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Selecting the Lorenz Parameters for Wideband

Radar Waveform Generation
Matt S. Willsey+, Kevin M. Cuomo†, and Alan V. Oppenheim‡

Abstract

Radar waveforms based on chaotic systems have occasionally been suggested for a variety of radar applications.

In this paper, radar waveforms are constructed with solutions from a particular chaotic system, the Lorenz system,

and are called Lorenz waveforms. Waveform properties, which include the peak autocorrelation function side-lobe

and the transmit power level, are related to the system parameters of the Lorenz system. Additionally, scaling the

system parameters is shown to correspond to an approximate time and amplitude scaling of Lorenz waveforms and

also corresponds to scaling the waveform bandwidth. The Lorenz waveforms can be generated with arbitrary time

lengths and bandwidths and each waveform can be represented with only a few system parameters. Furthermore, these

waveforms can then be systematically improved to yield constant-envelope output waveforms with low autocorrelation

function sidelobes and limited spectral leakage.

Index Terms

Radar, Waveforms, Wideband, Chaos, Lorenz, Time-Scaling.

I. INTRODUCTION

Due to the aperiodic nature of chaotic dynamics, chaotic systems can be used to generate signals with low

autocorrelation sidelobes. Since many radar systems utilize the matched filter to achieve high range resolution and

maximize the SNR in Gaussian noise [North, 1963], low autocorrelation function sidelobes help prevent false alarms

and prevent stronger returns from masking the presence of weaker returns. Furthermore, for wide bandwidths, these

chaotic waveforms lead to high range resolution [Rihaczek, 1996].

Many waveform design techniques have been proposed using chaotic systems with amplitude or frequency/phase

modulation (see, for example, [Venkatasubramanian & Leung, 2005; Lukin, 2001; Flores, et al., 2003]). The

contribution of this paper is to develop a specific chaotic system, the Lorenz system [Lorenz, 1963], for waveform
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generation by appropriately selecting the system parameters. Specifically, scaling the Lorenz parameters is shown

in Section II to approximately scale the Lorenz solutions in time and amplitude, which can therefore be used to set

the bandwidth of the Lorenz waveforms. The time-scaling property also allows a decoupling of the three system

parameters into one parameter that controls the bandwidth and two parameters that control other waveform properties.

The two-dimensional parameter space is explored in Section III to determine how these parameters affect various

waveform properties. Whereas techniques with amplitude modulation often sacrifice sensitivity and techniques with

frequency/phase modulation often lead to spectral leakage (due to abrupt transitions in instantaneous frequency),

the resulting Lorenz waveforms can be improved using the procedure in [Willsey et al., 2010] to yield high-power

waveforms with limited spectral leakage. Moreover, since each waveform is uniquely determined by a combination

of the system parameters and initial conditions, each waveform can be stored with six system parameters.

II. TIME SCALING SOLUTIONS OF THE LORENZ EQUATIONS

The Lorenz system, as given in Eq. 1, is one of the most well-studied chaotic systems [Strogatz, 1994; Cuomo,

1994; Guckenheimer & Holmes, 1983].

ẋ = σ(y − x)

ẏ = rx− y − xz (1)

ż = xy − bz

In order for the Lorenz system to give rise to chaotic dynamics, the Lorenz parameters σ, r, and b must satisfy

Eqs. 2 - 4.

b > 0 (2)

σ > b + 1 (3)

r >
σ(σ + b + 3)
(σ − b− 1)

≡ rc. (4)

The variable rc in the above equation is the critical value for r.

In this section, two techniques useful in generating time-scaled solutions to the Lorenz equations are presented.

The first technique modifies the Lorenz equations so that the resulting solutions exactly equal time-scaled solutions

of the original system. The second technique gives rise to approximately time-scaled solutions by scaling the Lorenz

parameters.

To simplify the representation of the Lorenz equations, we use the vector x, as defined in Eq. 5, to denote the

x, y, and z state variables and use the vector f(x), as defined in Eq. 6, to denote the Lorenz equations.

x =




x

y

z


 . (5)
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f(x) =




σ(y − x)

rx− y − xz

xy − bz


 . (6)

With this notation, the Lorenz system in Eq. 1 is expressed as

ẋ = f(x). (7)

A. Exactly Time-Scaling the Lorenz Equations

Using the above notation, a slightly modified Lorenz system is presented in Eq. 8 where a > 0. As can be seen

in Eq. 8, the original Lorenz equations are scaled by a. The solutions, x1(t), of Eq. 8 equal time-scaled solutions

to the Lorenz equations, x(at), for identical initial conditions1, i.e.

ẋ1 = af(x1) (8)

x1(t) = x(at). (9)

The fact that the system in Eq. 8 gives rise to time-scaled solutions of the Lorenz equations, Eq. 9 can be verified

by differentiating x1(t) and using the chain rule to obtain

ẋ1(t) =
d[x(at)]

d[at]
a

Substituting f(at) for d[x(at)]
d[at] and using Eq. 9 results in

ẋ1 = af(x1(t)) (10)

The time dependence can be dropped for notational convenience to yield the differential equations in Eq. 8, which

shows that these equations are the differential equations yielding the solutions in Eq. 9.

The time-domain relationship in Eq. 9 also implies a frequency-domain relationship between the Fourier transform

of x(t) and x1(t). Specifically, a time scaling by a results in a frequency scaling by 1
a . Correspondingly, the

bandwidth of x1(t) increases by a factor of a as the value of a in Eq. 8 increases. This bandwidth scaling is a

useful property when generating radar waveforms.

B. Approximate Time-Scaling of the Lorenz Equations through the Lorenz Parameters

In this section, appropriate selection of the Lorenz parameters is shown to result in an approximate time and

amplitude scaling of the Lorenz solutions. A system that corresponds exactly to a time and amplitude scaling is

given in Eq. 11. As expressed in Eq. 12, solutions to Eq. 11, x2(t), are equal to time and amplitude scaled solutions

1Even though this relationship is exact, due to rounding in the numerical integration methods and to the divergence of nearby Lorenz

trajectories, numerically demonstrating the relationship in Eq. 9 is difficult if the magnitude of a is too large.
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to the Lorenz equations if the initial conditions are related as in Eq. 13. These equations can be verified as was

done previously with Eqs. 8-9.

ẋ2 = a2f(
1
a
x2) =




aσ(y2 − x2)

arx2 − ay2 − x2z2

x2y2 − ab2z2


 (11)

x2(t) = ax(at) (12)

{x2(0), y2(0), z2(0)} = {ax(0), ay(0), az(0)} (13)

Equating Eq. 11 to a Lorenz system of the form of Eq. 1 with parameters σ̂, r̂, b̂ would require that



σ̂

r̂

b̂


 =




aσ

ar − ŷ
x̂ (a− 1)

ab


 . (14)

Consequently, a choice for a constant r̂ does not exist, and the Lorenz parameters cannot be chosen to exactly time

and amplitude scale the corresponding solutions.

However, when the term ŷ
x̂ (a−1) in Eq. 14 is negligible for most values of t, then selecting σ̂ = aσ, r̂ = ar, and

b̂ = ab results in solutions x̂(t) where x̂(t) ≈ x2(t) = ax(at). In [Willsey, 2006], the term ŷ
x̂ (a− 1) is determined

to be negligible when

r ≥ 360

a ∈ [0.4,∞)
(15)

Summarizing, we choose

{σ̂, r̂, b̂} = {aσ, ar, ab} (16a)

with

{x̂(0), ŷ(0), ẑ(0)} = {ax(0), ay(0), az(0)} (16b)

and the constraints in Eq. 15, in which case

x̂(t) ≈ ax(at) (17)

To illustrate time-scaling through the use of a parameter scaling, two Lorenz systems with scaled parameters were

numerically integrated (using a 4th order Runge-Kutta method with a step size of 10−3 seconds) and compared.

The first system has a set of parameters {σ, r, b} equal to {267, 595, 100}. A set of initial conditions were found

on the attractor of this Lorenz system and were used to generate the x state variable which is shown with a solid

line in Fig. 1. The parameters and the initial conditions of the second system were chosen according to Eq. 16 with

a = 0.95. The x state variable of the second system is plotted with a dashed line in Fig. 1. As expected, the signal
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Fig. 1. Time Evolution of the x State-Variable for Two Lorenz Systems. The two systems have different parameter sets that give rise to two

Lorenz systems where one system is a time-scaled and re-normalized version of the other system. The time-scaling and re-normalization factor

was 0.95.

represented with the dashed line is time and amplitude scaled by a factor of 0.95 when compared to the signal

represented with the solid line2. Although only x(t) is shown, y(t) and z(t) are similarly scaled3.

III. SELECTING THE LORENZ SYSTEM PARAMETERS FOR WAVEFORM GENERATION

A typical radar waveform s(t) is a real signal of the form shown in Eq. 18 (with a(t) and θ(t) slowly varying

relative to ωc), and the spectral content of these signals is concentrated around ±ωc [Rihaczek, 1996].

s(t) = a(t) cos(ωct + θ(t)) (18)

The corresponding complex envelope, µ(t), and the transmit waveform, s(t) are related as shown in Eq. 194.

s(t) = <{µ(t)ejωct} (19)

All of the waveforms presented in this paper are used as the complex envelope.

The radar waveforms are extracted from the Lorenz system as a normalized, time-windowed segment of the x

state variable5. The Lorenz waveform, xL(t), is expressed mathematically in Eqs. 20 and 21 where T denotes the

2Since the time and amplitude scaling is approximate, the two trajectories will eventually diverge as a result of a chaotic system’s sensitivity

to initial conditions.
3It is worth noting that although an exact time scaling via the Lorenz parameters is not attainable, the Lorenz system can be changed to give

other chaotic systems with solutions that can be exactly time scaled by scaling its system parameters. Such systems are proposed in [Willsey,

2006].
4For a more detailed discussion of this analytic formulation of transmit waveform, see Chapter 2 of [Rihaczek, 1996].
5Based on preliminary studies, x(t) was shown to lend itself best to waveform design when compared to the other state variables or

combinations of state variables.
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length of the waveform in time and xp denotes the maximum of |x(t)| over the time interval t ∈ [0, T ].

xL(t) =
1
xp

wr(t)x(t) (20)

wr(t) =





1; t ∈ [0, T ]

0; else
(21)

These waveform can also be generated with arbitrary time lengths and bandwidths. An additional benefit to these

Lorenz waveforms is that, due to the uniqueness of solutions, each Lorenz waveform is uniquely specified by the

initial conditions, the time length, and the Lorenz parameters, which allows for convenient compression and storage

of the entire waveform that was generated in terms of a very small number of parameters. The remaining focus of

this section is to select the Lorenz parameters so that the waveforms generated from the Lorenz system have the

desired radar waveform properties.

A. Decoupling the Lorenz Parameters

As shown in Sec. II, scaling the system parameters approximately scales in time and amplitude the Lorenz

solutions, and therefore also scales the bandwidth. For most parameter values, the Lorenz parameters can be

decoupled such that one parameter primarily determines the bandwidth and the other two parameters control other

radar waveform properties. This decoupling simplifies the determination of the desired waveform properties.

To decouple the Lorenz parameters so that one parameter controls bandwidth and the other two are used to

control other waveform properties, we introduce the scaling parameters a, K and express σ, r, and b in Eq. 1 as

σ = aσ0

r = ar0 (22)

b = aK

By first selecting K in b = aK, all combinations of {σ, r, b} can be reached by varying σ0, r0, and a. When

the constraints in Eq. 15 hold, varying a is interpreted as scaling the bandwidth by a, as discussed in Sec. II. As

discussed below, the relevant combinations of system parameters for waveform generation satisfy Eq. 15.

In the next two sections, the Lorenz parameter space is explored. For this discussion the value of K is chosen to

be 100, and the values of σ0 and r0 in Eq. 23 are varied to improve the average transmit power and range sidelobes

of the radar waveform.

{σ, r, b} = a · {σ0, r0, 100} (23)

After determining σ0 and r0, a can be varied to give the desired system bandwidth.

B. Average Transmit Power

Many practical radar systems have peak power limitations. Consequently, transmit waveforms are usually designed

with an average transmit power within a few dB of peak power. The peak-to-RMS ratio (PRMS) of the Lorenz
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Fig. 2. Averaged Peak-to-RMS Ratio of Lorenz waveforms for Combinations of σ0 and r0. The variable rc is the critical value for r.

waveforms, which are used as the complex envelope µ(t), quantifies this loss from peak transmit power. A low

value for PRMS is desired.

The Lorenz parameters can be varied to reduce the PRMS ratio of Lorenz waveforms. With a = 1 in Eq. 23, the

PRMS is explored for σ0 ∈ (200, 850) and r0 ∈ (rc, 1.6rc)6 (where rc is given in Eq. 4). Using each combination

of σ0 and r0, three distinct, 100 second Lorenz waveforms are generated with randomly selected initial conditions.

The PRMS value associated with that combination of parameters is then determined by averaging the PRMS value

over three trials. The results are shown in Fig. 2. As shown in Fig. 2, the PRMS is lowest in the lower, left-hand

corner when both σ0 and r0 are reduced. In [Willsey, 2006], this PRMS variation is shown to be influenced by the

underlying Lorenz dynamics also dependent on the Lorenz parameters.

C. Range Sidelobes

Since many practical radar systems utilize matched filters, the autocorrelation function, as defined in Eq. 24 is a

critical design consideration7:

rµµ(t) =
∫ ∞

−∞
µ(τ)µ∗(τ − t)dτ. (24)

Since the time scale of the matched-filter response is proportional to range separation between the target and

the radar, autocorrelation function sidelobes correspond to sidelobes in range. Thus, low autocorrelation-function

sidelobes prevent false alarms and also prevent larger targets from interfering with smaller targets. For Lorenz

waveforms, the magnitude of the peak side-lobe of the autocorrelation function can be reduced by appropriately

selecting the system parameters.

6Preliminary empirical studies indicated that these ranges were most relevant to waveform design.
7To simplify this discussion, the Doppler effect has been ignored.
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Fig. 3. Peak Side-lobe of the Lorenz System for Various Combinations of σ0 and r0 in Eq. 23 with a = 1.

The relationship between the peak side-lobe and the Lorenz parameters, as defined in Eq. 23, is determined

empirically for various combinations of σ0 ∈ (200, 850) and r0 ∈ (rc, 1.6rc)8 while a = 1. For each combination

of σ0 and r0, the peak autocorrelation function side-lobe is determined by averaging the peak side-lobe of three

distinct Lorenz waveform with randomly selected initial conditions. The results are shown in Fig. 3, which illustrates

that a region exists that corresponds to a minimum peak side-lobe.

The connection between the peak autocorrelation function side-lobe and the Lorenz parameters is further illustrated

in Fig. 4. In this plot, the autocorrelation function corresponding to two different sets of system parameters are

compared. The first set of system parameters, {σ = 262, r = rc, b = 100}, lies in the darkest-shaded, low side-

lobe region of Fig. 3; whereas, the second set of parameters, {σ = 262, r = 1.6 · rc, b = 100}, lies in a region

corresponding to a relatively high peak side-lobe. As expected the peak side-lobe associated with the first set of

system parameters is lower than the peak side-lobe associated with the second set of parameters. The dependence

of the peak side-lobe on the Lorenz parameters results from underlying Lorenz system properties as discussed in

[Willsey, 2006]9.

D. Design Curves for the Lorenz Parameters

By using Fig. 2 and Fig. 3, the values of σ0 and r0 in Eq. 23 can be chosen to trade off the peak-to-RMS

ratio with the peak autocorrelation function side-lobe. This trade-off is illustrated with the design curves for xL(t)

8Preliminary studies indicated that these ranges were most relevant to waveform design.
9In summary, as a trajectory moves around one wing of the Lorenz attractor, there is a probability, p, at which the trajectory transitions

to the other wing of the attractor and a probability (p − 1) at which the trajectory remains on the same wing of the attractor. The value of

p is empirically shown to depend on the Lorenz parameters, and the Lorenz parameters corresponding to p = 0.5 are shown to also be the

parameters that correspond to the minimum peak side-lobe.
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Fig. 4. Comparison of Two Normalized Autocorrelation Functions, rxLxL , from Two Systems with Different System Parameters. The solid

blue curve illustrates the autocorrelation function for the Lorenz parameters, {σ = 262, r = rc, b = 100}, that correspond to a minimal peak

autocorrelation function side-lobe. The dashed red curve illustrates the autocorrelation function for the Lorenz parameters, {σ = 262, r =

1.6 · rc, b = 100}, that correspond to a relatively high peak side-lobe.

shown in Fig. 5. The solid line, C1, represents the combinations of σ0 and r0 that give rise to Lorenz waveforms

with autocorrelation functions possessing minimized peak sidelobes. The three dashed lines represent combinations

of σ0 and r0 that give rise to Lorenz waveforms with a peak-to-RMS ratio roughly equal to 2.2, 2.3, and 2.4,

respectively. As depicted in Fig. 2, the peak-to-RMS ratio of the Lorenz waveform monotonically increases from

the bottom left corner of Fig. 5 to the top right corner. When generating xL(t), combinations of σ0 and r0 will be

chosen on C1 below the line corresponding to a peak-to-RMS less than 2.3. These combinations of parameters are

illustrated in the figure as the operating region, which is the shaded portion of C1
10. Finally, the parameter a in

Eq. 23 can be varied to set the bandwidth of the resulting Lorenz waveform.

IV. DISCUSSION ON THE RESULTING LORENZ WAVEFORMS

The Lorenz waveforms described in this paper possess many properties that make them well-suited for several

applications. With large bandwidths and long time lengths, waveforms from the Lorenz system possess sharp

autocorrelation functions capable of achieving high range resolution and low range sidelobes. Furthermore, waveform

generation with the Lorenz system is useful in generating a large set of nearly orthogonal waveforms (as described

in [Willsey et al., 2010]) for applications such as those relevant to MIMO radar systems [Robey et al., 2004]. As

described in Sec. III, these waveforms can be generated with arbitrary time lengths and bandwidths, and each of

these waveforms can be represented with only a few, finite-precision system parameters. Finally, since scaling the

10All lines in Fig. 5 are drawn with a relatively large width to indicate that the combinations of σ0 and r0 that give rise to minimized

sidelobes and particular realizations of the peak-to-RMS ratio were numerically approximated (as opposed to analytically determined).
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Fig. 5. Lorenz Waveform Design Curves. For b0 = 100, these curves indicate combinations of σ0 and r0 that tradeoff the peak-to-RMS ratio

and magnitude of the peak side-lobe.

Lorenz parameters is shown to approximately time scale the Lorenz solutions, the potential exists for obtaining

range and Doppler characteristics of a target by using scaled Lorenz parameters either with the self-synchronizing

property in [Pecora & Carroll, 1991] or with a method similar to that presented in [Liu et al., 2007] with Chua’s

circuit.

Although the Lorenz parameters have been determined to achieve desirable radar waveform properties, an

evaluation of these waveforms in [Willsey et al., 2010] suggests that they can be improved even further with

the procedure in [Willsey et al., 2010]. This improvement results in radar waveforms based on the Lorenz system

that possess low range sidelobes, an average power within a few dB of peak power, and limited spectral leakage.

Plots of the corresponding autocorrelation function and energy spectrum are depicted in [Willsey et al., 2010].

Figure 6 from [Willsey, 2006] depicts a typical transmit signal to illustrate how the average power of the waveform

is within a few dB of peak power.

V. CONCLUSIONS

In this paper, the relationship between the Lorenz parameters and the radar waveform properties of the Lorenz

waveforms is explored. Selection of the Lorenz parameters is shown to vary the Lorenz waveform bandwidth - via a

time and amplitude scaling - and is shown to trade-off the PRMS ratio with peak autocorrelation function side-lobe.

Due to the naturally tapered spectrum and bounded dynamics of the Lorenz solutions, the resulting waveforms can

be readily improved with the procedure in [Willsey et al., 2010].
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