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Abstract—A new and efficient class of nonlinear equalizers is (on channels not known at the transmitter, as is the case of in-
developed for intersymbol interference (ISI) channels. These “it- terest in this paper).
erated-decision equalizers” use an optimized multipass algorithm In this paper, we introduce a multipass equalizer whose

to successively cancel ISI from a block of received data and gen- truct th incipal limitati f the DEE
erate symbol decisions whose reliability increases monotonically SULCLLIE 'OVEICOMES TNESE PrNCipal limItations orthe '

with each iteration. These equalizers have an effective com- achieving the performance of MLSD and being fully compat-
plexity comparable to the decision-feedback equalizer (DFE), yet ible with coding, while retaining the low complexity of the

asymptotically achieve the performance of maximum-likelihood DFE and the LE.
sequence detection (MLSD). We show that, because their structure

allows cancellation of both precursor and postcursor ISI, iterated- e M
decision equalizers outperform the minimum mean-square error - CHANNEL MODEL

DF'tE by 2M507 dB on I'ievter:e lIDSFIECh?nn?IZ gve.n.wnh un(|:_oded In the discrete-time baseband model of the pulse amplitude
systems. VIoreover, untike the , eraled-aecision equalzers ., jation (PAM) communication system we consider, the

can be readily used in conjunction with error-control coding, . / . . .
making them attractive for a wealth of applications. transmitted data is a whité/-ary phase-shift keying (PSK)

stream of (possibly coded) symb , each with ener
Index Terms—Decision-feedback equalizer, equalization, inter- (P y ) sy Oﬁn] gy

ference cancellation, iterative decoding, multipass receivers, strip- fgs' The symbolsc[n] are corrupted by a convolutl'o.n Wlth_the
ping. impulse response of the channgh| and by additive noise

w[n] to produce the received symbols

. INTRODUCTION rln] = a[klz[n — K] + wln]. @)

VER THE LAST several decades, a variety of equal- k

_ ization techniques have been proposed for use e noisev[n] is a zero-mean, complex-valued, circularly sym-
intersymbol interference (ISI) channels. Linear equalizers (LRjetric, stationary, white Gaussian noise sequence with variance
are attractive from a complexity perspective, but can suffey, that is independent af[n]. The associated channel fre-
from excessive noise enhancement. Maximum-likelihoagliency response is denoted by
sequence detection (MLSD) [13] is an asymptotically optimum '
receiver in terms of bit error rate (BER) performance, but its Alw) = Za[n]c_]“". 2
high complexity generally precludes its use in practice. n

Decision-feedback equalizers (DFE) [3] are a widely used Throughout this paper, we focus on the fixed channel case in
compromise, retaining a complexity comparable to linear equijnich the receiver has perfect knowledge:pf], in order to de-
ization, but incurring much less noise enhancement. Howevggiop the basic theory and fundamental limits. In the companion
some significant shortcomings arise out of the sequential Wg)per [g], we develop and analyze adaptive implementations in
in which the DFE processes the received data. First, decisiQfgich the channel coefficientgn] arenotknowna priori. Ex-
made at the slicer can only be fed back to improve future dgmining the fixed and adaptive scenarios separately and com-
cisions. Thus, only postcursor ISI can be subtracted, so eveRdfing their results allows system designers to isolate channel
ideal postcursor ISI cancellation is assumed, the performangg:king effects from overall equalizer behavior. We emphasize
of the DFE is still limited by possible residual precursor ISl anghat in both papers, we restrict our attention to transmitters that
noise enhancement. Second, the sequential structure of the {&Ge no knowledge of the channel, as is often the case in, for
makes it somewhat difficult to use in conjunction with codingyample, wireless applications.

In an increasing number of practical wireless applications,
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; ; ; ; ~ ol
gase in Sef:tlc_)n Il in order to develop the basq: theory and fun- "n) b[n] #n] =C> *'[n] - f JOm
amental limits. However, the resulting equalizers are also ef- 1
fective on a broad range of shorter-I1SI channels as well, as we
discuss at the end of Section III. S [ Lt
For the purposes of analysis, a convenient severe-1SI channel dnlie——3"1n]

model we will exploit is one in whiclu[n] is a finite impulse

response (FIR) filter of length, whereL is large and the taps Fig. 1.  Iterated-decision equalizer structure.

are mutually independent, zero-mean, complex-valued, circu-

larly symmetric Gaussian random variables with variange 4[] andd'[n]. To develop these restrictions, we make use of
The channel tapg[n] are also independent of the dafa] and  the following definition.

the noisew[n]. It is worth pointing out that this is also a good Definition 1: Letg[n] be the impulse response of an LTI filter

channel model for many wireless systems employing transmit{gith frequency respons@(w). Theng[n] is an admissible filter
antenna diversity in the form of linear space-time coding [2]4 G(w) can be written in the form

with arrays having a large number of elements.

G(w) = f(Aw)) ™

where A(w) is the channel frequency response (2), and where

The iterated-decision equalizer we now develop processes 1 js a complex-valued function that satisfies the admissibility
received data in a block-iterative fashion. Specifically, duringynditions:

each |t%r:z\jtlczn or é:)?ss{ t"?l Ilndear_ﬂ_lter IS ap:jpllgdttho a blopk Of.t 1) () is bounded within any finite region of the complex
received data, and tentative decisions made in the previous it- plane, i.e., for every, there exists a positive real constant
eration are then used to construct and subtract out an estimate V(R) < o such that

of the ISI. The resulting ISI-reduced data is then passed on to a ' )

I1l. THE ITERATED-DECISION EQUALIZER

slicer, which makes a new set of tentative decisions. With each 1£(2)| < V(R), forall |z| < R. ©)
successive iteration, increasingly refined hard decisions are gen-
erated using this strategy. 2) f(-) grows more slowly than a quadratic exponential 4.e.,

The detailed structure of the iterated-decision equalizer is de-
picted in Fig. 1. The parameters of all systems and signals asso-

ciated with theth pass are denoted using the superséripn f(z)~o ((f'z'z) . foreverye > 0. (9)
thelth pass of the equalizer whelre- 1, 2, 3, ..., the received
datar[n] is first processed by a linear filtéf[n], producing the  With our channel model(w) is a complex-valued, Gaussian
sequence random variable wher&[A(w)] = 0 andvar A(w) = Lo?2.
Thus, expectations involving only admissible filters at a single
#n] = Z V[k]r[n — E]. (3) frequency are functions only dfo2 and not ofv. Consequently,
2 we shall omit the dependence orin our notation when dealing

with such expectations.
Next, an appropriately constructed estimatf] of the ISIis  The following useful theorem, which is analogous to ones
subtracted from[n] to producei‘[n], i.e., in [21] and [2]2 characterizes the composite system consisting

of the channel in cascade with the multipass equalizer &fter

#'[n] = #'[n] — 2'[n] (4) iterations; a proof is provided in Appendix A.
Theorem 1: Let z[n] andz'~![n] be sequences of zero-mean

where uncorrelated symbols, each with enefgy and let the normal-

ized correlation between the two sequences be expressed in the

2] = d'kE - k. (5) forme
' Bla*[n] - = [4]

(In subsequent analysis, we will show thitn] is never re- £,
quired for the first iteration, so its value may remain undefined.)>ry.c order notation
Note that sincé'[n] is intended to be some kind of ISI estimatey(q(-)), then
we are primarily interested in the case in which

= pi 1 8[n — k). (10)

(+) is to be interpreted in the usual sensep(f) ~

lim p(2)

=0.
d'[0] 1/ DHw)dw = 0. ) )

T )
B 3While they focus on fundamentally different digital communication prob-
lems, both [21] and [2] exploit system analysis and optimization tools related

Finally, the slicer then generates the hard decisihg] from 1o those used in this paper, which reflects the breadth of applicability of these
#'[n] using a (symbol-wise) minimum-distance rule. tools.
Some |mportant properues Of the CompOS|te System Conf'ol.lr empirical analysis confirms that this model for the correlation between
.. fth h | d the i d-decisi l ' "“the transmitted symbols and tentative decisions is a very good one in practice.
sisting of the channel and the iterated-decision equalizer, Q@&e, too, thap!, will in general be a function of the equalizer parameters; we

be derived when mild restrictions are imposed on the filtessppress this dependency to simplify our notation.
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Moreover, leta[n] be a channel impulse response of lengith Viterbi-algorithm-based MLSD can be avoided—that a simple
wheré a[0], a[1], ..., a[L—1] are mutually independent, zero-symbol-by-symbol detector may suffice, as if the channel were
mean, complex-valued, circularly symmetric Gaussian randan AWGN channel. In this case, since the probability of error
variables with variance?2. Finally, supposé'[n] andd'[n] are for M-ary PSK given by (14) is a monotonically decreasing
the impulse responses of admissible filters in the sense of Difaction of SINR, a natural equalizer design strategy involves
inition 1, and that in addition![»] satisfies the natural require-maximizing the SINR over alB‘(w) and D*(w).

ment (6). Then, ag& — oo, we have that the slicer inpif [n] For a given filterB‘(w), it is straightforward to find the op-
defined via (4) with (3), (5), and (1) satisfies, for each timal filter D!(w). In particular, note that the SINR expression
, given in (13) contain®'(w) only once, and the nonnegative de-
#'[n] === E[AB'|z[n] + v'[n] (11) nominator term in which it appears can be made exactly zero by

) ) . setting
where +![n] is a complex-valued, marginally Gaussian,
zero-mean white noise sequence, uncorrelated with the input D'(w) = pH(A(w)BY(w) — E[ABY). (17)
symbol streanx[n], and having variance
Using (17) to eliminateé)!(w), the SINR expression in (13) now
o] = NoBIBP] + £,(1 — (A arl AB' s ) i )
+EE[D' - pi7H(AB' — E[AB])P]. (12)
’YI(BI) — 85|E[ABI]|2

The second-order model (11) turns out to be a useful one for NoE[|BY2] + £,(1 — (o5 1)2)var[ABY]
analyzing and optimizing the performance of the iterated-de-
cision equalizer at each iteration. In particular, it can be usedThis result for D'(w) is intuitively satisfying. If
to obtain a surprisingly accurate estimate at each iteration gf1[n] = z[n] so thatp, ! = 1, then the output of
the symbol error rate foi/-ary PSK even though we ignore p!(w) exactly reproduces the ISI componentidfn]. More
the higher-order statistical dependencies. The evolution in pgenerally,p!~* describes our confidence in the quality of the
formance of the equalizer with iteration is, in turn, analyzed igstimates'~*[n]. If 2'~'[n] is a poor estimate of[n], then
Section IlI-A. o= will in turn be low, and consequently a smaller weighting

The first step in developing these results is to observe thatapplied to the ISI estimate that is to be subtracted fitjm.
(11) implies that the signal-to-interferengenoise ratio (SINR) On the other hand, it*~![n] is an excellent estimate afn],
atthe slicer input during each pass can be written, using (12)taén p!~* ~ 1, and nearly all of the ISI is subtracted from
shown in (13) at the bottom of the page, and that the probability{n]. Thus, while the strictly causal feedback filter of the DFE
of symbol error at théth iteration is well-approximated by thesubtracts out only postcursor ISI, the noncausal nature of the
high signal-to-noise ratio (SNR) formula for the-ary PSK filter d'[n] allows the iterated-decision equalizer to cancel both
symbol error rate of a symbol-by-symbol threshold detector fekecursor and postcursor ISI. Note also that the center tap of
additive white Gaussian noise (AWGN) channels, given by [1211[71] is indeed zero, as stipulated by (6).

The filter B!(w) can be optimized using a method analogous

(18)

. i3
Pr(e') = 2Q (Slll (M) V 2’71> (14)  to one used in [20]. Specifically, we can use the identity
where var[AB']| = E[|AB'|*] — |E[ABY? (19)
1 &0 ey .
= — /= dt. 15) to rewrite (18) as
o)== [ (15) (18)
For the special case of QPSR = 4), (14) can be replaced +(BY = 1 & (20)
with [17] W —&(1- (PQ_I)Q)

Pr(e)=Q (W) [2 -Q (\/7)} : (16)  \where

Note that this equivalent channel model effectively suggests , , |E[ABY?
that, in the absence of coding, the computationally expensive (B) = E[(No + &1 — (o5 H2)|4PR)|BY2] (21)

5Since infinite-complexity equalizers can compensate for arbitrary time de-"when «[n] is a sequence coded for the Gaussian channel, Theorem 1 is
lays, we letthe nonzero tapsdfr] correspondte = 0, 1, ..., L—1without  stjl| valid—typical trellis codes used with random bit streams generally pro-
loss of generality. duce white symbol streams [6], as do random codes. More will be said about
8\We use the notatioA™=*-s to denote convergence in the mean-square sensmding in Section IV.

’yl(Bl Dl) — 85|E[ABI]|2 (13)
’ NoE[B2] + £,(1 = (o' )?)var[AB] + £,E[|D' — pi ' (AB! — E[AB'])?]
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Using the Schwarz inequality, we have We now proceed to simplify the SINR expression that char-
acterizes the resulting performance. With the optimbifiw)

A andD!(w), we have, substituting (22) into (21),
|E[AB1]|2 e \/N I—1y2 2 i |A|2 ( )
DA P E e - pEar
2 After some algebraic manipulation, the SINR from (20) then
: Bl\//\/o + &,(1 - (o5 H2)|A4)2 becomes
|42 } . 1 1
<FE =|——-1| —F 26
= [No (- (L DRAR e | )T #)
14 ¢
E[(No+ &1 = (o H)IAPIBP (22) “
) o ) where
with equality if and only if 1 )
BY(w) - (23) 0
No+&(1- ( DAAW)] Now since our channel model implies thétw) is a complex-

lued, circularly symmetric Gaussian random variable with
So substituting (22) into (21), we see that (23) maximizes (Zﬁro mean and \);ari/a\nd372, thenal(w) is exponentially dis-

and, in tum, (18). tributed with mean
Note that if the arbitrary complex constant of proportionality

is set to unity, the optimaB‘(w) can be implemented as the 1 (1—=(pkH?)
cascade of a matched filtef[n] = a*[—n] that realizes the nu- ¢l = ¢ (28)
merator of (23) and a filtel,[n] that realizes the denominator of
(23). Note thab}[n] changes with each iteration because of itwhere
dependence op~!. Because the denominator is purely real, 1 £.Lo?

{ . . . L . sLoy
bs[n] is a conjugate-symmetric function in time that is gener- - = (29)
ally infinite in extent. However, when the lengthof a[n] is fi- < No
nite, both sides of} ] quickly decay. Thusi,[n] can be trun- is the expected SNR at which the transmission is received. Thus,
cated and effectively approximated by a conjugate-symmettising the identity [1]
FIR filter.

The optimal D!(w) given by (17) also warrants some dis- < emet
cussion. Since the cascadefw) with BY(w) is purely real, /0 1+¢
the frequency responsk‘(w) is purely real. Thus, the corre-
sponding impulse respongéx] is generally a two-sided, con-Where
jugate-symmetric sequence. Though infinite in extéfit] can 0 ,—t
be truncated and effectively approximated by a conjugate-sym- Ei(s) = / — (31)
metric FIR filter, using the same reasoning astfgr]. While i
the strictly causal feedback filter of the decision-feedback equég-the exponential integral, it is straightforward to show that
izer subtracts out only postcursor ISI, the noncausal nature of -
d'[n] allows the iterated-decision equalizer to cancel both pre- 1 l} _ / < ) ¢le €l gy — gle 3 Ey(&h).
cursor and postcursor ISI. 1+«

Some comments can also be made about the special case (32)
whenl = 1. During the first pass, the feedback branch is r“§ubst|tut|ng (32) back into (26), our simplified SINR expression

used because? = 0, so the sequenc® [n] does not need to be 'S

dt = ¢ E(s) (30)

1
1+«

defined. Moreover, the filteB! (w) takes the form . < 1 ) 1 (33)
e T \EmE ) T
1 W
BHw) No + & AW)]2 (24) Equation (33) can, inturn, be used in the following convenient

iterative algorithm for determining the set of correlation coeffi-
which is the minimum mean-square error linear equalizefentsp’, to be used at each iteration, and simultaneously pre-
(MMSE-LE). Thus the performance of the iterated-decisiogicting the associated sequence of symbol error probabilities.
equalizer, when using just one iteration, is identical to the 1) Setp? = 0 and letl = 1.
performance of the MMSE-LE. In Section Ill-A, we show 2) Compute the SINR/! at the slicer input on théh de-
that the equalizer, when using multiple iterations, performs  coding pass from! = via (33), (28), and (29). [It is worth
significantly better than both the MMSE-L&hdthe minimum pointing out that for shorter I1SI channels, we can alterna-
mean-square error decision-feedback equalizer (MMSE-DFE).  tively (and in some cases more accurately) compyite
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Fig. 2. lterated-decision equalizer performance. The successively lower sdfi- 3. Theoretical iterated-decision equalizer performance as a function of
curves plot QPSK symbol error rate as a function of the correlation coefficieRNR per bit. The successively lower solid curves depict the QPSK BER as a
p. for SNRs of 7, 10, and 12 dB. Along each curvs jdentify the theoretically function of SNR per bit for 1, 2, 3, 5, ansb decoding iterations. The dashed
predicted decreasing error rates achieved with 1, 2, ... decoding passes, curve is the matched filter bound.

and the intersections with the dashed line are the steady-state valsesq).

1>'<h§ associated experimentally obtained valued.fer 256 are depicted using starting at the left end of the solid curve (corresponding to
0% = 0) and then successively moving horizontally to the
from p\—1 via (18) and (23), where the expectations areght from the solid curve to the dashed line, and then moving
replaced by frequency averages.] downward frpm the dash_ed Ilne_to the solid curve. Each “step”
3) Compute the symbol error probabiliz(e') at the slicer of the resulting descending staircase corresponds to one pass
output from~* via (14). of the equalizer. In Fig. 2, the sequence of operating points is
4) Compute the normalized correlation coefficight be- indicated on the solid curves with thesymbols. The set of

tween the symbols[n] and the decisions![n] generated OPerating points obtained from Monte Carlo simulations is also
at the slicer via the approximation [2] indicated in Fig. 2 by thex symbols. These results suggest that

. YA . the theoretical predictions are quite accurate.
Pz A 1—2sin (M) Pr(e). (34)  That the sequence of error probabilities(e!), Pr(e?), ...
5) Increment and go to step 2. obtained by the recursive algorithm is monotonically decreasing

can be streamlined by eliminating Step 3 and replacing the difie error rate performance for a given SNRIgt eventually
proximation (34) with converges to a steady-state valu®ef<°), which is the unique

solution to the equation
L =1-2Q . (35)
’ (v7) Pr(e) = F(¢, G~ (Pr(e™) (38)

A. Performance corresponding to the intersection of the dashed line and the ap-

Though the iterative nature of the equalizer complicates Rropriate solid curve in Fig. 2.

analysis of its performance, useful insights and approximationg*S Fi9- 2 suggests, steady-state performance is effectively

can nevertheless be obtained. From Steps 2 and 3 of the afjgieved with comparatively few iterations, after which addi-

rithm, we see thaPr(c!) can be expressed as tional iterations provide only negligibly small gains in perfor-
’ mance. This observation can also be readily made from Fig. 3,

Pr(e) = F(C, oY), (36) where BER is plotted as a function of SNR per bit for 1, 2, 3,
where F(-, -) is a monotonically decreasing function in bottb, and an infinite number of iterations. It is significant that few
SNR 1/¢ and correlatiorp’,~. The monotonicity ofF(-, -) is passes are required to converge to typical target BERs, since the
illustrated in Fig. 2 where the successively lower solid curvegnount of computation is directly proportional to the number of
plot F(¢, p.) as a function ofl /(1 — p,.) for various values of passes required; we emphasize that the complexity of a single
1/¢. Meanwhile, from Step 4 of the algorithm, we see that weass of the iterated-decision equalizer is comparable to that of

can also expresBr(¢') as the DFE or the LE.
Pr(e!) = G(p\) 37) We_now d|squss the high-SNR & (_)) performance of the
equalizer. We first note from (28) thatgf. — 1, thené — oc.
whereg(-) is a monotonically decreasing function gff. The  ysing the asymptotic series expansion [1]
dashed line in Fig. 2 plot§(p..) as a function ol /(1 — p,,). oo
At a given SNR1/¢, the sequence of error probabilities Ei(t)=et Z(_l)kﬂ for larget (39)
Pr(¢) and correlation coefficient!, can be obtained by — thtl
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W filter bound. But the theoreticall{ — oc) and simulated =
T ——— 256) BER curves in Fig. 4 for the iterated-decision equalizer ap-
proach the matched filter bound at high SNR, so iterated-deci-
7 sion equalizers asymptotically achieve the performance of max-
imum-likelihood sequence detection.

Some further comments on the results of Fig. 4 are worth
making. First, similar experimental curves to those depicted in
the figure are obtained even when the channel coefficients are
Theoretical not Gaussian and/or not independent. What is important is that
CONMMSE-LE 3 the effective number of degrees of freedom describing the taps

DN be large for behavior to converge to the predicted values. Thus
the stronger the correlation between taps, the larger the number
of them required to converge to the theoretical predictions.

It should also be stressed that when the effective number
of taps (or degrees of freedom) is small, the performance of
10 12 14 16 any equalizer obviously becomes realization-dependent, i.e., a

function of the particular realized channel coefficients, and thus
Fig. 4. Theoretical [ — oo) and experimentally observed (= 256) N this regime equalizer performance is less well-represented
performance for various equalizers. The solid curves depict QPSK BERs fay the asymptotic expressions developed in this section of the
the iterated-decision equalizer, MMSE-DFE, MMSE-LE, and ZF-LE as gaper. For example, simulations involving the iterated-decision
function of SNR per bit. The dashed curve is the matched filter bound. . .

equalizer withL = 64 channel taps show that performance

close to thel. — ~o case is achieved for most channels. How-
lérver, about one out of every thousand 64-tap channels at an SNR

L Theorstical ZE-LE

i Smiaiod 7L

Matghed Filter S N
107k &gouncr pa NG
1 Simulated: iterated Sy 0N
17 Decision Equalizer~ N

“ Theotstical lterated ™
1 0—31 . Deasnon,Equallzer

Probability of Bit Error

L)

6 8
SNR/bit (dB)

in (33) and retaining only the first two terms of the series, o

SINR expression ag, — 1 becomes per bit of 10 dB leads to a significantly higher probability of
1 1 1 error, and about one out of every hundred 64-tap channels at an

YIDE — <E> TR ¢ (40) SNR per bit of 9 dB leads to a significantly higher probability
i of error. As another example, the simulated performance of the

where the equality follows from (28). When (40) is substituteierated-decision equalizer for 3-tap and 5-tap channel impulse
into (14) or (16), we obtain the matched filter bound. Now, theésponses was found to be strongly dependent on the particular
asymptotic performance of the equalizer can be inferred froghannel realization [7]. As a useful rule of thumb, our experi-
Fig. 2. Specifically, since the successively lower solid curves gfice suggests that the iterated-decision equalizer as we have de-

Fig. 2 achieve increasingly higher valuess0f at the intersec- Veloped itin this paper performs well (i.e., performs similarly to
tions with the dashed line, perfect ISI cancellation is thus af*e MLSD and better than the MMSE-DFE) on channels whose
proached at high SNR. normalized, unbiased deterministic autocorrelation function of

In Fig. 4, we compare the theoretical performance of the itett?] satisfies
ated-decision equalizer when the number of channel faps

so with experimentally obtained results whén= 256. The R,[n] 2 ! 3 a*[Falk —n] 8[nl. (41)
experimental results are indeed consistent with theoretical pre- L—n| % 1 .
dictions, especially at high SNR. EZMUHQ

i

For comparison, in Fig. 4 we also plot the theoretical

error rates of the ideal MMSE-DFE, the MMSE-LE, and th% tially. thi diti thatthe ch Ih Hicient
zero-forcing linear equalizer (ZF-LE), which are develope ssentially, Tis condition ensures that the channeinas suticien

in Appendix B. We can readily see that at moderate to hi%;riation in its taps, and the larger the effective number of taps a
SNR, the iterated-decision equalizer requires significantly le fannel has, the greater the likelihood its autocorrelation func-

transmit power than any of the other equalizers to achieve ttr'1%n
same probability of error. Specifically, at high SNR  0),
we have from Appendix B thatymvise-pre — 1/¢et® and
wimsE-LE — 1/[¢(=To —1In¢)] — 1, wherel'o = 0.57721 - - - For ideal bandlimited AWGN channels, powerful coding
denotes Euler’s constant. Thus, the MMSE-DFE theoreticabghemes such as trellis-coded modulation with maximum
requirese!® times or10lgloge ~ 2.507 dB more transmit likelihood (ML) decoding can improve the performance over
power to achieve the same probability of error as the itemhcoded PAM so that channel capacity is approached.
ated-decision equalizer. Moreover, @s— 0, the MMSE-LE On the other hand, for bandlimited channels with strong
requires increasingly more transmit power than the iterated-deequency-dependent distortion, coding must be combined with
cision equalizer to achieve the same probability of error. equalization techniques. While the MMSE-DFE has certain
Since maximum-likelihood sequence detection is optimal &ttractive characteristics in the context of coded systems [10],
terms of BER [13], the BER curve for maximume-likelihood sef11], in a variety of practical settings it can be difficult to
guence detection (not shown in Fig. 4) must lie below the BERSe effectively. In particular, in typical implementations the
curve for the iterated-decision equalizer but above the matcHdtMSE-DFE cancels postcursor ISI by using delay-free symbol

meets this condition; see [7] for further details.

IV. CODED SYSTEMS
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)
X'[n
L l— Decoder ——» )’él[n]

x[n]—» Encoder »! a[n] >mr[n]> bln] :(f

win] -1

Encoder 4— X" [n]

d'[n]

A

Fig. 5. Structure of a communication system that combines iterated-decision equalization with channel coding.

decisions, which in a coded system can be insufficientBralizations [10], [11] could be derived for such equalizers. Fi-

reliable to yield good performance. From this perspective, timally, the iterative nature of the decoders for turbo codes [4]

iterated-decision equalizer, which avoids this problem, is saggests that such codes or their variants may be particularly

compelling alternative to the MMSE-DFE in coded systems. well matched for use with iterated-decision equalization. Thus,
The structure of a communication system that combines titemay be possible to combine a turbo-style decoder and the

iterated-decision equalizer with coding is shown in Fig. 5. Alterated-decision equalizer into a single efficient equalizer-de-

though the sequenagn] is first encoded before itis transmitted,coder structure comparable to the class of “turbo equalization”

Theorem 1 is still valid because typical trellis codes and randaeceivers described in [18].

codes generally produce white symbol streams [6]. What makes

the iterated-decision equalizer an attractive choice when coding APPENDIX A

schemes are involved is that the structure of the equalizer allows PROOF OFTHEOREM 1

equalization and coding to be largely separable issues. One Oi'he proof requires the following pair of lemmas
the main differences now in the iterated-decision equalizer IS emma 1: Let A(w) be a complex-valuedr-periodic

that the symbol-by-symbol slicer has been replaced by a soft-dg- . . .

cision ML decoder; the other is that the batch of decisions m%@}rglrgf)ar; iezzs)%l??w)raﬂdglr(lwp))rgﬁzs;lm;ha;/:rﬁf%gi%?e
be re-encoded before being processed by the filtgr]. For in the sense of Definition 1 withB'(w) = fi(A(w)) and
shorter ISI channels, performance of the system may be |%1(w) — /2(A(w)), then the admissibility conditions of (-)
proved by inserting an interleaver after each encoder to redyce’ " . : X )
correlation between adjacent symbols, and by inserting a corri]—db( ) imply that the zero-mean random processes
sponding deinterleaver before the decoder to reduce the correst () = CY(w) — E[CY (42)

lation of the residual ISI and noise.

Si(w) =[BYw)* - E[1B']] (43)
V. CONCLUDING REMARKS Sé(w) _ |Dl(w) . piflsé(w)IQ +(1- (Piﬁl)2)|56(w)|2
In this paper, we have developed an effective class of low- — E[|D' - p;—1§é|2] —(1- (p;—1)2)E[|§(l)|2]
complexity nonlinear channel equalizers that rely on an itera- (44)
tive decoding technique to cancel ISI. These equalizers achieve
a performance that approaches MLSD on severe ISI channelsS(w) = DY(w) (45)

yet only require complexity on the order of that of a DFE or LE.
Moreover, the structure of the iterative equalizers makes th&fisty
readily compatible with error-control coding, unlike DFE. Com-
plementary results on adaptive implementations for the case in
which the channel must be learned by the equalizer are devel- E[|S‘f|] < 00, fori=0,1, 2, 3. 47
oped in the companion paper [8]; an important result is that sur-
prisingly little training data is required for the performance of ~ Proof: The proof is straightforward and follows from ob-
adaptive implementations to approach that of the fixed changérving that
implementations developed in this paper. - )
A variety of issues remain to be explored in future work. For Si(w) = hi(A(w)), fori=0,1,2,3 (48)
example, the development of equalizer design and analysis tech-

var S¢ < oo, fori=0,1,2,3 (46)

: e o i ere
niques specifically optimized for the small-ISI scenario woul
also be a valuable resource for system designers to complement 1, (») =z f, () — g (49)
the large-ISI results presented here, as would tools that take into )
account an explicit FIR constraint on equalizer filters. hi(z) =1fi(2)]" — k1 (50)

More. generally, some of the (lchest d|rect|on_s for future re- ha(2) = | fo(2) — P72 (2f1(2) — ko)
search involve developing techniques for analyzing the behavior PN )
+ (1= (s ))zf1(2) = ol” — k2 (51)

of systems that use coding in conjunction with iterated-deci-
sion equalization, together with useful design rules for the se- hs(z) = f2(2) (52)
lection of appropriate codes, and investigating to what degree

such systems can approach channel capacity. It is conceivablej where the:; are finite constants. From (49)-(52), we see
for example, that counterparts to Price’s result [16] or its gethat theh;(-) satisfy the admissibility conditions of Definition 1
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wheneverf;(-) andf»(-) do. Using the conditions (8) and (9) inIn turn, averaging over the possible channel respoaggsve

the expressions

~ 1 e 12 2
var S! = 5 / R2(2)e 117/ (294) g (53)
27raA oo
31 = Ty —l21?/(20%) g 54
EISI = 5oy [ (o)L . (54)
for¢ =0, 1, 2, 3, we obtain our desired results. O

Lemma 2:Let A(w) be a complex-valued2r-periodic
zero-mean Gaussian random process with variargeand
normalized correlation function denoted by

EIA@)A"(1)]

5 (55)
94

palw, v) =

Furthermore, let the random procesis,) be defined via

S(w) = h(A(w)) (56)
for some functiom.(-) such that
E[S(w)] =0 (57)
E[|S(w)]] <0 (58)
var S(w) < 0. (59)
Then, i pa(w, v) 22, 0, we have that
=2 /_7T /_7T w)S*(V)]| dw dv — 0. (60)

The proof of Lemma 2 is analogous to the proof of Lemma

in [21].
We now proceed to a proof of our main result.
First, we write

#[n] = ol o] + #p) (61)
where
vi[n] = ¥[n] = wln] (62)
and
2 [n] = dn] * z[n] — d'[n] * &'~ [n] (63)
with
d[n] = b'[n] * a[n]. (64)

Let us consider! [»] as defined in (62) first.

We obtain the mean and covariance, respectively,’of]
given a channel impulse respongd as
1[n]la] =

Elv (65)

and
R'ni via [71] =

B w) s dw. 66
| 1B (66)

8We use=™, to denote pointwise convergence almost everywhere.

obtain

E[Rhlll,lll()[n]] == E[|Bl|2]/2\—/'7(; / el‘vn dw

=NoE[|B']*]6[n] (67)

where we have used the fact that since the mean and variance

of A(w) are independent af, so are those aB'(w). Next, we
define

. A
gt joln] = Bugugialn] -

No

2

E[Rl/lll/i la [71]]

Stw)ed™ dw

-7

(68)

whereS! (w) is given in (43). Then,

var B, [7]
1 ~1
= EHRuiuf |a[n] |2]

- (Q—;) | B0 do, (69

Now, the channel frequency respon$ey) as defined in (2) has
the following property:

cov(A(w), A(v))
v/ var A(w)/varA(v)

p.-w.a.e.

palw, v) = 0 (70)

asL — oo whenw # v. Applying Lemma 1 followed by
Ilemma 2 with (70) to (69), we then obtain, for each
[n] — 0.

var R, (72)

vivl|a
Hence, combining (67) with (71), we have, for any particular
channel responsé]

Ryt 1 joln] 22 N E[| B *18[n] (72)
for eachn.

Looking next atz‘[»] as defined in (63), we expres§n] in
the form

2'[n] = vh[n] + E[C']z[n]. (73)
Then
vh[n] = &n] % z[n] — d'[n] * #'7[n] (74)
where
&[n] = [n] = E[C8[n] = [n] — E['[n]].  (75)

Therefore¢'[n] is a zero-mean sequence.
Again, for a fixed realization of:[-] (and hence![n] and
d'[n]), we have

El}fnlla] = &[n] = Ela[n]] - d'[n] * EE ']l = 0 (76)
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and
Rytt1aln]
5= [ AP - D)
— D)) C ) + 10w e d
= [ 10t - A ctor
FA= P @) P de. (77)

However, (77) is asymptotically independentpf. To see this,

first note that

E[Rl/é vhla [71]]

= {E[ID" - o C P+ (1= (b HHENCT])
85 o
&s ICn g,
27r
= SS{E[IDI — IO+ (1= (o DD ENCPT36(]

(78)

where we have used the fact that the bracketed expression on the E[vi [n]a* k] = Z Elwlm]a*[k]|b'[n — m] = 0
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where

v'[n] = of [n] + v3[n] (84)
is the equivalent noise. However, sinegn| is statistically in-
dependent ofc[n] and can be assumed to be independent of

i’lil[n],

E[v [n](d4[k])* |a] = 0, for all n andk (85)

and hence

R'vl'vl |a[n] = R'vll'l;“a[n] + R'vlz'vlz|a[n] (86)
which, using (72) and (82) with (75) and (64), yields (12).
Finally, we need to show that for a given realization of the
channel responsgn] thatz[n] andv'[n] are asymptotically un-
correlated. Due to (84), it suffices to show thdwn] is asymp-
totically uncorrelated with [n] andvi[n] individually.
First, using (62), we have

(87)

right-hand side of (78) is the expectation of an admissible filter m

and thus independent of Then, since

~ A
R'vé'vlzm[n] = Rvé'vya[n] - E[Rulzblzm[n]]
é i Sl (w)e?“™ dw (79)
2m 2
whereS(w) is as defined in (44), we have
var Ry 14 [n]
EH u2u2|a[n]| ]
s al jlw—v)n
=15, ] 52 w)(S3(¥))* e dw dv.
(80)

Hence, again using (70) and applying, in turn, Lemmas 1 and 2

to (80), we then obtain, for eaah

var R 4[] — 0. (81)

Hence, combining (78) with (81), we have, for any particular

channel respons€],

Ry t1aln] 222 EL B[ D' — pi7CY
+(1 = (L HHENC36R] (82)
for eachn.
Thus, we can write
#[n] = E[Cz]n] + v'[n] (83)

where the last equality follows from the fact that the processes
wln] andz[n] are statistically independent.
Next, using (74), we have

Efs[n]z* (k] = D Elz[m]e* k) [n — m]
=Y Bl mle [k]]d [n — m]

=& [n -k - pl7ted' n—k  (88)
where the last equality follows from (10) and the fact that the
symbol streamx[n] is white. Thus, it remains only to show that

én] 22 0 andd'[n] 22 0 for all n.
To see this, we first note that

(89)
(90)

where (90) follows from the fact thadf[d‘[»]] =
the constraint (6). Next

E[DY6[n] and

var &[n]
_ <%)2/_7; /_7; E[CHw)(C ()] ™ dus dy
(91)
var d'[n]

2 ew 7
1 .
= <2_> / / E[DY(w)(DY())*]e"“ ™ duw d.
w —7 J =7

(92)
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Hence, again using (70) and applying, in turn, Lemmas 1 and 2 E [ln <§) — & +1In¢+To (102)
to each of (91) and (92), we then obtain, for each o /] ?

varé[n] —0 (93) E { i - | =€ BL(Q) (103)

@
var d'[n] — 0. (94) :
&
Hence, combining (89) and (90) with (93) and (94), we obtain E - | 7 (104)
the desired results. where( is defined in (29) antly, = 0.577 21 - - - denotes Euler’s
constant. An application of the strong law of large numbers [12]
APPENDIX B

in each case would then suggest, substituting (101)—(104) for the

PERFORMANCEPREDICTIONS FORCLASSICAL EQUALIZERS respective bracketed expressions in (96)—(99)? that

In thi§ Appendix, we develop_, for comparison with our r_esults EMMSE-DFE —25 & expl{—cC B (¢)} (105)
on the iterated-decision equalizer, performance predictions for
the ideal MMSE-DFE, ideal ZF-DFE, MMSE-LE, and ZF-LE ezp-DFE — E,( (106)
for the severe-1SI channel model described in Section Il. ae o flE (107)
The inputi[n] to any equalizer slicer can be expressed as eMmsE-LE = E:C¢ B (C)
EZF-LE — 00. (108)

#[n] = pfn] + v[n] (95)
Finally, since the SINRs at the slicer inpfutire related to the
wherey is a constant and[n] is the complex-valued interfer- mean-square slicer error according to [10]

ence+ noise component. Wherin| is uncorrelated with:[n], e
using the slicer input SINR in conjunction with (14) or (16) YMMSE-DFE = ————— — 1 (109)
leads to a conveniett/-ary PSK performance approximation. EMMSE-DFE

This condition is frequently met. For example, for the ideal - Es (110)
ZF-DFE and ZF-LE, the error componerit:] at the slicer is, in ’ ' €zF-DFE
fact, a Gaussian process that is uncorrelated wjith since 1SI £,
is completely removed. Moreovern] is a white process for the YMMSE-L.R = m -1 (111)
ZF-DFE. For the MMSE-LE, since it is equivalent to the first
iteration of the muItipass equgliz_er, we knayjw] is similarly NgFLE = Es 7 (112)
uncorrelated and white. And similar arguments suggest that the €ZF-LE
MMSE-DFE shares this property. we substitute (105)—(108) into the corresponding (109)—(112)

To obtainy = |u|?&, /var v[n] for these equalizers then, weand conclude that
flrst.eve}luate the mean-square ;hcer error. For a given channel AMMSE-DFE —225 exp{e¢ E1(O)} — 1 (113)
realization, the mean-square slicer error for each of the equal- 1

IzeI’S |S [14] ’yZF_DFE _>a. € _Cero (114)
1 ’T &,
EMMSE-DFE = — 111 <7> dw} (96) e 1
{ 271' Oé(u)) + 1 "}/]\/H\/[SE_T E— CT(C) 1 (115)
1
1
E7F-DFE = {2— < ) w} (97) ~Yzr-LE — 0. (116)

In the high-SNR regime{( — 0), we can use the series ex-

[
< ) } (o) Pansion [1]
(5

1
€MMSE-LE = {2—

0 / o0 qy\ksk
Ey(t)=-To—Int—>»_ (=% (117)
EZF-LE = {i/ ) } (99) k=1 f!
2 (w) to show that (113) and (115), respectively, satisfy
where 1
) yMmsE-DFE — exp(—L'o —In () = oo (118)
E|Alw
) = B a00) 1

0 (119)

. S o YMMSE-LE — 7((—% ") -
Next, to develop their characteristics in the large-ISI limit, we
make use of (70) together with the fact thitw) is a Gaussian ~ °We use—<- to denote convergence almost everywhere.
random process, which implies that arbitrarily close samples of °The SINR for the MMSE-DFE is not the same as what Cieffal. [10] call
A(w), and in turna(w), are effectively independent and iden "5 Rusise-pre, which is defined as ;
tically distributed (iid). Thus, it is convenient to interpret the SNRumsr-nFR = mm: —

bracketed expressions in (96)—(99) effectively as averages ongNever the SINR for the MMSE-DFE is equivalentSd Rassr-nrr. U,

random variables with means [7] which is the SINR for the unbiased MMSE-DFE [10]. Indeed, the SINR’s for
e the standard MMSE-DFE and the unbiased MMSE-DFE are identical, since the
E {ln < kd )} =Iné& — CcEl(C) (101) unbiased MMSE-DFE merely scales both the signal and the associated interfer-
ence+ noise process by the same factor at the slicer input.
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We conclude with some brief comments arising out the ref15] M. J. Lopez, A. C. Singer, S. L. Whitney, and G. S. Edelson, “A DFE
lationships between these expressions, and the quality of these coefficient placement algorithm for underwater digital acoustic commu-

approximations, as depicted in Fig. 4. First, note that (114) anﬂe]

nications,” inOCEANS '99 MTS/IEEFR/oI. 2, 1999, pp. 996-1001.
R. Price, “Nonlinearly feedback-equalized PAM versus capacity for

(118) coincide in the high SNR limit, as one might expect since ~ noisy filter channels,” inProc. 1972 IEEE Int. Conf. Commyrlune
the MMSE-DFE can completely eliminate 1Sl in the absence of _ 1972, pp. 22-12-22-17.

noise, which is the constraint imposed by the ZF-DFE.

17] J. G. ProakisDigital Communications3rd ed. New York: McGraw-
Hill, 1995.

The actual performance of the MMSE-DFE matches itg18] M. Tuchler, R. Kétter, and A. Singer, “Turbo equalization’: Principles
prediction reasonably well in general, though there is some  and new results,[EEE Trans. Communsubmitted for publication.

small discrepancy due to error propagation. However, the actull®

] M. Z. Win and R. A. Scholtz, “Impulse radio: How it works|EEE
Commun. Lett.vol. 2, pp. 36-38, Feb. 1998.

ZF-DFE performance deviates dramatically from its prediction2o] G. w. womell, “Spread-response precoding for communication over
(not shown in Fig. 4), due in part to numerical instabilities and  fading channels,IEEE Trans. Inform. Theoryvol. 42, pp. 488-501,
error propagation in the implementation of the ZF-DFE for . Mar. 199.

[21] G. W. Wornell and M. D. Trott, “Efficient signal processing techniques

severe-IS| Channe_ls- for exploiting transmit antenna diversity on fading channelgEEE
Next, a comparison of (119) t¢9 = 1/¢ for the matched Trans. Signal Processingol. 45, pp. 191-205, Jan. 1997.

filter

gap between the performance curve for the MMSE-LE and

bound reveals that as the SNR gets larger, the SNH22] A. M. Chan and G. W. Wornell, “A new class of efficient block-itera-
! tive interference cancellation techniques for digital communication re-

ceivers,”J. VLSI Signal Processingp be published.

the matched filter bound gets arbitrarily large. Moreover, the
ZF-LE is worsenyzr-1.g = 0 for all ¢, which is expected since
the zeros of the random channel converge uniformly on the Albert M. Chan (S'96) was bomn in Toronto,

unit circle in the long ISI limit [5]. These results emphasize th
strong suboptimality of linear equalizers.

Finally, note that the actual MMSE-LE performance doe
track its prediction quite closely, while the ZF-LE prediction i
somewhat overly pessimistic: short of the asymptotic limit,
least some zeros lie quite far away from the unit circle.
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