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Abstract— A new and efficient class of nonlinear equalizers
is introduced for intersymbol interference (ISI) channels.
These “iterated-decision equalizers” use an optimized mul-
tipass algorithm to successively cancel ISI from a block of
received data and generate symbol decisions whose reliabil~
ity increases monotonically with each iteration. Asymptot-
ically they achieve the performance of maximume-likelihood
sequence detection (MLSD), but only have a computational
complexity on the order of a linear equalizer {LE). And be-
caunse their structure allows cancellation of both pre- and
post-cursor 181, iterated-decision equalizers out perform the
minimum mean-square error decision-feedback equalizer
(DFE) by 2.5 dB on severe ISI channels even with uncoded
systems. Even more importantly, unlike the DFE, iterated-
decision equalizers can be readily used in conjunction with
error-control coding, making them attractive for a wealth
of applications,

I, INTRODUCTION

Over the last several decades, a variety of equalization
techniques have been proposed for use on intersymbol in-
terference (ISI) channels. Linear equalizers (LE) are at-
tractive from a complexity perspective, but often suffer
from excessive noise enhancement. Maximumni-likelihood
sequence detection (MLSD) is an asymptotically optimum
receiver in terms of bit-crror rate performance, but its
high complexity has invariably precluded its use in prac-
tice. Decision-feedback equalizers (DFE) [1] are a widely
used compromise, retaining a complexity comparable to
the LE, but incurring much less noise enhancement. How-
ever, DFEs still have some serious shortcomings.

The key limitations of the DFE arise cut of the se-
quential way in which this equalizer processes the received
data. Fivst, decisions made at the slicer can only be fed
back to improve future decisions. Thus, only postcursor
IS1 can be subtracted, so even if ideal postcursor ISI can-
cellation is assumed, the performance of the DFE is still
limited by possible residual precursor ISI and noise en-
hancement.

Second, and even more importantly, the sequential
structure of the DFE makes it essentially incompatible for
use in conjunction with error-contral coding (on channels
not known at the transmitter, as is the case of interest in
this paper). As a result, use of the DFE has been largely
restricted to uncoded systems.
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In this paper, we introduce a remarkably efficient multi-
pass equalizer that 1s a particularly attractive alternative
to all these classical equalizers. In particular, this new
equalizer achieves the performance of MLSD, retains the
low complexity of the LE, and is fully compatible with the
use of coding.

II. DiscrRETE-TIME CHANNEL MODEL

In the discrete-time baseband model of the pulse ampli-
tude modulation (PAM)} communication system we con-
sider, the transmitted data is a white M-ary phase-shift
keying (PSK) stream of coded or uncoded symbols z[n],
each with energy &, (typical trellis codes used with random
bit streams generally produce white symbol streams [2],
as do random codes). The symbols z[n] are corrupted
by a convolution with the channel impulse response, a[n],
and by additive noise, w{n], to produce the received sym-
bols’ 7[n] = e[n] * z[n] + w(n]. The noise w[n] is a zero-
mean, complex-valued, circularly syminetric, stationary,
white Gaussian noise sequence with variance Aj that is
independent of z[n]. (To simplify the exposition, we fo-
cus on symbol-spaced equalization. However, the fraction-
ally spaced generalizations required in practice follow in a
straightforward manner, as developed in [3].)

In Section III, we focus on the case in which the receiver
has exact knowledge of «[n] in order to develop the basic
theory and fundamental limits. In Section IV, we consider
the case of practical interest in which the receiver does
not have a prior: knowledge of the channel, and develop a
corresponding adaptive equalizer. We emphasize that in
both cases, we restrict our attention to transmitters that
have no knowledge of the channel, which is the usual case
for reasonably rapidly time-varying channels.

Also, as increasingly aggressive data rates are pursued
in wideband systems to meet escalating traffic require-
ments, IS becomes increasingly severe. Accordingly, in
this paper we pay special attention to the performance and
properties of the equalizers iu this regime. For the pur-
poses of analysis, a convenient severe-I1SI channel model we
will exploit is one in which a[n] is a finite impulse response
(FIR) filter of length I, where L is large and the taps are
mutually independent, zero-mean, complex-valued, circu-
larly symmetric Gaussian random variables with variance

o2, The channel taps a[n] are also independent of the

!The symbel = denotes the convolution operation.
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data z[n] and the noise w[n]. Note that this is also a good
channel model for many wireless systems employing trans-
mitter antenna diversity in the form of linear space-time
coding [4].

111. THE ITERATED-DEcCISION EQUALIZER

The iterated-decision equalizer we now develop, which
can be viewed as an analog to the multipass multiuser
detector developed in [5], processes the received data in a
block-iterative fashion. Specifically, during each iteration
or “pass,” a linear filter is applied to all the received data,
and tentative decisions made in the previous iteration are
then used to construct and subtract out an estimate of
the ISI. The resulting ISI-reduced data is then passed on
to a slicer, which makes a new set of tentative decisions.
With each successive iteration, increasingly refined hard
decisions are generated using this strategy.

The detailed structure of the iterated-decision equal-
izer is depicted in Fig. 1. The parameters of all sys-
tems and signals associated with the [th pass are denoted
using the superscript {. On the [th pass of the equal-
izer where | = 1,2,3,..., the received data r[n] is first
processed by a linear filter #'[n], producing the sequence
#[n] = b'[n] * »[n]. Next, an appropriately constructed es-
timate 2'[n] of the ISI is subtracted from #[n] to produce
#'[n], i.e., #[n] = #[n]—2'[n], where 3'[n] = d'[n]*2'~[n].
Since #'[n] is intended to be some kind of ISI estimate, we
impose the constraint that the zero-delay tap of d'[n] be
zero or, equivalently, that # ffw DH{w)dw = 0. The slicer
then generates the hard decisions 2![n] from #'[n] using a
minimum-distance rule. (Note that if error-control coding
1s employed, it suffices to replace the slicer with, e.g., the
appropriate soft-decision decoder for the code.)

Analogous to counterparts in [5] and [4], we have that
when z[n] and #~![n] are sequences of zero-mean uncor-
related symbols, each with energy &;, such that their nor-
malized correlation is of the form E[z*[n] - £'~1[k]]/&; =~
pi~18[n — k], then the slicer input at each iteration can be
expressed as

#'[n] ~ E[AB']z[n] + v'[n] (1)
where A(w) and B (w) are the frequency responses of a[n]
and b'[n] respectively, where v'[n] is a complex-valued,
marginally Gaussian, zero-mean white noise sequence, un-
correlated with the input symbol stream z[n] and whose
variance is a function of B'(w) and D'(w), and where the
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Fig. 1. Iterated-decision equalizer structure.

accuracy of the approximation in (1) increases with the
length L of the impulse response a[n].

The second-order model (1) turns out to be a useful
one for analyzing and optimizing the performance of the
iterated-decision equalizer. In particular, the signal-to-
interference+noise ratio (SINR) at the slicer input during
each pass, defined as v' = &|E[AB']|?/var v'[n], achieves
a maximum value of

! & | E[AB')?

T NEIB P+ &0 - (A vartaB]
when

o A" (w)

B() No+ (1= (P 1)2)|A(w)]? )

D'w) = pl(Aw)B'(w) - E[4B])).  (4)

The optimal D!(w) is intuitively satisfying. If z'~![n] =
z[n] so that pi~! = 1, then the output of D'(w) exactly
reproduces the ISI component of #[n]. More generally
though, the correlation coefficient pi~! describes our con-
fidence in the quality of the estimate &'~![n]. Thus, while
the strictly causal feedback filter of the DFE subtracts out
only postcursor ISI, the noncausal nature of the feedback
filter allows the iterated-decision equalizer to cancel both
precursor and postcursor ISI. Note that the center tap of
d'[n] is indeed zero, as stipulated earlier. Note also that
during the first (! = 1) pass, the feedback branch is not
used because pJ = 0, so the sequence #°[n] does not need
to be defined.

Next, the properties of v![n] imply that the probability
of symbol error at the Ith iteration is well-approximated
by the high signal-to-noise ratio (SNR) formula for the M-
ary PSK symbol error rate of a symbol-by-symbol thresh-
old detector for additive white Gaussian noise (AWGN)
channels, given by [6]

Pr(e') = 20 (sin (%) \/27) ,

\%27 L e=t’/24t.

By substituting (3) and (4) into (2) and exploiting the
fact that arbitrarily close samples of the random process
A(w) are asymptotically independent in the limit as L —

00, 1t can be shown that

(5)

where Q(v) =

L ( 1 1) 1
TINEEEE ) T
where Ei(s) = [T et /t dt and &' = {/(1— (p}71)?), with
1/¢ = &Lo%/Ny being the expected SNR at which the
transmission is received.

As the above development suggests, successful imple-
mentation of the iterated-decision equalizer requires that
the normalized correlation between the symbols z[n] and
2'~1[n] at the lth pass be computable. The iterative al-
gorithm for computing the set of correlation coefficients

(6)
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Fig. 2. Theoretical QPSK bit-error rate for the iterated-decision
equalizer as a function of SNR per bit and the number of decod-
ing iterations.

oL, and in turn predicting the sequence of symbol error
probabilities is as follows.

1. Set p2 =0 and let { = 1.

2. Compute the SINR 4' at the slicer input on the lth
decoding pass from pl=! via (6). [It is worth pointing out
that for shorter ISI channels, we can alternatively (and
in some cases more accurately) compute 4! from p{=! via
(2), where the expectations are replaced by frequency av-
erages.]

3. Compute the symbol error probability Pr(e) at the
slicer output from +* via (5).

4. Compute the normalized correlation coefficient pf, be-
tween the symbols z[n} and the decisions #'[n] generated
at the slicer via [5]

P =1-2sin® (%) Pr(é').

5. Increment [ and go to step 2.

(M

A straightforward analysis of the algorithm reveals that
the sequence of error probabilities Pr(e!), Pr(e?),... is
monotonically decreasing, suggesting that additional it-
erations always improve performance. However, the error
rate performance for a given SNR of 1/¢ eventually con-
verges to a steady-state value of Pr(e®).

In Fig. 2, bit error rate is plotted as a function of SNR
for 1,2,3,5, and an infinite number of iterations. We
observe that steady-state performance 1s approximately
achieved with comparatively few iterations, after which
additional iterations provide only negligibly small gains
in performance. It is significant that few passes are re-
quired to converge to typical target bit-error rates, since
the amount of computation is directly proportional to the
number of passes required. We emphasize that the com-
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Fig. 3. Theoretical and experimentally observed QPSK bit-error
rate for the iterated-decision equalizer and the MMSE-DFE as
a function of SNR per bit.

plexity of the multipass equalizer is comparable to that of
the DFE or the LE. It is also significant to note that as
the SNR increases (¢ — 0), the slicer input SINR v — 1/¢
which, when substituted into (5), gives the performance
of the classical AWGN channel. Thus, perfect ISI cancel-
lation is approached at high SNR.

We plot in Fig. 3 the theoretical performance of the mul-
tipass equalizer and the ideal minimum mean-square error
decision-feedback equalizer (MMSE-DFE) as L — oo [3],
as well as the associated experimental performance when
L = 256. We can readily see that at moderate to high
SNR, the iterated-decision equalizer requires significantly
less transmit power than the MMSE-DFE to achieve the
same error rate. In fact, at high SNR, the iterated-decision
equalizer theoretically requires 10Ty loge ~ 2.507 dB less
transmit power [3] to achieve the same probability of error
as the ideal MMSE-DFE, where I'y = 0.57721 - - - denotes

Euler’s constant.

IV. THE ADAPTIVE ITERATED-DECISION EQUALIZER

We now develop an adaptive implementation of the
iterated-decision equalizer, in which optimal FIR filter
coefficients are selected automatically (from the received
data) without explicit knowledge of the channel charac-
teristics.

The multipass equalizer is designed to process received
data in a block-iterative fashion, so it is 1deally suited for
packet communication in which the packet size 1s chosen
small enough that the channel encountered by each packet
appears linear time-invariant. As is typically the case with
other adaptive equalizers, the adaptive iterated-decision
equalizer makes use of training symbols sent along in the
packet with the data symbols. Suppose that a block of
white M-ary PSK symbols z[n] forn =0,1,... . N —11is
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transmitted; some of the symbols (not necessarily at the
head of the packet) are for training, while the rest are data
symbols.

The structure of the adaptive multipass equalizer is sim-
ilar to that of the multipass equalizer described in Sec-
tion III. (Multichannel generalizations follow in a straight-
forward manner, as developed in [3].) The difference is
that the filters &' [n] and d'[n] for the lth iteration are now
finite-length filters. Specifically, b [n] has J; strictly anti-
causal taps and Js strictly causal taps plus a center tap,
while d'[n] has K, strictly anticausal taps and K strictly
causal taps with no center tap.

Before the first pass (I = 1), we need to initialize the
hard decisions £°[n]. Since the locations and values of the
training symbols in z[n] are known at the receiver, we set
#%n] = z[n] for the n corresponding to those locations.
For all the other n between 0 and N — 1 inclusive, we
set 2°[n] to be a “neutral” value—for white PSK symbols,
this value should be zero.

On the [th pass of the equalizer where | = 1,2,3,...,
the slicer input #'[n] can be expressed as®

- t
#[n) =" q'[n]
where

=[]
c=1 _q

at=| ;7]

and?
b = [ b= o'10] o) | (10)
d = [ d-Ki) di-1 d'fy d(xa) 1 (11)
r[n] = [ rintd) r[n) rin-d2] |F (12)
x[n) [ #ntKi] - & 0na] #%n-1] - - #Ynkd ]{13)
Using a minimum-distance rule, the slicer then generates

the hard decisions &'[n] from & [n] for all n between 0 and
N — 1 inclusive, except for those n corresponding to the
locations of training symbols in z[n]. For those n, we set
#[n] = 2[n].

In the lth iteration, there are two sets of data available
to the receiver: r[n] and #'=![n],n = 0,1,...,N—1.If we
assume that z[n] & #'~1[n] for the purposes of determining
the optimal filters (as is similarly done in the adaptive
DFE in decision-directed mode), then it is reasonable to
choose b'[n] and d'[n] so as to minimize the sum of error
squares:

(o0}
> 1@ ) - g )]

n=-oo

£y = (14)

Since this is a linear least-squares estimation problem, the
optimum ¢' is [7)
= [@])", (15)

opr -

2The superscript ! denotes the conjugate-transpose operation.
2The superscript 7 denotes transposition.

where -
8= Y q[nlq"[n] (16)
and :oo
u' = Z Y [nlq'[n]. (17)

The resulting equalizer lends itself readily to practical im-
plementation, even for large filter lengths. In particular,
the matrix &' can be efficiently computed using correla-
tion functions involving r[n] and &'~![n], and [&']~! can
be efficiently computed using formulas for the inversion of
a partitioned matrix [8].

We now turn to a couple of implementation issues.
First, we would ideally like our finite-length adaptive fil-
ters to approximate (3) and (4), which are infinite length.
The optimal b'[n] in (3) includes a filter matched to a[n],
and the optimal d‘[n] in (4) includes a cascade of a[n] and
the corresponding matched filter, suggesting that a reason-
able rule of thumb is to select J, = J; = K} = Ky = L.
Second, the block-iterative nature of the equalizer al-
lows the training symbols to be located anywhere in the
packet. Since—in contrast to the DFE—the locations do
not appear to affect equalizer performance, we arbitrar-
ily choose to uniformly space the training symbols within
each packet.

In Fig. 4, we plot the bit-error rate of the adaptive mul-
tipass equalizer as a function of the number of iterations,
for varying amounts of training data. As expected, the
curves are monotonically decreasing, suggesting that addi-
tional iterations always improve performance. The graph
strongly suggests that there is a threshold for the number
of training symbols, below which the adaptive equalizer
performs poorly and above which the bit-error rate consis-
tently converges to approximately the same steady-state
value regardless of the exact number of training symbols.
The excess training data is still important though, since
the bit-error rate converges quicker with more training
data.

We next examine the probability of bit error as a func-
tion of SNR for varying amounts of training data. From
Fig. 5 we see that, as expected, performance improves as
the amount of training data is increased. Moreover, only
a modest amount of training symbols is required at high
SNR for the adaptive equalizer to perform as if the channel
were exactly known at the receiver.

For comparison purposes, we also plot in Fig. 5 the per-
formance of the recursive least squares (RLS) based im-
plementation of the adaptive DFE [7]. The DFE performs
significantly worse than the iterated-decision equalizer for
comparable amounts of training data. Indeed, the high
SNR gap is even larger than the 2.507 dB determined for
the nonadaptive case in Section III. This is because, as
Figs. 3 and 5 show, the performance of the adaptive DFE
is not accurately predicted by the nonadaptive MMSE-
DFE, even in the long ISI limit. It is also worth stressing
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Fig. 4. Experimentally observed QPSK bit-error rate for the adap- Fig. 5. Experimentally observed QPSK bit-error rate for the

tive iterated-decision equalizer as a function of the number of
decoding iterations and the number of training symbols trans-
mitted with each block of 10000 data symbols at an SNR. per bit
of 7 dB. The 100-tap channels were equalized using 201 feedfor-
ward taps and 200 feedback taps.

that the RLS-based adaptive DFE is much more compu-
tationally expensive than the adaptive iterated-decision
equalizer because the RLS-based DFE requires the mul-
tiplication of large matrices for each transmitted symbol,
whereas the multipass equalizer essentially requires the
computation of one large matrix inverse per iteration for
all the symbols in the packet, with the number of required
iterations being typically small.

V. CODED SYSTEMS

For bandlimited channels with strong frequency-
dependent distortion, coding must be combined with
equalization techniques so that capacity is approached.
In typical implementations, the DFE cancels postcursor
IST by using delay-free symbol decisions, which in a coded
system are often highly unreliable compared to maximum
likelihood (ML) decisions, so performance is often poor
as a result. From this perspective, the iterated-decision
equalizer, which avoids this problem, is a compelling al-
ternative to the DFE in coded systems.

The structure of a communication system that com-
bines the iterated-decision equalizer with coding is shown
in Fig. 6. What makes the iterated-decision equalizer
an attractive cholce when coding schemes are involved is
that the structure of the equalizer allows equalization and
coding to be largely separable issues. One of the main
differences now in the iterated-decision equalizer is that
the symbol-by-symbol slicer has been replaced by a soft-
decision ML decoder; the other is that the batch of de-
cisions must. be re-encoded before being processed by the
filter d'[n].

adaptive iterated-decision equalizer and the RLS-based adaptive
DFE (with forgetting factor A = 1) as a function of SNR per bit.
Blocks of 10000 data symbols were transmitted through 128-tap
channels, which were equalized using 257 feedforward taps and
256 noncausal feedback taps in the case of the iterated-decision
equalizer, and using 257 feedforward taps and 128 strictly causal
feedback taps in the case of the DFE.

,Q”I n|

24

Fig.6. Structureof a communicationsystem that combines iterated-
decision equalization with channel coding.
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