance over
uncoded PAM so that channel capacity is approached.

On the other hand, for bandlimited channels with strong
frequency-dependent distortion, coding must be combined with
equalization techniques. While the MMSE-DFE has certain
attractive characteristics in the context of coded systems [10],
[11], in a variety of practical settings it can be difficult to
use effectively. In particular, in typical implementations the
MMSE-DFE cancels postcursor ISI by using delay-free symbol
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Fig. 5. Structure of a communication system that combines iterated-decision equalization with channel coding.

decisions, which in a coded system can be insufficiently
reliable to yield good performance. From this perspective, the
iterated-decision equalizer, which avoids this problem, is a
compelling alternative to the MMSE-DFE in coded systems.

The structure of a communication system that combines the
iterated-decision equalizer with coding is shown in Fig. 5. Al-
though the sequence is first encoded before it is transmitted,
Theorem 1 is still valid because typical trellis codes and random
codes generally produce white symbol streams [6]. What makes
the iterated-decision equalizer an attractive choice when coding
schemes are involved is that the structure of the equalizer allows
equalization and coding to be largely separable issues. One of
the main differences now in the iterated-decision equalizer is
that the symbol-by-symbol slicer has been replaced by a soft-de-
cision ML decoder; the other is that the batch of decisions must
be re-encoded before being processed by the filter . For
shorter ISI channels, performance of the system may be im-
proved by inserting an interleaver after each encoder to reduce
correlation between adjacent symbols, and by inserting a corre-
sponding deinterleaver before the decoder to reduce the corre-
lation of the residual ISI and noise.

V. CONCLUDING REMARKS

In this paper, we have developed an effective class of low-
complexity nonlinear channel equalizers that rely on an itera-
tive decoding technique to cancel ISI. These equalizers achieve
a performance that approaches MLSD on severe ISI channels,
yet only require complexity on the order of that of a DFE or LE.
Moreover, the structure of the iterative equalizers makes them
readily compatible with error-control coding, unlike DFE. Com-
plementary results on adaptive implementations for the case in
which the channel must be learned by the equalizer are devel-
oped in the companion paper [8]; an important result is that sur-
prisingly little training data is required for the performance of
adaptive implementations to approach that of the fixed channel
implementations developed in this paper.

A variety of issues remain to be explored in future work. For
example, the development of equalizer design and analysis tech-
niques specifically optimized for the small-ISI scenario would
also be a valuable resource for system designers to complement
the large-ISI results presented here, as would tools that take into
account an explicit FIR constraint on equalizer filters.

More generally, some of the richest directions for future re-
search involve developing techniques for analyzing the behavior
of systems that use coding in conjunction with iterated-deci-
sion equalization, together with useful design rules for the se-
lection of appropriate codes, and investigating to what degree
such systems can approach channel capacity. It is conceivable,
for example, that counterparts to Price’s result [16] or its gen-

eralizations [10], [11] could be derived for such equalizers. Fi-
nally, the iterative nature of the decoders for turbo codes [4]
suggests that such codes or their variants may be particularly
well matched for use with iterated-decision equalization. Thus,
it may be possible to combine a turbo-style decoder and the
iterated-decision equalizer into a single efficient equalizer-de-
coder structure comparable to the class of “turbo equalization”
receivers described in [18].

APPENDIX A
PROOF OFTHEOREM 1

The proof requires the following pair of lemmas.
Lemma 1: Let be a complex-valued -periodic

zero-mean Gaussian random process with variance, and
let . If and are admissible
in the sense of Definition 1 with and

, then the admissibility conditions on
and imply that the zero-mean random processes

(42)

(43)

(44)

(45)

satisfy

for (46)

for (47)

Proof: The proof is straightforward and follows from ob-
serving that

for (48)

where

(49)

(50)

(51)

(52)

and where the are finite constants. From (49)–(52), we see
that the satisfy the admissibility conditions of Definition 1
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whenever and do. Using the conditions (8) and (9) in
the expressions

(53)

(54)

for 0, 1, 2, 3, we obtain our desired results.
Lemma 2: Let be a complex-valued -periodic

zero-mean Gaussian random process with varianceand
normalized correlation function denoted by

(55)

Furthermore, let the random process be defined via

(56)

for some function such that

(57)

(58)

(59)

Then, if8 , we have that

(60)

The proof of Lemma 2 is analogous to the proof of Lemma 1
in [21].

We now proceed to a proof of our main result.
First, we write

(61)

where

(62)

and

(63)

with

(64)

Let us consider as defined in (62) first.
We obtain the mean and covariance, respectively, of

given a channel impulse response as

(65)

and

(66)

8We use�����! to denote pointwise convergence almost everywhere.

In turn, averaging over the possible channel responses, we
obtain

(67)

where we have used the fact that since the mean and variance
of are independent of, so are those of . Next, we
define

(68)

where is given in (43). Then,

(69)

Now, the channel frequency response as defined in (2) has
the following property:

(70)

as when . Applying Lemma 1 followed by
Lemma 2 with (70) to (69), we then obtain, for each

(71)

Hence, combining (67) with (71), we have, for any particular
channel response

(72)

for each .
Looking next at as defined in (63), we express in

the form

(73)

Then

(74)

where

(75)

Therefore, is a zero-mean sequence.
Again, for a fixed realization of (and hence and

), we have

(76)
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and

(77)

However, (77) is asymptotically independent of. To see this,
first note that

(78)

where we have used the fact that the bracketed expression on the
right-hand side of (78) is the expectation of an admissible filter
and thus independent of. Then, since

(79)

where is as defined in (44), we have

(80)

Hence, again using (70) and applying, in turn, Lemmas 1 and 2
to (80), we then obtain, for each,

(81)

Hence, combining (78) with (81), we have, for any particular
channel response ,

(82)

for each .
Thus, we can write

(83)

where

(84)

is the equivalent noise. However, since is statistically in-
dependent of and can be assumed to be independent of

,

for all and (85)

and hence

(86)

which, using (72) and (82) with (75) and (64), yields (12).
Finally, we need to show that for a given realization of the

channel response that and are asymptotically un-
correlated. Due to (84), it suffices to show that is asymp-
totically uncorrelated with and individually.

First, using (62), we have

(87)

where the last equality follows from the fact that the processes
and are statistically independent.

Next, using (74), we have

(88)

where the last equality follows from (10) and the fact that the
symbol stream is white. Thus, it remains only to show that

and for all .
To see this, we first note that

(89)

(90)

where (90) follows from the fact that and
the constraint (6). Next

(91)

(92)
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Hence, again using (70) and applying, in turn, Lemmas 1 and 2
to each of (91) and (92), we then obtain, for each,

(93)

(94)

Hence, combining (89) and (90) with (93) and (94), we obtain
the desired results.

APPENDIX B
PERFORMANCEPREDICTIONS FORCLASSICAL EQUALIZERS

In this Appendix, we develop, for comparison with our results
on the iterated-decision equalizer, performance predictions for
the ideal MMSE-DFE, ideal ZF-DFE, MMSE-LE, and ZF-LE
for the severe-ISI channel model described in Section II.

The input to any equalizer slicer can be expressed as

(95)

where is a constant and is the complex-valued interfer-
ence noise component. When is uncorrelated with ,
using the slicer input SINR in conjunction with (14) or (16)
leads to a convenient -ary PSK performance approximation.

This condition is frequently met. For example, for the ideal
ZF-DFE and ZF-LE, the error component at the slicer is, in
fact, a Gaussian process that is uncorrelated withsince ISI
is completely removed. Moreover, is a white process for the
ZF-DFE. For the MMSE-LE, since it is equivalent to the first
iteration of the multipass equalizer, we know is similarly
uncorrelated and white. And similar arguments suggest that the
MMSE-DFE shares this property.

To obtain for these equalizers then, we
first evaluate the mean-square slicer error. For a given channel
realization, the mean-square slicer error for each of the equal-
izers is [14]

(96)

(97)

(98)

(99)

where

(100)

Next, to develop their characteristics in the large-ISI limit, we
make use of (70) together with the fact that is a Gaussian
random process, which implies that arbitrarily close samples of

, and in turn , are effectively independent and iden-
tically distributed (iid). Thus, it is convenient to interpret the
bracketed expressions in (96)–(99) effectively as averages of iid
random variables with means [7]

(101)

(102)

(103)

(104)

where is defined in (29) and denotes Euler’s
constant. An application of the strong law of large numbers [12]
in each case would then suggest, substituting (101)–(104) for the
respective bracketed expressions in (96)–(99), that9

(105)

(106)

(107)

(108)

Finally, since the SINRs at the slicer input10 are related to the
mean-square slicer error according to [10]

(109)

(110)

(111)

(112)

we substitute (105)–(108) into the corresponding (109)–(112)
and conclude that

(113)

(114)

(115)

(116)

In the high-SNR regime ( ), we can use the series ex-
pansion [1]

(117)

to show that (113) and (115), respectively, satisfy

(118)

(119)

9We use���! to denote convergence almost everywhere.
10The SINR for the MMSE-DFE is not the same as what Cioffiet al.[10] call

theSNR - , which is defined as

SNR - =
E

" -
:

However, the SINR for the MMSE-DFE is equivalent toSNR - ,
which is the SINR for the unbiased MMSE-DFE [10]. Indeed, the SINR’s for
the standard MMSE-DFE and the unbiased MMSE-DFE are identical, since the
unbiased MMSE-DFE merely scales both the signal and the associated interfer-
ence+ noise process by the same factor at the slicer input.
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We conclude with some brief comments arising out the re-
lationships between these expressions, and the quality of these
approximations, as depicted in Fig. 4. First, note that (114) and
(118) coincide in the high SNR limit, as one might expect since
the MMSE-DFE can completely eliminate ISI in the absence of
noise, which is the constraint imposed by the ZF-DFE.

The actual performance of the MMSE-DFE matches its
prediction reasonably well in general, though there is some
small discrepancy due to error propagation. However, the actual
ZF-DFE performance deviates dramatically from its prediction
(not shown in Fig. 4), due in part to numerical instabilities and
error propagation in the implementation of the ZF-DFE for
severe-ISI channels.

Next, a comparison of (119) to for the matched
filter bound reveals that as the SNR gets larger, the SNR
gap between the performance curve for the MMSE-LE and
the matched filter bound gets arbitrarily large. Moreover, the
ZF-LE is worse: for all , which is expected since
the zeros of the random channel converge uniformly on the
unit circle in the long ISI limit [5]. These results emphasize the
strong suboptimality of linear equalizers.

Finally, note that the actual MMSE-LE performance does
track its prediction quite closely, while the ZF-LE prediction is
somewhat overly pessimistic: short of the asymptotic limit, at
least some zeros lie quite far away from the unit circle.
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